

Tetrahedron Letters 42 (2001) 8263-8266

TETRAHEDRON LETTERS

Regioselective cationic reduction of 2-aryl-1-N-(ethoxycarbonyl)enamines to 2-arylethylamine carbamates

Makoto N. Masuno and Tadeusz F. Molinski*

Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA Received 10 August 2001; revised 10 September 2001; accepted 14 September 2001

Abstract—2-Aryl-1-*N*-carboalkoxyenamines (enamides) are selectively reduced to the corresponding 2-arylethylamine carbamates by Et_3SiH in the presence of CF_3COOH in excellent yields. The reduction proceeds by addition of hydride at C-1 and the rate-limiting step involves proton transfer from CF_3COOH . This reduction is useful for preparation of isotopically labeled arylethylamines. © 2001 Elsevier Science Ltd. All rights reserved.

2-Arylethylamines, especially derivatives of dopamine, serotonin and analogous neuroactive phenethylamines, occupy a special place in medicinal chemistry.^{1,2} Many methods have been described for synthesis of phenethylamines and their *N*-acyl derivatives including reduction of β -nitrostyrenes,³ alkylation of acetonitriles by benzyl halides followed by reduction,⁴ and Curtius rearrangement of cinnamic acid-derived acyl azides followed by reduction of the resulting enamide C=C double bond.⁵

In our synthesis of novel analogs of bastadin-5 (1),⁶ an agonist of the RyR1 Ca^{2+} channel, we required a general preparation of arylethylamines by reduction of enamides which would be a tolerant substitution on the aryl ring by halogen and other functional groups sensitive to reduction. Furthermore, we required regiospecific delivery of a hydride equivalent to the vinyl group in anticipation of preparation of several ³H-labeled analogs.

of phenethylamines methods require conditions for reduction that are relatively harsh or would result in loss or scrambling of ³H-label. We report here that cationic reduction of 1-*N*-(ethoxycarbonyl)enamines (referred to, herein, as enamides, Scheme 1) with Et₃SiH in the presence of trifluoroacetic acid (TFA) proceeds smoothly to give 2-aryl-1-ethylamine carbamate derivatives in excellent yields. Kinetic studies and isotopic labeling show that the mechanism of reduction proceeds by exclusive delivery of hydride to the carbon α - to the nitrogen.

Unfortunately, most of the above-mentioned syntheses

Starting material enamides **2a–f** were prepared from the corresponding cinnamic acids in three sequential steps: conversion to the acyl azides (EtOCOCl, *i*-Pr₂EtN, -10° C, 2 h, acetone, then NaN₃, aq., 0°C 5 h), Curtius rearrangement⁷ (toluene, 110°C) and capture of the intermediate isocyanate with EtOH (80°C, overall yields for three steps, 70–83%). Optimization of the cationic reduction was performed by surveying various conditions with the substrate **2a**. The most efficient method was found to be addition of TFA to a rapidly stirred mixture of Et₃SiH (1.6–10 equiv.) and **2a** (final conc. ~70 mM) at -10° C, and stirring for 30 min at -10° C followed by quenching the reaction with NaHCO₃ aq. and extractive workup.⁸ The yield of product **3** was

* Corresponding author. Tel.: 530 752 6358; fax: 530 752 8995; e-mail: tfmolinski@ucdavis.edu

Scheme 1.

0040-4039/01/\$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(01)01780-4

Table 1. Cationic reduction of enamides 2 using Et_3SiH (10 equiv.) in TFA $(-10^{\circ}C)^{a}$

Entry	Reductant (10 equiv.)	Solvent	Substrate	Product	Reaction time (h)	Yield (%)
1	Et ₃ SiH	TFA	2a	3a	0.5	94
2	Et ₃ SiH	TFA	2b	3b	0.5	92
3	Et ₃ SiH	TFA	2c	3c	0.5	97
4	Et ₃ SiH	TFA	2d	3d	0.5	99
5	Et ₃ SiH	TFA	2e	3e	0.5	99
6	Et ₃ SiH	TFA	2f	3f	0.5	94
7	Et ₃ SiD	TFA	2a	4a	0.5	63 ^b
8	Et ₃ SiH	$TFA-d_1$	2a	5a	6.0	77 ^b
9	Et ₃ SiD	$TFA-d_1$	2e	6e	7.0	98

^a Substrate concentraion, 60–90 mM. The reactions were conducted with vigorous stirring (two-phase system) and quenched by pouring the mixture into cold NaHCO₃ aq. followed by extractive workup (CH₂Cl₂) in the usual manner.

