

Tetrahedron Letters 44 (2003) 4431-4433

TETRAHEDRON LETTERS

Synthesis of thio-C-glycosides from 2'-carbonylalkyl C-glycosides by a tandem β -elimination and intramolecular hetero-Michael addition

Wei Zou,^{a,*} Edith Lacroix,^a Zerong Wang^a and Shih-Hsiung Wu^b

^aInstitute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada ^bInstitute of Biological Chemistry, Academia Sinica, Taipei, Taiwan

Received 10 April 2003; revised 22 April 2003; accepted 22 April 2003

Abstract—2'-Carbonyl 5-S-acetyl-C-glycofuranosides and 2'-carbonyl 4-S-acetyl-C-glycopyranosides were converted in good yields to respective 5-thio-C-glycopyranosides and 4-thio-C-glycofuranosides under base treatment. The transformation was resulted from β -elimination on 2'-carbonyl C-glycoside to form α,β -conjugated aldehyde (or ketone) and following intramolecular hetero-Michael addition by the thiol group. Crown Copyright © 2003 Published by Elsevier Science Ltd. All rights reserved.

Thio-sugars, a class of sugar derivatives with sulfur in the ring, have been used as glycosidase inhibitors¹ and precursors for the thionucleotides² that have exhibited potential antiviral and anticancer activities.³ In addition, thio-sugar have also been used to treat other diseases; e.g. 1,5-dithio- β -D-xylopyranosides are orally active against thrombosis by inhibition of glycosaminoglycan biosynthesis;⁴ and natural products, Salacinol⁵ and Kotalanol,⁶ are potent α -glucosidase inhibitors and could be useful for the treatment of diabetes. The synthesis of thio-sugars has been reviewed by Fernandez-Bolanos et al.⁷ However, few methods exist to synthesize thio-C-glycosides, which may even be superior inhibitors because of their chemical and metabolic stability. One synthesis reported by Praly et al. using thio-xylopyranosyl trichloroacetamide as a donor and heterocycles as receptors, afforded an anomeric mixture $(\alpha/\beta 2:3-2:1)$ of thio-C-glycosides in moderate yields.⁸ Another was based on thio-glycosyl radical addition to an enone derivative.⁹

Recently, we found that 2'-carbonyl α -C-glycosides can be epimerized to their β -anomers by base treatment, the intermediate being an acyclic α , β -conjugated aldehyde or ketone formed by β -elimination.¹⁰ An intramolecular hetero-Michael addition then led to the formation of stable β -*C*-glycopyranoside. Here, we describe a method based on the mechanism of this reaction, for the synthesis of thio-*C*-glycosides using respective 4-*S*-Ac and 5-*S*-Ac sugars as substrates. Under basic conditions de-*S*-acetylation generates a thiol group, which, in turn, reacts by an intramolecular 1,4-addition to an α , β -conjugated aldehyde (ketone) intermediate to form 2'-carbonyl 5-thio-*C*-glycopyranosides and 4-thio-*C*-glycofuranosides.

Acetolysis of allyl C-L-arabinofuranoside (1) with 0.05% H₂SO₄-Ac₂O selectively removed the 5-O-benzyl group to afford acetylated 2 in 70% yield. Removal of 5-O-Ac in 0.1% NaOMe followed by 5-O-mesylation (MsCl/Py), converted 2 into 3 in 77% yield. An S_N 2 replacement by AcSK in DMF afforded allyl 5-S-acetyl-C-furanoside 4, from which 2'-aldehyde 5 was then derived by ozonolysis (O₃ and Zn-HOAc) in good yield. Meanwhile, compound 2 was also subjected to ozonolysis and the resultant 2'-aldehyde was reacted to MeMgBr to furnish an alcohol 7 in 87%. Four diastereomers of 7 were formed which were inseparable. After protection of 5-OH with trityl group (Ph₃CCl/Py) the 2'-OH of 8 was oxidized to ketone by PCC and 9 was obtained in 31% yield. No attempt was made to optimize the reaction conditions. The trityl group was then removed by treatment of 9 with ZnBr₂ to give 10 (71%). The 5-OH was mesylated and substituted by AcS⁻ by a procedure similar to that described in the preparation of 4 to obtain 2'-ketone derivative 11 in 60%.

