

Preparation of Polyfunctional Naphthyridines by Cobalt-Catalyzed Cross-Couplings of Halogenated Naphthyridines with Magnesium and Zinc Organometallics

Robert Greiner,[†] Dorothée S. Ziegler,[†] Denise Cibu,[†] Andreas C. Jakowetz,[†] Florian Auras,[‡] Thomas Bein,[†] and Paul Knochel^{*,†}

[†]Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany [‡]Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

(5) Supporting Information

ABSTRACT: CoCl₂ (5%) catalyzes cross-couplings of various halogenated naphthyridines with alkyl- and arylmagnesium halides. Also, arylzinc halides undergo smooth cross-couplings with various naphthyridines in the presence of CoCl₂·2LiCl (5%) and sodium formate (50%), leading to polyfunctional arylated naphthyridines. Two of these arylated naphthyridines are highly fluorescent, with quantum efficiencies reaching 95% and long excited-state lifetimes of up to 12 ns.

T-Heterocyclic scaffolds are ubiquitous building blocks for pharmaceuticals, agrochemicals, and materials science.¹ There is a need for new N-heterocyclic structures since novel ring systems may display original biological or physical properties. Recently, the naphthyridine scaffold has attracted increased attention.² Its functionalization was found to be especially difficult, and only a few methods are available.³ Although Fecatalyzed cross-couplings have been used to functionalize chloronaphthyridines, the scope of such cross-couplings is quite limited.⁴ Interestingly, Co-catalyzed cross-couplings generally display a broader reaction scope and have proved to be very useful for the functionalization of electron-deficient Nheterocycles.⁵ We recently showed that the addition of appropriate ligands (e.g., sodium formate or pivalate) considerably extends the scope of these cross-couplings.⁶ Herein we report that Co-catalyzed cross-couplings allow efficient functionalization of various halogenated naphthyridines.

In preliminary experiments, we found that chloronaphthyridines 1a-c are easily alkylated using 5% CoCl₂ in THF (Table 1). Thus, the reaction of 3,6-dichloro-1,8-dimethyl-2,7-naphthyridine (1a) with 2-phenylethylmagnesium bromide (2a) at 25 °C (30 min) provided monoalkylated naphthyridine 3a in 80% yield (Table 1, entry 1). Similarly, alkylmagnesium reagent 2a allowed the conversion of 1-chloro-2,7-naphthyridine (1b) to the expected 1-phenethyl-2,7-naphthyridine (3b) in 82% yield (entry 2). Treatment of 1b with MeMgCl (2b) gave the corresponding 1-methyl-2,7-naphthyridine (3c) in 98% yield (entry 3). Furthermore, *sec*-BuMgCl (2c) underwent crosscoupling with 1b to afford 2,7-naphthyridine 3d in 54% yield (entry 4). Co-catalyzed alkylation of 5-chloro-1,6-naphthyridine 1c with BuMgCl (2d) provided 1,6-naphthyridine 3e in 69% yield (entry 5). Additionally, the reaction of 5-chloro-1,6-

naphthyridine 1c with cyclopropylmagnesium bromide (2e) gave 1,6-naphthyridine 3f in 52% yield (entry 6).

Furthermore, we have found that 3,6-dichloronaphthyridine **1a** was easily bisarylated in the presence of 5% CoCl₂ using arylmagnesium reagents⁷ such as **4a**–**d** (Scheme 1). Thus, the reaction of **1a** with 4-trimethylsilylphenylmagnesium bromide (**4a**) (3.0 equiv) at -40 °C provided bisarylated 2,7naphthyridine **5a** in 62% yield within 4 h. Similarly, 4-*N*,*N*dimethylaminophenylmagnesium bromide (**4b**) and 4-anisylmagnesium bromide (**4c**) underwent Co-catalyzed crosscouplings (-40 °C, 4–12 h) with **1a**, leading to 3,6-substituted naphthyridines **5b** and **5c**, respectively, in 60–73% yield. Sterically hindered mesitylmagnesium bromide (**4d**), however, reacted with **1a** at 25 °C within 4 h, furnishing 2,7-naphthyridine **5d** in 93% yield.