^b Unoptimized yields.

excellent in every case studied (92–99%) and the conditions mild enough to preserve other functional groups sensitive to reduction or prone to solvolysis. Neither aryl halides nor *O*-Bn groups were reduced (entries 1, 5 and 6) and catechol acetals and carbonate esters (entries 1 and 3) were preserved. Enamides containing highly functionalized aryl rings were efficiently reduced without side reaction. For example, conversion of the enamide **2a** to **3a** (entry 1, 94%) proceeded smoothly and preserved the ethyl carbonate ester, the *O*-benzyl protecting group and the aryl Br group (the latter two would be readily cleaved by catalytic hydrogenation). Reduction of **2a** with NaBH₄ in TFA ($-10^{\circ}C$) also resulted in high yields of **3a** (>90%) although, workup was less convenient.

The mechanism of the reaction was briefly explored by measuring and comparing the reaction rates in the presence of deuterated and non-deuterated reagents. Reduction of **2a** using Et₃SiD in place of Et₃SiH, but otherwise employing the same conditions as for other entries in Table 1, resulted in high conversion to deuterium-labeled arylethylamine d_1 -**4a** in about the same time (30 min).

Comparison of the ¹H NMR signals for the α -CH₂ and β -CH₂ groups (δ 3.38, dt, J=5.6, 6.8 Hz and 2.74, t, J=6.8 Hz) with those of d_1 -4a showed simplified ¹H NMR multiplet patterns due to substitution by ²H and significant ${}^{1}\hat{H} - {}^{2}\hat{H}$ coupling. Integration of the respective signals in d_1 -4a gave a ratio of ~2:1 indicating substitution of the α -position with one ²H atom. This was confirmed by analysis of the MS spectrum of $1-d_1$ -4a which revealed almost complete mono-deuteriation ($d_1 \sim 95$ atom%). EIMS spectra **3a** and d_1 -**4a** did not give useful fragmentation patterns, but ¹³C NMR confirmed the location of the deuterium exclusively at the α -carbon (δ 41.7, CH₂, C-1). Conversely, when the reduction was carried out with Et₃SiH and TFA- d_1 as solvent the reaction was much slower (6 h, see below) and gave a high yield of an isomeric d_1 product, 2- d_1 -5a (77%) in which deuterium was located entirely at the β-position (δ 35.2, CH₂, C-2, $d_1 \sim 80$ atom%).⁹ Finally, doubly-deuterated 6e was prepared by reduction of 2e in the presence of both deuterated silane and TFA (entry 9, 98%).

The relative rates of reduction of **2a** in the presence of deuteriated and non-deuteriated reagents (Table 2) in excess (10-fold excess of Et₃SiH/D or ~12 M CF₃COOH/D) were measured by monitoring the ¹H NMR spectrum of aliquots of the reaction mixture. Suprisingly, the rate of reaction (intergration of ¹H NMR signals) was found to follow zero-order kinetics with respect to **2a** (rate = 7.12×10^{-5} mol dm⁻³ s⁻¹, Table 2, entry 1). When Et₃SiD was used as reductant the rate of formation of **4a** was essentially the same as that of **3a** (7.10×10^{-5} mol dm⁻³ s⁻¹), however, substitution of TFA by TFA- d_1 diminished the rate of formation of **5a** by an order of magnitude (6.8×10^{-6} mol dm⁻³ s⁻¹).