Keywords: synthesis; thio-glycoside; *C*-glycoside; β -elimination; cycloaddition.

^{*} Corresponding author. Tel.: 1-(613)-991-0855; fax: 1-(613)-952-9092; e-mail: wei.zou@nrc.ca

^{0040-4039/03/\$ -} see front matter Crown Copyright C 2003 Published by Elsevier Science Ltd. All rights reserved. doi:10.1016/S0040-4039(03)01039-6

As a mixture of two anomers (α/β 1:1) compounds 5 and 11 were treated overnight with 4% NaOMe. Under basic conditions de-S-acetylation was quickly achieved releasing a thiol group as indicated by ¹H NMR analysis, while the enolation of the 2'-carbonyl group and subsequent β -elimination resulted in an acyclic α,β -conjugated aldehyde (from 5) or ketone (from 11) (see Scheme 1). Thus, there were two nucleophiles competing in the hetero-Michael cycloaddition, i.e. the 4hydroxy group and 5-thiol group, but the complete conversion of C-furanosides (5 and 11) to 5-thio-C- α -Larabinopyranosides (6 and 12, 60–80%) were achieved.¹¹ The same results were also obtained when the reactions were performed in the presence of $Zn(OAc)_2$, which indicates, on the contrary to our previous suggestion, that the additional Zn++ was not essential to the stereoselectivity. The absence of furanosides and the stereoselectivity in the product can be

explained because it is known that 2'-carbonyl C-furanoside formed by O-1,4-addition can be reversibly opened by β -elimination to form more thermodynamically stable C-pyranosides.¹⁰

We further attempted to prepare thio-C-furanoside from respective C-pyranoside assuming that the C1–S bond in 2'-carbonyl thio-C-glycoside formed by cycloaddition, would be stable under these conditions. Thus, we prepared **18** from **13** in five steps (see Scheme 2). De-O-acetylation of **13** was followed by benzylidenation in acetonitrile to give compound **14**, which was readily crystallized from reaction mixture in excellent yield. Compound **15** obtained after benzylation of **14** was also crystallized (EtOAc-hexanes) without using column chromatography. Regioselective opening of benzylidene gave **16** (NaCNBH₃/H⁺) in 81% yield, which was in turn treated with triflic anhydride. The

Scheme 1. Reagents and conditions: (a) 0.05% H₂SO₄-Ac₂O, rt, overnight, 70%; (b) i. 0.1% NaOMe, rt, 2 h; ii. MeSO₂Cl/Py, 0°C to rt, overnight, 77%; (c) AcSK/DMF, rt, overnight, 62%; (d) O₃/CH₂Cl₂, -78°C 1 h; Zn/HOAc, rt, overnight, 67%; (e) 4% NaOMe, rt, overnight, 76% for **6** and 70% for **12**; (f) MeMgBr/Et₂O, -78°C, 87%; (g) Ph₃CCl/Py, rt, overnight; 45%; (h) PCC/NaOAc/CH₂Cl₂, 31%; (i) ZnBr₂/CH₂Cl₂, 71%; (j) i. MeSO₂Cl/Py, 0°C to rt, overnight; ii. AcSK/DMF, rt, overnight, 60%.

Scheme 2. Reagents and conditions: (a) i. 0.1% NaOMe, rt, 2 h; ii. PhCH(OMe)₂/MeCN/TsOH, rt, overnight, 87%; (b) BnBr/NaH/DMF, rt, overnight, 73%; (c) NaCNBH₃/HCl/THF, 0°C to rt, 3 h, 81%; (d) i. Tf₂O/Py-CH₂Cl₂, 0°C to rt, 3 h; ii. AcSK/DMF, rt, overnight, 61%; (e) O₃/CH₂Cl₂, -78° C 1 h; Zn/HOAc, rt, overnight, 77%; (f) 4% NaOMe, rt, overnight, 70%.

introduction of 4-S-Ac by replacement of 4-O-triflate to 17 (61%) was accompanied by the inversion of configuration at C4. Ozonolysis of 17 afforded 2'-carbonyl C-glycopyranoside 18 in 60–80% yield. After base treatment of 18 we were able to obtain 4-thio-Cfuranoside 19 in 70% yield.¹² The anomeric mixture of 19 was inseparable by silica gel chromatography and the α/β ratio was ca. 3:1 as determined by ¹H NMR analysis. Both anomers were characterized by various 2D NMR techniques and the stereochemistry of β anomer in 19 was confirmed by the observation of an NOE between H-1 and H-3.