We noticed that $C(sp^2)-C(sp^2)$ cross-couplings of naphthyridines **1b** and **1c** with PhMgCl using 5% CoCl₂ led to low yields (<30%). This problem could be solved by replacing arylmagnesium halides with the corresponding arylzinc reagents and using HCO₂Na as a ligand.^{6a} Thus, **1b** reacted smoothly with PhZnCl (**6a**) or [1,1'-biphenyl]-4-ylzinc chloride (**6b**) within 12 h at 25 °C, furnishing the corresponding arylated naphthyridines 7**a** and 7**b** in 80–82% yield (Table 2, entries 1 and 2). Furthermore, a range of arylzinc reagents **6c**–**f** bearing various functional groups underwent such Co-catalyzed Negishi⁸ crosscouplings with **1b**, providing the expected products 7**c**–**f** in 69– 79% yield (entries 3–6). Heteroaryl–heteroaryl cross-couplings are utmost challenging because of catalyst deactivation when Pd or Ni catalysts are used.⁹ However, in the presence of THFsoluble CoCl₂·2LiCl (5%) and HCO₂Na (50%), the cross-

Received: October 17, 2017

Letter

Table 1. Co-Catalyzed Alkylation of Chloronaphthyridines 1a-c with Alkylmagnesium Reagents 2a-e

Scheme 1. Co-Catalyzed Bisarylation of Naphthyridine 1a with Various Arylmagnesium Bromides (4a-d)

coupling of 1-chloronaphthyridine 1b with 2-thienylzinc chloride (6g) afforded 2,7-naphthyridine 7g in 60% yield (entry 7). We further have shown that naphthyridine 1c was easily arylated under these conditions. Thus, the reaction of 1c with arylzinc chlorides 6h and 6i provided 1,6-naphthyridines 7h and 7i, respectively, in 74–83% yield (entries 8 and 9). Interestingly, the Co-catalyzed arylation of 1c with 2-(triisopropylsilyloxy)phenylzinc chloride (6j) succeeded at only elevated temperature (60 °C, 12 h) to give naphthyridyl alcohol derivative 7j in 61% yield (entry 10). Also, iodo-substituted naphthyridines were excellent substrates for such Co-catalyzed cross-couplings. Thus, the reaction of electron-rich arylzinc reagents 6k and 6l with 4iodo-1,5-naphthyridine (1d) afforded 1,5-naphthyridines 7k and 7l, respectively, in 78-80% yield (Table 3, entries 1 and 2). Similarly, the reaction of electron-deficient p-NCC₆H₄ZnCl (6m) with 1d led to naphthyridine 7m in 83% yield (entry 3). Furthermore, heteroarylzinc reagent 6n reacted smoothly with 1d to afford naphthyridine 7n in 73% yield (entry 4). Remarkably, sterically demanding naphthylzinc reagent 60 was also converted with 1d to 1,5-naphthyridine 7o in 47% yield (entry 5).

Table 2. Co-Catalyzed Arylations of Arylzinc Reagents 6a-j with Chloronaphthyridines 1b and 1c

 a Isolated yields of analytically pure products. b The cross-coupling reaction proceeded at 60 $^\circ \rm C$ for 12 h.

This mild method also allows the coupling of sensitive iodonaphthyridines. Thus, the coupling of zinc reagent **6p** with 4-iodo-1,5-naphthyridine **1e** provided the corresponding 4,8-functionalized 1,5-naphthyridine **7p** in 86% yield (entry 6). Similarly to the bisarylation of dichloronaphthyridine **1a** (Scheme 1), we also examined the Co-catalyzed reaction of 2,4-diiodo-1,5-naphthyridine (**1f**) with *p*-MeOC₆H₄ZnCl (**6l**) and obtained the corresponding bis(anisyl)naphthyridine **7q** in 75% yield (entry 7). Finally, Co-catalyzed cross-coupling of

Table 3. Co-Catalyzed Arylations of Arylzinc Reagents 6k and 6l with Iodonaphthyridines 1d-g

^{*a*}Isolated yields of analytically pure products. ^{*b*}2.4 equiv of zinc reagent was used. p-An = p-MeOC₆H₄. ^{*c*}3.0 equiv of the arylzinc reagent was necessary for complete conversion.

sterically hindered 8-iodo-1,6-naphthyridine $(1g)^{10}$ with *p*-Me₂NC₆H₄ZnCl (**6p**) furnished naphthyridine 7**r** in 65% yield

(entry 8). We also found that 1d smoothly reacts with benzylic zinc reagents.¹¹ Thus, the couplings of 1d with benzylzinc chlorides 8a and 8b provided 1,5-naphthyridines 9a and 9b in 62-75% yield (Scheme 2).

