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Abstract: The reaction of pantolactone derived bicyclic acetal 1
with alkyl lithiums provides 2,2,4-trisubstituted 3-hydroxy oxetane
2 with high diastereoselectivity.
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Functionalized oxetanes are an attractive synthetic inter-
mediate, which allow unique ring-opening reactions1 and
are present in a variety of biologically active natural prod-
ucts as a key skeleton.2 Although a number of methods for
the synthesis of functionalized oxetanes have been report-
ed, a more efficient approach needs to be developed.
Herein, we wish to report a stereoselective approach to the
highly functionalized chiral oxetanes B by anionic ring-
contraction reaction of cyclic acetal A (path a in
Scheme 1). We have found this novel reaction during the
course of study on the [1,2]-Wittig rearrangement.

Scheme 1

Recently, we have developed the acetal [1,2]-Wittig re-
arrangement protocol by which O-glycosides (cyclic
acetals) can be converted to C-glycosides with high dia-
stereoselectivity.3 Thus, we envisioned that application of
the rearrangement protocol to acetal A could provide the
acyl C-glycoside C via deprotonation of Ha followed by a
ring contractive rearrangement (path b in Scheme 1). To
this end, we attempted the reaction of acetal 1a4,5 which
was successfully prepared as a mixture of C1¢ epimers6

from (–)-pantolactone in three steps: acetal formation
with benzaldehyde dimethyl acetal, reduction with
DIBAL, and montmorillonite K10 promoted acetal ex-
change reaction7 (Scheme 2).

Scheme 2

A reaction of acetal 1a (a/b = 39:61) was performed by
treatment with t-BuLi (4 equiv) in THF at –78 °C to 0 °C.
To our surprise, the reaction was found to yield unexpect-
ed oxetane 2a4 in 17% yield as a single diastereomer,5 but
did not give the expected [1,2]-rearrangement product 3
(Scheme 3). The stereochemistry of 2a was determined by
X-ray crystallography of its TBDPS ether 4a (Figure 1).8

Scheme 3 

This result means that the unanticipated sequential reac-
tions proceeded which include 1) cleavage of the O-C1¢
bond, 2) formation of a carbon-carbon bond between C1
and C1¢, 3) introduction of a t-Bu group derived from t-
BuLi to the C1¢ position, 4) ring-opening of five-mem-
bered acetal. To clarify the generality of this novel reac-
tion, next we examined a similar reaction of 1a with
MeLi, n-BuLi and s-BuLi. As shown in Scheme 4, all of
these reactions provide the corresponding oxetanes 2b–
d4,5,8–11 in moderate to good yield with excellent dia-
stereoselectivity.
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Scheme 4

Furthermore, we have found that a similar reaction can
occur in the propargyl acetal system. A reaction of
propargylic acetal 1b12 (81% dr at C1¢) with MeLi in THF
gave alkynyl substituted oxetane 2e4–6 in 45% yield, also
as a single diastereomer (Scheme 5).

Scheme 5

In order to gain insight into the steric course of the reac-
tion, next we examined the reaction of diastereochemical-
ly enriched a-1a and b-1a. As a result, reaction of a-1a
and b-1a provided the same stereoisomer of oxetane 2c,
and the yields are not significantly different (Scheme 6).
These results reveal that the stereochemistry of C1¢ of the
substrate does not affect the stereochemistry of the prod-
uct. In other words, the reaction is stereoselective, but is
not stereospecific at the acetal C1¢ chirality.

Scheme 6 Reagents and conditions: a) n-BuLi (4 equiv), THF, –78
°C to 0 °C.

A plausible mechanism of this oxetane formation reaction
is shown in Scheme 7. The mechanism most likely in-
volves the carbene intermediate B which is formed by the
O-C1¢ bond cleavage in acetal anion A.13,14 Then, the re-
sulting carbene B inserts into alkyl lithium14 to form the
lactol alkoxide C which then isomerizes into aldehyde D.
At the end, aldehyde D undergoes an intramolecular nu-
cleophilic addition reaction to form oxetane E.15 The key
to this process is the generation of the lactol alkoxide C,
which acts as a masked aldehyde, and reacts only with an
intramolecular nucleophile but does not react with the
alkyl lithium reagent.

Scheme 7

To confirm the postulated reaction pathway from lactol
alkoxide C to oxetane E, we examined the reaction of
pantolactol derived benzyl ether 55,16 with excess amount
of n-BuLi (Scheme 8). As expected, the reaction gave
oxetane 64,5,17 (>95% dr) as a major product, albeit in
moderate chemical yield.

Scheme 8

In summary, we have described a highly diastereoselec-
tive approach to multi-functionalized oxetane by the an-
ionic ring-contraction reaction of cyclic acetal. The
investigation into the scope and limitation, detailed reac-
tion mechanism as well as its synthetic applications are
under way in our laboratory.
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lithium has been reported, see: (a) Shiner, C. S.; Tsunoda, 
T.; Goodman, B. A.; Ingham, S.; Lee, S.; Vorndam, P. E. J. 
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Figure 2

Scheme 9

Scheme 10
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(15) The exact origin of the observed stereoselectivity is not 
clear at present, while it might be considered as the result of 
i) stereoselective formation of benzylic or propargylic chiral 
carbanion by the diastereoselective carbene insertion to 
alkyl lithium (B→C) and/or the efficient epimerization 
(at C or D), followed by ii) diastereoselective addition 
reaction via the chelation intermediate (D).

(16) The lactol 5 was prepared from pantolactone(racemic) in 
two steps: benzylation of the hydroxy group with benzyl 
bromide, half-reduction with DIBAL.

(17) The structure of 6 was determined by 1H NMR analysis and 
IR analysis of its derivatives as shown below (Scheme 11).
It is known that the oxetane-3-one displays a carbonyl 
absorption in the IR spectrum at about 1820 cm–1, see: Thijis, 
L.; Cillissen, P. J. M.; Zwannenburg, B. Tetrahedron 1992, 
48, 9985.

Scheme 11 Reagents and conditions: a) Ac2O; b) TBDPSCl; 
Dess–Martin periodinane.
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