In conclusion we have described a new method for the preparation of 2'-carbonylalkyl thio-C-glycosides by a tandem β -elimination and intramolecular hetero-Michael addition. Both yield and stereoselectivity are excellent for pyranosides, but a mixture of anomers was obtained from thio-C-furanosides. Derivatization of the 2'-carbonyl group and further modification of the sugar moiety could lead to useful synthetic intermediates.

Acknowledgements

This work was supported in part by National Research Council of Canada (to W.Z.) and National Science Council of Taiwan (to S.-H.W.). We are grateful to Ms. Lisa Morrison for mass spectroscopic analysis and Ms. Suzon Laroque for her assistance in NMR analysis.

References

- (a) Merrer, Y. L.; Fuzier, M.; Dosbaa, I.; Foglietti, M.-J.; Depezay, J.-C. *Tetrahedron* **1997**, *53*, 16731–16746; (b) Ulgar, V.; Fernandez-Bolanos, J. G.; Bols, M. J. Chem. Soc., Perkin Trans. 1 **2002**, 1242–1246.
- (a) Minakawa, N.; Kato, Y.; Uetake, K.; Kaga, D.; Matsuda, A. *Tetrahedron* 2003, *59*, 1699–1702; (b) Haraguchi, K.; Takahashi, H.; Tanaka, H. *Tetrahedron Lett.* 2002, *43*, 5657–5660.
- (a) Ganem, B. Acc. Chem. Res. 1996, 29, 340–347; (b) Garg, R.; Gupta, S. P.; Gao, H.; Babu, M. S.; Debnath, A. K.; Hansch, C. Chem. Rev. 1999, 99, 3535–3601.
- Bellamy, F.; Barberousse, V.; Martin, N.; Passon, P.; Millet, J.; Samreth, S.; Sepulchre, C.; Theveniaux, J.; Horton, D. *Eur. J. Med. Chem.* 1995, *30*, 101–115.
- Yoshikawa, M.; Murakami, T.; Shimada, H.; Matsuda, H.; Yamahara, J.; Tanabe, G.; Muraoka, O. *Tetrahedron Lett.* 1997, 38, 8367–8370.

