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Organophosphorus compounds serve as reagents, ligands for
transition metals, biologically active substances, and building
blocks of nanoarchitectures, and thus play vital roles in
organic chemistry. Among them, (E)-1,2-bis(diphenylphos-
phanyl)ethene has recently attracted increasing attention in
the field of self-assembly.[1] Construction of hierarchical
structures for use as new functional materials[2] calls for
derivatives of (E)-1,2-bis(diphenylphosphanyl)ethene that
have functional groups to induce further assembly. However,
there are a limited number of methods for the synthesis of
such peculiar diphosphanylethene skeletons; these syntheses
are always carried out under harsh and/or strongly basic
conditions.[3] Highly efficient and mild reactions affording
(E)-1,2-bis(diphenylphosphanyl)ethene derivatives are there-
fore required.

Here we report a general, facile, and reliable synthesis of
(E)-diphosphanylethene derivatives starting from an alkyne
and a tetraorganodiphosphane. Radical addition of a tetra-
organodiphosphane across a C�C triple bond seems to be a
straightforward strategy for the synthesis of 1,2-diphospha-
nylethenes.[4,5] However, tetraorganodiphosphanes are so
sensitive to oxygen that their preparation, purification, and
handling are quite difficult and must be carried out under a
strictly inert atmosphere.[6] The inherent instability of diphos-
phanes in the presence of oxygen poses a serious problem in
their synthetic use. The present diphosphanylation reaction
employs a tetraorganodiphosphane that is cleanly generated
in situ prior to the reaction. The high efficiency of this method
will allow the 1,2-diphosphanylethenes synthesized to be
applicable in organic materials science.

A mixture of 1-dodecyne (1a), diphenylphosphane,[7]

chlorodiphenylphosphane, triethylamine, and 1,1’-azobis(cy-
clohexanecarbonitrile) (V-40)[8] was heated in boiling ben-
zene for 10 h (Scheme 1). The product was isolated as a 91:9
mixture of E and Z isomers of phosphane sulfide 3 a in 84%
yield. These two stereoisomers were separable from each
other by thorough chromatographic purification on silica gel.

The presence of an excess of chlorodiphenylphosphane is
essential for the success of the reaction: the use of a smaller
amount (1.0 mmol) of chlorodiphenylphosphane gave (1-
dodecenyl)diphenylphosphane sulfide (4, 9%, E/Z = 18:82)
along with 3a (78 %, E/Z = 90:10). Complete conversion of
diphenylphosphane to tetraphenyldiphosphane is important
to avoid contamination by monoadduct 4.

Tetraphenyldiphosphane is commercially available. How-
ever, the reaction of 1a (0.75 mmol) with the purchased
tetraphenyldiphosphane[9] (1.5 mmol) yielded both 3 a (60 %,
E/Z = 88:12) and 4 (27%, E/Z = 37:63). It is worth noting that
addition of chlorodiphenylphosphane to the reaction mixture
suppressed the generation of 4, and generated 3a (87 %, E/Z
= 89:11) selectively.

A variety of terminal alkynes undergo this radical
diphosphanylation reaction (Table 1). Aryl-substituted ace-
tylenes react with tetraphenyldiphosphane prepared in situ to
yield 1-aryl-1,2-bis(diphenylthiophosphanyl)ethenes in excel-
lent yield with high stereoselectivity (entries 1–5). The E
configuration of the major isomer of 3c was determined by X-
ray crystallographic analysis (see the Supporting informa-
tion). Purification of 2b under argon allowed us to isolate this
compound in 78 % yield (E/Z = 92:8). Ester (entries 3 and 7),
iodo (entry 4), keto (entry 5), and thioester (entry 8) moieties
remained unchanged under the reaction conditions; these
groups are not tolerated in the conventional incorporation of
a diphenylphosphanyl group which requires the use of a
highly nucleophilic and basic metal diphenylphosphide.[3]

Gratifyingly, an carbon(sp3)–halogen bond was also stable
during the reaction, although 1j is prone to form the
corresponding Wittig salt (entry 9). Tetracyclohexyldiphos-
phane, prepared in situ from dicyclohexylphosphane[7] and
chlorodicyclohexylphosphane, added to 1b in a similar
fashion to afford (E)-3b’ in excellent yield after careful
separation from contaminants such as (Z)-3b’ (Scheme 2).

The reactions with tert-butylacetylene failed to yield the
desired product, and internal alkynes such as diphenylacety-
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lene and 6-dodecyne also remained intact. Under the same
reaction conditions 4-pentyn-1-ol or 3-butyn-2-one gave
complex mixtures containing small amounts of the desired
products.

The reaction clearly proceeds via a radical pathway, as
demonstrated in Scheme 3. The formation of 5 necessitates

addition of a phosphorus-centered radical[10] followed by 5-
exo-dig radical cyclization. Isomerization of 6 to 7 reduces the
steric hindrance in the cyclization, and subsequent radical SH2
substitution[11] affords the doubly phosphinated diene.[12]

The high efficiency of this reaction might offer a reliable
method for the synthesis of organic compounds for use in
single-molecule devices, self-assembled monolayers (Table 1,
entry 8), or optically intriguing organic materials. Scheme 4
illustrates the synthesis of a new fluorescent compound 10
which exhibits a couple of intense absorption bands in the UV
region (lmax = 302, 320 nm; e = 2.0 � 104

m
�1 cm�1 for both)

and blue fluorescence (lmax = 469 nm) upon irradiation at 302
or 320 nm.

In summary, we have developed a highly efficient and
concise diphosphanylation reaction for terminal alkynes. The
radical addition of a tetraorganodiphosphane to an alkyne
affords 1,2-diphosphanylethenes in good yield with high E
selectivity. The required tetraorganodiphosphane was readily
prepared by mixing a diorganophosphane and a chlorodior-
ganophosphane in situ in the presence of triethylamine, which
allowed us to avoid the troublesome isolation of tetraorga-
nodiphosphane. The mild reaction conditions offer excellent
functional-group compatibility and hence provide a powerful
tool for the synthesis of important compounds by introducing
two phosphorus atoms in one shot.
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Table 1: Radical diphosphanylation of terminal alkynes.

Entry 3 R Yield [%][a] E/Z[a]

1 3b Ph 87 (96)[b] 93:7
2 3c p-MeOC6H4 89 94:6
3 3d p-MeOC(O)C6H4 95 94:6
4 3e p-IC6H4 83 94:6
5 3 f p-AcC6H4 96 95:5
6 3g PhCH2OCH2CH2CH2 78 90:10
7 3h EtOC(O)(CH2)6 86 90:10
8 3 i AcS(CH2)9 80 90:10
9 3 j Cl(CH2)9 86 91:9

[a] Determined by 31P NMR spectroscopy with (MeO)3P=O as internal
standard. [b] Performed on a 5.0-mmol scale.
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