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Abstract—2-Aryl-1-N-carboalkoxyenamines (enamides) are selectively reduced to the corresponding 2-arylethylamine carbamates
by Et3SiH in the presence of CF3COOH in excellent yields. The reduction proceeds by addition of hydride at C-1 and the
rate-limiting step involves proton transfer from CF3COOH. This reduction is useful for preparation of isotopically labeled
arylethylamines. © 2001 Elsevier Science Ltd. All rights reserved.

2-Arylethylamines, especially derivatives of dopamine,
serotonin and analogous neuroactive phenethylamines,
occupy a special place in medicinal chemistry.1,2 Many
methods have been described for synthesis of phenethyl-
amines and their N-acyl derivatives including reduction
of �-nitrostyrenes,3 alkylation of acetonitriles by benzyl
halides followed by reduction,4 and Curtius rearrange-
ment of cinnamic acid-derived acyl azides followed by
reduction of the resulting enamide C�C double bond.5

In our synthesis of novel analogs of bastadin-5 (1),6 an
agonist of the RyR1 Ca2+ channel, we required a
general preparation of arylethylamines by reduction of
enamides which would be a tolerant substitution on the
aryl ring by halogen and other functional groups sensi-
tive to reduction. Furthermore, we required regiospe-
cific delivery of a hydride equivalent to the vinyl group
in anticipation of preparation of several 3H-labeled
analogs.

Unfortunately, most of the above-mentioned syntheses
of phenethylamines methods require conditions for
reduction that are relatively harsh or would result in
loss or scrambling of 3H-label. We report here that
cationic reduction of 1-N-(ethoxycarbonyl)enamines
(referred to, herein, as enamides, Scheme 1) with Et3SiH
in the presence of trifluoroacetic acid (TFA) proceeds
smoothly to give 2-aryl-1-ethylamine carbamate deriva-
tives in excellent yields. Kinetic studies and isotopic
labeling show that the mechanism of reduction proceeds
by exclusive delivery of hydride to the carbon �- to the
nitrogen.

Starting material enamides 2a–f were prepared from the
corresponding cinnamic acids in three sequential steps:
conversion to the acyl azides (EtOCOCl, i-Pr2EtN,
−10°C, 2 h, acetone, then NaN3, aq., 0°C 5 h), Curtius
rearrangement7 (toluene, 110°C) and capture of the
intermediate isocyanate with EtOH (80°C, overall yields
for three steps, 70–83%). Optimization of the cationic
reduction was performed by surveying various condi-
tions with the substrate 2a. The most efficient method
was found to be addition of TFA to a rapidly stirred
mixture of Et3SiH (1.6–10 equiv.) and 2a (final conc.
�70 mM) at −10°C, and stirring for 30 min at −10°C
followed by quenching the reaction with NaHCO3 aq.
and extractive workup.8 The yield of product 3 was

Scheme 1.
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Table 1. Cationic reduction of enamides 2 using Et3SiH (10 equiv.) in TFA (−10°C)a

Solvent Substrate Product Reaction time (h) Yield (%)Reductant (10 equiv.)Entry

TFA 2a 3a 0.5 941 Et3SiH
3b 0.5 922b2 TFAEt3SiH

3 3cEt3SiH 0.5 97TFA 2c
3d 0.5 992dEt3SiH TFA4

2eEt3SiH 3e 0.5 99TFA5
2fEt3SiH 3f 0.5 94TFA6

4a 0.5 63b2a7 TFAEt3SiD
5a 6.08 77bEt3SiH TFA-d1 2a
6e 7.0 98TFA-d1 2eEt3SiD9

a Substrate concentraion, 60–90 mM. The reactions were conducted with vigorous stirring (two-phase system) and quenched by pouring the
mixture into cold NaHCO3 aq. followed by extractive workup (CH2Cl2) in the usual manner.

b Unoptimized yields.

excellent in every case studied (92–99%) and the condi-
tions mild enough to preserve other functional groups
sensitive to reduction or prone to solvolysis. Neither
aryl halides nor O-Bn groups were reduced (entries 1, 5
and 6) and catechol acetals and carbonate esters
(entries 1 and 3) were preserved. Enamides containing
highly functionalized aryl rings were efficiently reduced
without side reaction. For example, conversion of the
enamide 2a to 3a (entry 1, 94%) proceeded smoothly
and preserved the ethyl carbonate ester, the O-benzyl
protecting group and the aryl Br group (the latter two
would be readily cleaved by catalytic hydrogenation).
Reduction of 2a with NaBH4 in TFA (−10°C) also
resulted in high yields of 3a (>90%) although, workup
was less convenient.