- Yoshikawa, M.; Murakami, T.; Yashiro, K.; Matsuda, H. Chem. Pharm. Bull. 1998, 46, 1339–1340.
- Fernandez-Bolanos, J. G.; Al-Masoudi, N. A.; Maya, I. Adv. Carbohydr. Chem. Biochem. 2001, 57, 21–98.
- Baudry, M.; Barberousse, V.; Descotes, G.; Faure, R.; Pires, J.; Praly, J.-P. *Tetrahedron* 1998, 54, 7431–7446.
- (a) Tsuruta, O.; Yuasa, H.; Kurono, S.; Hashimoto, H. Bioorg. Med. Chem. Lett. 1999, 9, 807–810; (b) Yuasa, H.; Kurono, S.; Hashimoto, H. Tetrahedron 1993, 49, 8977–8998.
- Shao, H.; Wang, Z.; Laroix, E.; Wu, S.-H.; Jennings, H. J.; Zou, W. J. Am. Chem. Soc. 2002, 124, 2130–2131.
- 11. Selected data for 6 and 12. For 6: ¹H NMR (CDCl₃) $\delta_{\rm H}$ 2.50-2.53 (m, 2H, H-5e, CHHCHO), 2.66 (dd, 1H, CHHCHO, J=7.6, 17.6 Hz), 2.90 (dd, 1H, H-5a, J= 10.0, 12.8 Hz), 3.64 (m, 2H, H-1, 2), 3.89 (m, 1H, H-3), 4.12 (m, 1H, H-4), 4.45–4.70 (m, 4H, 2×CH₂Ph), 9.51 (bs, 1H, CHO); ¹³C NMR (CDCl₃) δ_{C} 29.5 (C-5), 34.6 (C-1), 43.7 (CH₂CO), 67.5 (C-4), 73.1 (CH₂Ph), 73.4 (CH₂Ph), 75.7 (C-2), 76.9 (C-3), 199.5 (C=O); HRFABMS: Calcd for C₂₁H₂₅O₄S (M+H): 373.1474. Found: 373.1522. For 12: ¹H NMR (CDCl₃) $\delta_{\rm H}$ 1.96 (s, 3H, CH₃), 2.33 (d, 1H, 4-OH, J=10 Hz), 2.45-2.51 (m, 2H, H-5ax, CHHCHO), 2.66 (dd, 1H, CH₂CHO, J=8.4, 17.6 Hz), 2.90 (dd, 1H, H-5eq, J = 10.0, 13.2 Hz), 3.63–3.66 (m, 2H, H-1, 2), 3.97 (dd, 1H, H-3, J=2.8, 5.6 Hz), 4.11 (m, 1H, H-4), 4.43 and 4.62 (d and d, 1H each, CH_2Ph , J=12.0 Hz), 4.50 and 4.72 (d and d, 1H each, CH_2Ph , J=12.0 Hz), 7.28– 7.39 (m, 10H, 2×Ph); ¹³C NMR (CDCl₃) $\delta_{\rm C}$ 29.3 (C-5), 30.2 (CH₃), 34.8 (C-1), 42.6 (CH₂CO), 67.3 (C-4), 72.7 (CH₂Ph), 72.8 (CH₂Ph), 74.9 (C-2), 76.4 (C-3), 205.7 (C=O); HRFABMS: calcd for C₂₂H₂₇O₄S (M+H): 387.1630. Found: 387.1664.
- 12. Selected data for 19 (α/β 3:1): HRFABMS: calcd for C₂₉H₃₃O₅S (M+H): 493.2049. Found: 493.1705. **19**a: ¹H NMR (CDCl₃) $\delta_{\rm H}$ 2.62 (d, 1H, 5-OH, J=4.8 Hz), 2.79 (dd, 1H, CH₂CHO, J=6.8, 18.8 Hz), 2.87 (dd, 1H, CH_2CHO , J=6.8, 18.8 Hz), 3.43 (dd, 1H, H-6a, J=6.4, 9.6 Hz), 3.60 (d, 1H, H-6b, J=2.8, 9.6 Hz), 3.74 (dd, 1H, H-4, J=4.0, 10.0 Hz), 4.00 (m, 1H, H-2), 4.04 (m, 1H, H-1), 4.13 (m, 1H, H-5), 4.29 (m, 1H, H-3), 4.48-4.64 (m, 6H, 3×CH₂Ph), 7.19-3.38 (m, 15H, 3×Ph), 9.69 (s, 1H, CHO); 13 C NMR (CDCl₃) δ_{C} 43.5 (C-1), 44.8 (CH₂CHO), 51.4 (C-4), 70.0 (C-5), 73.8 (C-6), 82.5 (C-3), 83.4 (C-2), 200.5 (C=O). 19 β : $\delta_{\rm H}$ 2.78 (d, 1H, 5-OH, J=4.8 Hz), 2.92 (dd, 1H, CHHCHO, J=6.8, 18.8 Hz), 2.98 (dd, 1H, CHHCHO, J=6.8, 18.8 Hz), 3.45 (dd, 1H, H-6a, J = 6.4, 9.6 Hz), 3.60 (d, 1H, H-6b, J = 2.8, 9.6 Hz), 3.74 (dd, 1H, H-4, J=4.0, 10.0 Hz), 3.77 (m, 1H, H-1), 3.89 (m, 1H, H-2), 4.14 (m, 1H, H-5), 4.25 (m, 1H, H-3), 4.48–4.64 (m, 6H, 3×CH₂Ph), 7.19–3.38 (m, 15H, 3×Ph), 9.64 (s, 1H, CHO); δ_C 45.0 (C-1), 50.2 (CH₂CHO), 51.7 (C-4), 70.4 (C-5), 73.8 (C-6), 84.9 (C-3), 86.1 (C-2), 200.5 (C=O).