Scheme 2. Co-Catalyzed Cross-Coupling of 4-Iodo-1,5naphthyridine (1d) with Benzylic Zinc Reagents 8a and 8b

By using mixed halogenated naphthyridines, we observed that 1-chloro-4-iodo-2,7-naphthyridine (10) was regioselectively functionalized by stepwise cross-coupling utilizing successive Pd and Co catalyses (Scheme 3). Thus, Pd-catalyzed Negishi

Scheme 3. Regioselective Pd/Co-Catalyzed Cross-Coupling

cross-coupling of 10 with PhZnCl (6a) selectively furnished 2,7naphthyridine 11 in 82% yield. Subsequent Co-catalyzed crosscoupling with arylzinc chloride 12 gave the mixed bisarylated naphthyridine 13 in 91% yield.

Naphthyridine derivatives have previously been applied as fluorescent probes¹² or as ligands for fluorescent complexes.¹³ The newly prepared naphthyridines 5b and 7r are highly fluorescent in various organic solvents and display strong solvatochromism (Figure 1a,b and Supporting Information (SI) Figures 1-4). We suggest that these phenomena are based on strong interactions between the electron donor NMe, and the electron-poor naphthyridine moiety as an electron acceptor. While the absolute photoluminescence quantum efficiencies (PLQEs) of 5b in various solvents are about 20%, the PLQE of 7r is almost quantitative in nonpolar solvents (toluene, $95 \pm 5\%$; cyclohexane, $93 \pm 5\%$) and drops only slightly in more polar solvents (CHCl₃, $81 \pm 5\%$; 1,4-dioxane, 80 \pm 5%; THF, 71 \pm 5%; see SI Figures 5 and 6 for details). These high emission efficiencies are accompanied by very long excited lifetimes of 3.8 and 12.0 ns for 5b and 7r, respectively (Figure 1c,d; see the SI for details).

In summary, we have prepared various novel polyfunctionalized naphthyridines by Co-catalyzed cross-couplings. Alkyl- and arylmagnesium reagents reacted smoothly with chloro-2,7naphthyridines using CoCl₂ (5%). The addition of sodium formate allowed an extension of the range of functionalized Nheterocycles by mild cross-coupling of chloro- and iodonaphthyridines with arylzinc reagents. Two of the new naphthyridines are highly fluorescent (PLQE = 20–95%) with tunable emission from blue to yellow and long excited-state lifetimes from 3.8 to 12.0 ns. Further extensions of organometallic naphthyridine functionalizations are currently underway in our laboratories.

Figure 1. (a, b) PL spectra of compounds **5b** and **7r**, respectively, dissolved in heptane (blue), Et_2O (purple), $CHCl_3$ (red), and THF (orange). The excitation wavelengths were 360 and 390 nm, respectively. The insets show photographs of the solutions under UV illumination. (c, d) Time-correlated single-photon counting (TCSPC) traces of **5b** and **7r** in CHCl₃, measured at the peaks of the PL spectra (open symbols). The solid lines are monoexponential fits.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b03242.

Experimental details, GC data, melting points, and IR, ¹H and ¹³C NMR, and mass spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: paul.knochel@cup.uni-muenchen.de.

Florian Auras: 0000-0003-1709-4384 Paul Knochel: 0000-0001-7913-4332

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the DFG for financial support and Albemarle (Frankfurt) and BASF (Ludwigshafen) for gifts of chemicals.

REFERENCES

(1) (a) Snieckus, V. *Chem. Rev.* **1990**, *90*, 879. (b) Chinchilla, R.; Nájera, C.; Yus, M. *Chem. Rev.* **2004**, *104*, 2667. (c) *Modern Heterocyclic Chemistry*; Alvarez-Builla, J., Vaquero, J. J., Barluenga, J., Eds.; Wiley-VCH: Weinheim, Germany, 2011. (d) Vo, C.-V. T.; Bode, J. W. *J. Org. Chem.* **2014**, *79*, 2809.