The mechanism of the reaction was briefly explored by
measuring and comparing the reaction rates in the
presence of deuterated and non-deuterated reagents.
Reduction of 2a using Et3SiD in place of Et3SiH, but
otherwise employing the same conditions as for other
entries in Table 1, resulted in high conversion to deu-
terium-labeled arylethylamine d1-4a in about the same
time (30 min).

Comparison of the 1H NMR signals for the �-CH2 and
�-CH2 groups (� 3.38, dt, J=5.6, 6.8 Hz and 2.74, t,
J=6.8 Hz) with those of d1-4a showed simplified 1H
NMR multiplet patterns due to substitution by 2H and
significant 1H–2H coupling. Integration of the respec-
tive signals in d1-4a gave a ratio of �2:1 indicating
substitution of the �-position with one 2H atom. This
was confirmed by analysis of the MS spectrum of
1-d1-4a which revealed almost complete mono-deuteria-
tion (d1 �95 atom%). EIMS spectra 3a and d1-4a did
not give useful fragmentation patterns, but 13C NMR
confirmed the location of the deuterium exclusively at
the �-carbon (� 41.7, CH2, C-1). Conversely, when the
reduction was carried out with Et3SiH and TFA-d1 as
solvent the reaction was much slower (6 h, see below)
and gave a high yield of an isomeric d1 product, 2-d1-5a
(77%) in which deuterium was located entirely at the
�-position (� 35.2, CH2, C-2, d1 �80 atom%).9 Finally,
doubly-deuterated 6e was prepared by reduction of 2e
in the presence of both deuterated silane and TFA
(entry 9, 98%).

The relative rates of reduction of 2a in the presence of
deuteriated and non-deuteriated reagents (Table 2) in
excess (10-fold excess of Et3SiH/D or �12 M
CF3COOH/D) were measured by monitoring the 1H
NMR spectrum of aliquots of the reaction mixture.
Suprisingly, the rate of reaction (intergration of 1H
NMR signals) was found to follow zero-order kinetics
with respect to 2a (rate=7.12×10−5 mol dm−3 s−1, Table
2, entry 1). When Et3SiD was used as reductant the rate
of formation of 4a was essentially the same as that of
3a (7.10×10−5 mol dm−3 s−1), however, substitution of
TFA by TFA-d1 diminished the rate of formation of 5a
by an order of magnitude (6.8×10−6 mol dm−3 s−1).
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Table 2. Apparent zero-order rates for cationic triethylsil-
ane reductions of enamide 2a (initial c=70–90 mM, T=
−10°C) in TFA

Rate (mol dm−3 s−1)Reagentsa

Et3SiH–TFA 7.12×10–5

Et3SiD–TFA 7.10×10–5

6.80×10–6Et3SiH–TFA-d1

a Initial concentrations. CF3COOH(D); �12 M; Et3SiH(D) �1 M

presumed to be catalyzed by trace acid in the NMR
solvent and proceeded at a rate that was observed to be
dependent upon the initial concentration of starting
material. Under the same conditions, spontaneous
dimerization was not seen in the electron-poor enamide
2f suggesting that suitably electron-rich arenes are
required as electrophilic acceptors in this reaction.

In summary, we have described a new preparation of
phenethylamine carbamates by mild cationic reduction
of the corresponding enamide. This reaction should find
utility in preparation of biologically active phenethy-
lamines. The facile nature of the reaction is a conse-
quence of the high electrophilicity of N-(alkoxy-
carbonyl)enamines.
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