
TETRAHEDRON
LETTERS

Tetrahedron Letters 44 (2003) 8857–8859Pergamon

Total synthesis of macrosphelide A by way of
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Abstract—We achieved the total synthesis of macrosphelide A, as part of a combinatorial library of its analogues. The key
intermediate, the seco-acid derivative, was prepared from the corresponding vinyl iodide using sequential carbonylative
esterification.
© 2003 Elsevier Ltd. All rights reserved.

Macrosphelide A–L are a family of compounds isolated
from two different culture medium of Macrospaeropsis
sp. FO-5050 and/or pericania byssoides by the Omura1

and Numata2 groups. Macrosphelides are 16-membered
macrolides including three ester linkages consisting of
one �-hydroxybutyric acid and two 5-hydroxy-2-
hexenoic acid units and strongly inhibit the adhesion of
human leukemia HL-60 cells to human-umbilical-vein
endothelial cell (HUVEC) in dose-dependent fashion.1–4

In order to prepare a variety of their analogues, a
simple synthetic method is required.3,5–7 As a part of
the synthesis of a macrosphelide library, we wish to
report the total synthesis macrosphelide A via sequen-
tial carbonylative esterification.

An outline of the synthetic strategy is described in
Scheme 1. The target molecule 1 would be synthesized

through macrolactonization of seco-acid derivative 2.
Compound 2 can be prepared from 3 and 46c by
applying alkoxycarbonylation8,9 as the key reaction.
Since palladium-catalyzed carbonylative esterification
of vinyl halides can be regarded as the synthetic equiv-
alent of the formation of an �,�-unsaturated ester, we
designed the vinyl iodide 3 as a masked activated ester
for this synthesis which can be repeatedly utilized in the
formation of remaining two ester linkages in 1.

The (E)-vinyl iodide 3 was prepared from commercially
available methyl (S)-lactate 5, which was converted into
the ynone 6 in three steps. Chelate-controlled reduction
with dimethylaluminium chloride10 provided the ery-
thro-alcohol 7 with the required stereochemistry
(>95%). Deprotection of the TMS group and subsequent
protection as the methoxyethoxymethyl ether gave

Scheme 1. Retrosynthetic analysis of macrosphelide A (1). MEM=methoxyethoxymethyl, TBS=tert-butyldimethylsilyl, Tce=
2,2,2-trichloroethyl.
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Scheme 2. Synthesis of (E)-vinyl iodide 3. (a) TBSCl, imida-
zole, CH2Cl2, rt, 6 h; (b) Me(OMe)NH·HCl, i-PrMgCl, THF,
0°C, 30 min; (c) trimethylsilyl acetylene, BuLi, THF, −78°C,
30 min; (d) Me2AlCl, Bu3SnH, CH2Cl2, −78°C, 1 h; (e)
MEMCl, i-Pr2NEt, rt, 1.5 h; (f) K2CO3, MeOH–H2O, rt, 24
h; (g) PdCl2(PPh3)2, Bu3SnH, THF, 0°C, 30 min; (h) NIS,
THF, 0°C to rt, 10 min.

Desilylation of 10 produced alcohol 11 in 82% yield.
Palladium-catalyzed carbonylative esterification of 11
was accomplished under the above conditions except
using excess amount of vinyl iodide 3 (5 equiv) to
provide 12 in 78% yield. Deprotection of the TBS and
Tce groups furnished the key intermediate 13 (49%).
Macrolactonization of 13 under various conditions (i.e.
Yamaguchi,13a Keck,13b and Mitsunobu13c method)
yielded recovered starting material or the undesired
12-membered lactone that was formed via �-elimination