Table 2. Apparent zero-order rates for cationic triethylsilane reductions of enamide **2a** (initial c = 70-90 mM, $T = -10^{\circ}$ C) in TFA

Reagents ^a	Rate (mol $dm^{-3} s^{-1}$)		
Et ₃ SiH–TFA	7.12×10^{-5}		
Et ₃ SiD–TFA	7.10×10^{-5}		
Et ₂ SiH–TFA- <i>d</i> .	6.80×10^{-6}		

^a Initial concentrations. CF₃COOH(D); ~12 M; Et₃SiH(D) ~1 M

The lack of dependence of the rate of reduction on enamide concentration suggests that the rate-limiting step does not involve the protonation of enamide, nor hydride transfer from silane.¹⁰ While more detailed analysis of this kinetic isotope effect on the reduction is beyond the scope of this communication, the kinetic isotope effect is highly suggestive that the rate-limiting step possibly involves dissociation of TFA prior to proton transfer to the enamide (Fig. 1, path a).

Another possible explanation for both the rate and kinetic isotope effect is protonation followed by a slow, rate-limiting C-2 \rightarrow C-1 migration of hydride, then fast Et₃SiH reduction of the incipient cation (*ii*, Fig. 1, *path b*), however, the expected isotope effects for 1,2-²H migration should be much smaller than those observed. Alternatively, since the reaction is two-phase, we cannot discount the possibility that rate-limiting physical processes occur at the liquid–liquid interface.

Classical cationic silane reductions of vinyl compounds,¹¹ even *N*-enelactams,¹² usually proceed slowly (12–50 h) or require elevated temperatures (\geq 50°C). Conversely, we find that reduction of the *N*-(alkoxycarbonyl)enamines, **2**, are efficient at –10°C. The ease of reduction of these *N*-vinyl *carbamates* is clearly related to the high electrophilicity of *N*-acyliminium ion, *i* (Fig. 1), a property that manifested itself in other ways.

For example, when **2b** was left to stand in $CDCl_3$ solution at room temperature, spontaneous dimerization to **7** (purified yield, ~23%) and other products was observed. This electrophilic aromatic substitution, which was also observed for **2c** and **2d** but not **2f**, was

Figure 1. Two possible mechanisms of cationic enamide reduction in the presence of CF_3COOH and Et_3SiH .

presumed to be catalyzed by trace acid in the NMR solvent and proceeded at a rate that was observed to be dependent upon the initial concentration of starting material. Under the same conditions, spontaneous dimerization was not seen in the electron-poor enamide **2f** suggesting that suitably electron-rich arenes are required as electrophilic acceptors in this reaction.

In summary, we have described a new preparation of phenethylamine carbamates by mild cationic reduction of the corresponding enamide. This reaction should find utility in preparation of biologically active phenethylamines. The facile nature of the reaction is a consequence of the high electrophilicity of N-(alkoxy-carbonyl)enamines.

Acknowledgements

We are grateful to Michael Toney, UC Davis, Department of Chemistry, for helpful discussions and the staff of the UC Riverside Mass Spectrometry Laboratory for MS spectra. This work was supported by NIH (GM 57560).