(2) (a) Zhang, J.; Chen, F.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed.
2015, 54, 4622. (b) Chen, F.; Surkus, A. E.; He, L.; Pohl, M.-M.; Radnik, J.; Topf, C.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2015, 137, 11718.
(c) Shen, Z.-L.; Dhayalan, V.; Benischke, A. D.; Greiner, R.; Karaghiosoff, K.; Mayer, P.; Knochel, P. Angew. Chem., Int. Ed. 2016, 55, 5332. (d) Fernandez, S.; Ganiek, M. A.; Karpacheva, M.; Hanusch, F. C.; Reuter, S.; Bein, T.; Auras, F.; Knochel, P. Org. Lett. 2016, 18, 3158.
(e) Ma, W.; Chen, F.; Liu, Y.; He, M.-Y.; Fan, Q.-H. Org. Lett. 2016, 18, 2730. (f) Jackl, M. K.; Kreituss, I.; Bode, J. W. Org. Lett. 2016, 18, 1713.

(g) Xiong, B.; Zhang, S.; Jiang, H.; Zhang, M. Org. Lett. 2016, 18, 724.
(h) Zhang, S.-L.; Deng, Z.-Q. Org. Biomol. Chem. 2016, 14, 8966.

(3) (a) Voight, E. A.; Yin, H.; Downing, S. V.; Calad, S. A.; Matsuhashi, H.; Giordano, I.; Goodman, R. M.; Hennessy, A. J.; Wood, J. L. Org. Lett. 2010, 12, 3422. (b) Plodek, A.; König, M.; Bracher, F. Eur. J. Org. Chem. 2015, 1302. (c) Balkenhohl, M.; Greiner, R.; Makarov, I. S.; Heinz, B.; Karaghiosoff, K.; Zipse, H.; Knochel, P. Chem. - Eur. J. 2017, 23, 13046. (d) Ziegler, D. S.; Greiner, R.; Lumpe, H.; Kqiku, L.; Karaghiosoff, K.; Knochel, P. Org. Lett. 2017, 19, 5760.

(4) Greiner, R.; Blanc, R.; Petermayer, C.; Karaghiosoff, K.; Knochel, P. Synlett **2016**, 27, 231.

(5) For recent Co-catalyzed cross-coupling reactions, see: (a) Ohmiya,
H.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2006, 128, 1886.
(b) Ohmiya, H.; Yorimitsu, H.; Oshima, K. Org. Lett. 2006, 8, 3093.
(c) Bégouin, J.-M.; Gosmini, C. J. Org. Chem. 2009, 74, 3221.
(d) Bégouin, J.-M.; Rivard, M.; Gosmini, C. Chem. Commun. 2010, 46, 5972. (e) Nicolas, L.; Angibaud, P.; Stansfield, I.; Bonnet, P.; Meerpoel, L.; Reymond, S.; Cossy, J. Angew. Chem., Int. Ed. 2012, 51, 11101. (f) Hammann, J. M.; Haas, D.; Knochel, P. Angew. Chem., Int. Ed. 2015, 54, 4478. (g) Kuzmina, O. M.; Steib, A. K.; Fernandez, S.; Boudot, W.; Markiewicz, J. T.; Knochel, P. Chem. - Eur. J. 2015, 21, 8242.

(6) (a) Haas, D.; Hammann, J. M.; Lutter, F. H.; Knochel, P. Angew. Chem., Int. Ed. 2016, 55, 3809. (b) Hofmayer, M. S.; Hammann, J. M.; Lutter, F. H.; Knochel, P. Synthesis 2017, 49, 3925. (c) Hammann, J. M.; Lutter, F. H.; Haas, D.; Knochel, P. Angew. Chem., Int. Ed. 2017, 56, 1082.

(7) Piller, F. M.; Appukkuttan, P.; Gavryushin, A.; Helm, M.; Knochel, P. Angew. Chem., Int. Ed. **2008**, 47, 6802.