Scheme 3. Total synthesis of macrosphelide A (1) by car-
bonylation and macrolactonization. (a) TBSCl, imidazole,
CH2Cl2, rt, 3 h; (b) 1 M NaOH in MeOH, rt, 12 h; (c)
2,2,2-trichloroethanol, DIC, DMAP, CH2Cl2, rt, 5 h; (d)
HF·pyridine, CH3CN, rt, 12 h; (e) TBAF, AcOH, CH2Cl2, rt,
24 h; (f) CO(30 atm), PdCl2(MeCN)2, Et3N, DMAP, DMF,
rt, 12 h; (g) AcOH–H2O–THF (1:1:3), rt, 48 h; (h) Zn dust,
NH4OAc, THF–H2O (3:1), rt, 2 h; (i) 2,2�-dipyridyl disulfide,
PPh3, toluene, rt, 1 h; AgOTf, rt, 30 min; (j) TFA, CH2Cl2. 6
h, rt; DIC=N,N-diisopropylcarbodiimide, DMAP=4-(di-
methylamino)pyridine, DMF=N,N-dimethylformamide, Tf=
trifluoromethanesulfonyl, TFA=trifluoroacetic acid.

alkyne 8. Treatment of 8 with tributyltinhydride in the
presence of a catalytic amount PdCl2(PPh3)2 afforded
the vinyl stannane11 which was converted to the corre-
sponding vinyl iodide with N-iodosuccinimide to afford
vinyl iodide 3 in 55% overall yield (Scheme 2).

Protection of methyl (S)-3-hydroxybutyrate 9 as its
TBS ether, transformation of the methyl ester to the
2,2,2-trichloroester, followed by desilylation generated
the second building block 4. With the desired vinyl
iodide 3 and alcohol 4 in hand, we next focused our
attention to the palladium-catalyzed carbonylative
esterification. The alkoxy carbonylation between 3 and
4 under the standard reaction conditions (Pd(PPh3)4,
CO 30 atm, NEt3, DMAP, DMF) provided moderate
conversion and produced the homo dimer of 3 and the
�,�-unsaturated carboxylic acid as a �-elimination
product via the desired ester 10 (Entry 1). Conse-
quently, the carbonylation reaction was extensively
optimized and the results are summarized in Table 1.
The best result was obtained using PdCl2(MeCN)2, as a
palladium catalyst, giving the desired ester 10 as the
sole product in 87% yield (Entry 6).12

Table 1. Palladium-catalyzed carbonylation between vinyl iodide 3 and alcohol 4a

CatalystEntry 3:4 Temp. (°C)DMAP (equiv.) Yield of 10b (%)

571.01:3 601 Pd(PPh3)4

2 1:3Pd(PPh3)4 None 60 0
1:3 1.0 60 603 PdCl2(PPh3)2

604 72PdCl2(MeCN)2 1:3 1.0
1:3 1.0 rt 81PdCl2(MeCN)25

rt6 87PdCl2(MeCN)2 1:3 0.1
0.17 3:1 37rtPdCl2(MeCN)2

a Reaction was performed on a 0.5 mmol scale in DMF using 10 mol% Pd-catalyst in the presence of triethylamine for 6 h under 30 atm of carbon
monoxide.

b Isolated yield after silica-gel column chromatography
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of �-alkoxyester followed by cyclization. The
Mukaiyama–Corey method14 (2,2�-dipyridyl disulfide,
PPh3), provided the desired lactone 14, however in
disappointingly low yield. Extensive optimization of the
Mukaiyama method increased the yield of the desired
lactone 14 up to 40%. Addition of Ag-salt was crucial
to activate the pyridinium thioester intermediate.14

Finally, deprotection of the MEM group with TFA in
CH2Cl2 furnished 1 in 92% yield. The synthetic 1
exhibited 1H and 13C NMR spectral data as well as
optical rotation identical to those published for the
natural product1b (Scheme 3).

In summary, the total synthesis of macrosphelide A has
been achieved with a highly convergent and efficient
strategy. Further refinement of the synthetic scheme
toward the synthesis of combinatorial library of its
analogues will be reported.
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