References

- Hoffman, B.; Lefkowitz, R. J. In *The Pharmacological Basis of Therapeutics*; 8th ed.; Goodman, A. G.; Rall, T. W.; Nies, A. S.; Taylor, P.; Eds.; Pergamon: New York, 1990; Chapter 10.
- 2. CNS Neurotransmitters and Neuromodulators: Dopamine; Stone, T. W., Ed; CRC Press: Boca Raton, 1996.
- (a) Rizzacasa, M. A.; Sargent, M. V.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1990, 43, 79; (b) Corey, E. J.; Gin, D. Y. Tetrahedron Lett. 1996, 40, 7163; (c) Corey, E. J.; Gin, D. Y. J. Am. Chem. Soc. 1996, 118, 9202.
- For a recent examples see, (a) Couladouros, E. A.; Moutsos, V. I. Tetrahedron Lett. 1999, 40, 7027–7030; (b) Bailey, K. L.; Molinski, T. F. Western Regional Meeting of the American Chemical Society, San Francisco, CA, 25–28 October 2000; (c) Rettig, M.; Sigrist, A.; Rétey, J. Helv. Chim. Acta 2000, 83, 2246–2265; (d) Nakazato, A.; Ohta, K.; Sekiguchi, Y.; Okuyama, S.; Chaki, S.; Kawashima, Y.; Hatayama, K. J. Med. Chem. 1999, 42, 1076–1087; (e) Somanathan, R.; Rivero, I. A.; Gama, A.; Ochoa, A.; Aguirre, G. Synth. Commun. 1998, 28, 2043–2048.
- (a) Albini, A.; Fasani, E.; Dacrema, L. M. JCS Perkin Trans. 1980, 2738–2742; (b) Slopianka, M.; Gossauer, A. Liebigs Ann. Chem. 1981, 2258–2265.
- (a) Kazlauskas, R.; Lidgard, R. O.; Murphy, P. T.; Wells, R. J.; Blount, J. F. Aust. J. Chem. 1981, 34, 765–786; (b) Mack, M.; Molinski, T. F.; Buck, E. D.; Pessah, I. N. J. Biol. Chem. 1994, 269, 23236–23349; (c) Pessah, I. N.; Molinski, T. F.; Meloy, T. D.; Wong, P.; Buck, E. D.; Allen, P. D.; Mohr, F. C.; Mack, M. M. Am. J. Physiol. 1997, 41, C601–C614; (d) Chen, L.; Molinski, T. F.; Pessah, I. N. J. Biol. Chem. 1999, 274, 32603–32612.
- Jessup, P. J.; Petty, C. B.; Roos, J.; Overman, L. E. In Coll. Vol. Org. Syn.; Vol. 6, pp. 95–101.

8. Representative preparation of 3a: A mixture of triethylsilane (170 µL, 1.07 mmol) and 2a (32 mg, 0.069 mmol) was cooled to -10° C in an ice-salt bath, under N₂, and treated with pre-cooled TFA (1.0 mL) in one portion. The two-phase mixture was rapidly stirred at -10°C for 0.5 h, poured into ice-cold satd. aq. NaHCO₃, worked up by extraction with CH₂Cl₂, dried (Na₂SO₄) and concentrated to give essentially pure **3a** (30 mg, 94%). ¹H NMR (CDCl₃) 1.22 (t, J=7.2 Hz, 3H, Me), 1.29 (t, J=7.2 Hz, 3H, Me), 2.74 (t, J=6.8 Hz, 2H, CH₂, C-2), 3.38 (dt, J=5.6, 6.8 Hz, 2H, CH₂, C-1), 4.10 (q, J=7.2 Hz, 2H, CH₂), 4.21 (q, J=7.2 Hz, 2H, CH₂), 4.74 (bt, J=5.6 Hz, 1H, NH), 4.99 (s, 2H, PhCH₂O), 6.96 (d, J=2.0 Hz, 1H, Ar), 7.29 (d, J=2.0 Hz, 1H, 7.3–7.5 (m, 5H, Ar). ¹³C NMR (CDCl₃) 14.1 (CH₃), 14.6 (CH₃.), 35.2 (CH₂, C-2), 41.7 (CH₂, C-1), 60.8 (CH₂) 65.2 (CH₂), 75.5 (CH₂), 118.1

(C), 122.6 (CH), 128.2 (CH), 128.3 (CH), 128.4 (CH), 131.1 (CH), 136.4 (C), 136.6 (C), 145.1 (C), 146.8 (C), 152.9 (C=O), 156.5 (C=O), HRMS (CI), m/z 466.0864, $C_{21}H_{25}BrNO_6$ [MH]⁺, calcd. 466.0865

- 9. The slightly lower *d*-content of **5a** is explained by dilution of the isotopic content of TFA- d_1 by rapid exchange of the NH group.
- 10. This contrasts with ionic silane hydrogenations of unactivated alkenes where hydride addition is the rate-limiting step (see Ref. 11)
- Kursanov, D. N.; Parnes, Z. N.; Loim, N. M. Synthesis 1974, 633–651.
- (a) Cannon, J. G.; Chang, Y.; Amoo, V. E.; Walker, K. A. Synthesis 1986, 494–496; (b) Miller, R. A.; Humphrey, G. R.; Thompson, A. S. Tetrahedron Lett. 1995, 36, 7949–7952.