(8) For recent transition-metal-catalyzed Negishi cross-coupling reactions, see: (a) Avedissian, H.; Bérillon, L.; Cahiez, G.; Knochel, P. *Tetrahedron Lett.* **1998**, *39*, 6163. (b) Hossain, K. M.; Takagi, K. *Chem. Lett.* **1999**, *28*, 1241. (c) Zhou, J.; Fu, G. C. *J. Am. Chem. Soc.* **2003**, *125*, 12527. (d) Nakamura, M.; Ito, S.; Matsuo, K.; Nakamura, E. Synlett **2005**, 1794. (e) Organ, M. G.; Avola, S.; Dubovyk, I.; Hadei, N.; Kantchev, E. A. B.; O'Brien, C. J.; Valente, C. *Chem. - Eur. J.* **2006**, *12*, 4749. (f) Takahashi, H.; Inagaki, S.; Yoshii, N.; Gao, F.; Nishihara, Y.; Takagi, K. J. Org. Chem. **2009**, *74*, 2794. (g) Bedford, R. B.; Huwe, M.; Wilkinson, M. C. *Chem. Commun.* **2009**, 600. (h) Ejiri, S.; Odo, S.; Takahashi, H.; Nishimura, Y.; Gotoh, K.; Nishihara, Y.; Takagi, K. *Org. Lett.* **2010**, *12*, 1692. (i) Smith, A. L.; Hardcastle, K. I.; Soper, J. D. *J. Am. Chem. Soc.* **2010**, *132*, 14358. (j) Kealey, S.; Passchier, J.; Huiban, M. *Chem. Commun.* **2013**, *49*, 11326. (k) Haas, D.; Hammann, J.; Greiner, R.; Knochel, P. ACS Catal. **2016**, *6*, 1540.

(9) (a) Kaes, C.; Katz, A.; Hosseini, M. W. Chem. Rev. 2000, 100, 3553.
(b) Bedel, S.; Ulrich, G.; Picard, C.; Tisnès, P. Synthesis 2002, 1564.
(c) Comprehensive Coordination Chemistry II, Vol. 1; McCleverty, J. A., Meyer, T. J., Eds.; Elsevier: Oxford, U.K., 2004. (d) Düfert, M. A.; Billingsley, K. L.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 12877.
(10) Huang, Q.; Hunter, J. A.; Larock, R. C. Org. Lett. 2001, 3, 2973.

(10) Huang, Q., Hunter, J. A., Larock, R. C. Org. Lett. 2001, 3, 2773.
(11) (a) Metzger, A.; Schade, M. A.; Knochel, P. Org. Lett. 2008, 10, 1107. (b) Bedford, R. B.; Huwe, M.; Wilkinson, M. C. Chem. Commun. 2009, 600. (c) Bégouin, J.-M.; Claudel, S.; Gosmini, C. Synlett 2009, 3192. (d) Cai, Y.; Benischke, A. D.; Knochel, P.; Gosmini, C. Chem. - Eur. J. 2017, 23, 250.

(12) (a) Sun, Y.-Y.; Liao, J.-H.; Fang, J.-M.; Chou, P.-T.; Shen, C.-H.; Hsu, C.-W.; Chen, L.-C. Org. Lett. 2006, 8, 3713. (b) Andrew, T. L.; VanVeller, B.; Swager, T. M. Synlett 2010, 3045. (c) Wang, K.-Y.; Chen, C.; Liu, J.-F.; Wang, Q.; Chang, J.; Zhu, H.-J.; Li, C. Org. Biomol. Chem. 2012, 10, 6693. (d) Xiao, L.; Xing, X.; Chen, Z.; Qu, B.; Lan, H.; Gong, Q.; Kido, J. Adv. Funct. Mater. 2013, 23, 1323.

(13) (a) Liao, J.-H.; Chen, C.-T.; Chou, H.-C.; Cheng, C.-C.; Chou, P.-T.; Fang, J.-M.; Slanina, Z.; Chow, T. J. Org. Lett. **2002**, *4*, 3107. (b) Li, H.-J.; Fu, W.-F.; Li, L.; Gan, X.; Mu, W.-H.; Chen, W.-Q.; Duan, X.-M.; Song, H.-B. Org. Lett. **2010**, *12*, 2924. (c) Liu, S.-W.; Lee, C.-C.; Lin, C.-F.; Huang, J.-C.; Chen, C.-T.; Lee, J.-H. J. Mater. Chem. **2010**, *20*, 7800. (d) Wu, Y.-Y.; Chen, Y.; Gou, G.-Z.; Mu, W.-H.; Lv, X.-J.; Du, M.-L.; Fu, W.-F. Org. Lett. **2012**, *14*, 5226. (e) Krämer, C.; Leingang, S.; Hübner, O.; Kaifer, E.; Wadepohl, H.; Himmel, H.-J. Dalton Trans. **2016**, *45*, 16966.