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The [4+ 1]-cycloaddition between a carbeBeand a diend. to

Scheme 1. Examples of [4 + 1]-cycloadditions

give a cyclopentene derivative is, in a sense, the five-membered Ph
ring equivalent of the DielsAlder reaction (eq 1). @: Phji}o
OMe 0 Ph
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Given the ubiquity of five-membered carbo- and heterocyclic R R R
substructures in natural products, one would expect thet-[4 RZ. = RyS=CHR' R2 _ 6a R2 OMe
1]-cycloaddition, like the DielsAlder reaction, to count among jQ—R' or =,
the most powerful reactions in the arsenal of the synthetic chemist. R3Si R'CHN, R3Si C=o R3Si OMe
On the contrary, this reaction has few precedents. Lilienblum and °© (R"=MesSi)
Hoffmann reported such an intermolecular cheletropic reaction ° 10 "
between dimethoxycarberga and tropone5 or tetracyclone7 Scheme 2. Fisher Carbenes 12 Give Mostly Cyclopropane
(Scheme 1}. The same carbene also added to tetraZiaes to Products with Electron-Poor Dienes
4,4-bis(trifluoromethyl)-1,3-diazabutadief&lore recently, Rigby R~ com R
. . . . . oivie
established tha@aadded to vinyl isocyanates to give five-membered (CONCr =<O'V'e 13 Meé?:&\/ﬂ
ring lactams! In addition, dimethoxy carbera reacts with silyl- s R R' = H, alkyl, aryl, ester CO,Me
substituted vinyl keteneB0 (Scheme 1%.The latter also react with 12 14
sulfur ylids or trimethylsilyldiazomethane to gi\@&®
Examples of [4+ 1]-cycloadditions between a carbene and a Scheme 3. Intermolecular [4 + 1]-Cycloadditions of
simple diene are rafeThe main reason is the known propensity ~Electron-Deficient Dienes with Dialkoxy Carbenes
of carbenes and carbenoids to give cyclopropanation products with o OMe N ® OMe OMe
alkenes and 1,3-dienésFor example, dimethoxycarbene gave >X \FOR Z ,9~\~< — >:o + :<
cyclopropane derivatives in low yield with 1-phenyl- and 1,1- NN \<e OR OR
diphenyl-1,3-butadienkFisher carbene complex& gave mostly 15aR = Me 16 SaR=Me
. . . 15b R = (CHp),Ph =(CHa)zPh
cyclopropanation products with electron-poor dienes (Scherfie 2). MeO,C  COMe
On the basis of the precedented rearrangement of vinylcyclopro- Cl-Ph
panes? Hudlicky!! and Danheisét established a two-step protocol CO,Me 7\ reflux
that converted 1,3-dienes to cyclopentene derivatives. R—//_\\—co " 15a OMe 17
Warkentin and co-workers studied extensively the chemistry and "4 & - COZMé © cLPh OMe MeO,C OMe
mechanistic aspects of dialkoxy carbenes and related bis-heteroatom1b R = Me reflux R D(
carbened?® One of the easiest methods to generate such carbenes (£)-20a-b MeO,C OR
is through the thermal decomposition of appropriately substituted o 18a-b
oxadiazolinesl5 (Scheme 3}314We were surprised to find that o 15a
dialkoxycarbenesaand6b added efficiently to electron-poor diene X -COMe @:%Cozm
17to give the corresponding cyclopentene addd8sand18bin gﬂz';
67 and 60% vyields, respectively. Cyclopropane products were not 2 22 OMe

detected, although they could be intermediates (vide infra). Dienes
19ab gave cyclopentanone acet@Bab as single diastereomers At this point, we were convinced that an intramolecular version
in 38% and 29% vyield, respectively. The latter reaction gave a crude of this annulation reaction could lead to useful polycyclic structures
product with a clean NMR that indicated complete conversion of in improved yields. We are not aware of prior examples of such
the dienel9b, but the products were somewhat unstable. The two intramolecular [4+ 1]-cycloaddition aside from a fortuitous reaction

methyl ether groups irR0a gave different’H NMR signals,
indicating a cis stereochemistry of the two esters2fa The
stereochemistry a20b was assumed to be the same2@s. Diene
21reacted efficiently also, as judged by NMR, but gave cyclopen-
tadiene22 in 30% yield after purification on silica gel. Vinylcy-

observed by Warkentin and co-worképs.

We prepared diene&3a—c, which were coupled to oxadiazoline
15c using an improved reaction condition (Schemé®hieating
to reflux the resulting oxadiazolinésta—c in toluene in carefully
washed glassware gave good yields of the bicyclic add2fas c

clohexene and other electron-rich dienes, such as Danishefsky’sand26a—c (Scheme 4). Oxadiazolin&agave a 5:95 mixture of
diene, did not react witléa. diastereomeric adduc®5a and 26a in 85% vyield, while acetals
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Scheme 4. Preparation of Bicyclic Adducts 25a—c and 26a—c In conclusion, we have shown that electron poor dienes and
Me o OMe oxadienes participate in [4 1]-cycloadditions with dialkoxy
HO = 1 carbenes. The intramolecular reactions are the first examples of
n Me N=N OAc CO,Me o . .
| Me o OMe * | Y this kind and lead to useful bicyclic structures. We are presently
CO,Me 15¢ _}40 - expanding this methodology to include nitrogel$and sulfup19.20
23an =1 CSA(cat)  Me N=N atoms as well as probing into the mechanistic aspects of the reaction.

23bn=2 CH,Clp 24an=1
= 86-98% - i i
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