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Acid-Catalyzed Nazarov Reaction Controlled by b-Alkoxy Groups
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Abstract: Acid-catalyzed Nazarov reaction of b-alkoxy divinyl
ketones providing 5-oxycyclopent-2-enones has been developed.
The effects of the b-alkoxy group on the catalyst efficiency and the
regioselectivity are based on the stabilization of the intermediates
and the spontaneous elimination of the group followed by trapping.
The substrates are easily accessible using the torquoselective olefi-
nation of esters with ynolates.
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The Nazarov reaction is a 4p electrocyclic reaction pro-
viding cyclopentenones mediated by protic or Lewis
acids.1 Although it was developed some 60 years ago, cer-
tain limitation have kept the reaction from enjoying a
wider use in synthetic organic chemistry, among which
the harsh conditions often required due to use of a more
than stoichiometric amount of acid and the poor regio-
chemistry of the alkene in the cyclopentenone product. In
recent years, improved Nazarov reactions, such as the
Lewis acid catalyzed reaction2 and a substituent-con-
trolled regioselective reaction, have been reported. Stud-
ies on these reactions are still in progress.2,3 In this
communication, we describe the highly efficient Brønsted
acid catalyzed, as well as Lewis acid catalyzed, Nazarov
reaction using the b-alkoxy divinyl ketones 1 to afford 5-
alkoxycyclopent-2-enones 2, in which the alkoxy group
controls the reaction by its electronic properties, its facile
elimination, and its ability to interrupt the key cation
during the reaction (Scheme 1).

Scheme 1 Acid-catalyzed Nazarov reaction of b-alkoxy divinyl 
ketones

Since a b-alkoxy group in divinyl ketones would stabilize
the pentadienyl cation 3a, it was thought that the electro-
cyclic reaction to give the oxyallyl cation 4a might not

proceed. Actually, this type of substrates induced the
retro-Nazarov reaction [Scheme 2 (1)].4 We reasoned that
if the oxyallyl cation 4b also was properly stabilized by
the a-substituents, the pentadienyl cation 3b and the oxy-
allyl cation 4b would be in equilibrium thus leading to the
Nazarov products [Scheme 2 (2)].5

Scheme 2 Equilibrium between pentadienyl cation and oxyallyl 
cation

The starting E-b-alkoxy divinyl ketones were easily pre-
pared according to our torquoselective olefination meth-
odology with ynolates.6 Ethyl 3-phenylpropionate was
olefinated by the ynolate 57 to afford the b-alkoxy-a,b-un-
saturated acid 6 with high E-selectivity.8 The acid 6 was
converted into the Weinreb amide,9 which was subjected
to alkenylation to provide the b-alkoxy divinyl ketone 7 in
satisfactory overall yield (Scheme 3).

We first tried the Nazarov reaction of the b-alkoxy divinyl
ketone 7 with 10 mol% of FeCl3 as a catalyst,2a and suc-
cessfully obtained the 5-ethoxycyclopent-2-enone 8 in
excellent yield as a single regioisomer (Table 1, entry 1);
however, 1 mol% of the Lewis acid did not work. Encour-
aged by these results, we screened several Lewis acids,
and found Sc(OTf)3 to be a much better catalyst (entries
2–4).10 Even only 1 mol% of Sc(OTf)3 worked well as a
catalyst (entry 2). When it was used, 5–20% of 5-hydrox-
ylcyclopentenone 9 was generated, probably due to con-
tamination with water and/or generation of the triflate 10,
which would be hydrolyzed during workup. In the pres-
ence of 10 equivalents of MeOH (entry 3), 5-methoxycy-
clopent-2-enone 11 was produced in good yield, and in the
presence of 1 equivalent of H2O (entry 4), 9 was obtained
exclusively, suggesting the intermolecular interruption of
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some cation species by the external nucleophiles. A stoi-
chiometric amount of titanium(IV) chloride was needed
for the activation to afford the a-chlorocyclopent-2-enone
12 (entry 5).

We next examined Brønsted acids as catalysts and found
that the super acids, TfOH11 and Tf2NH, were excellent
catalysts for the Nazarov reaction (entries 6–9). When 0.1

mol% of TfOH was used, the reaction was complete with-
in 3 minutes to provide 8 in 74% yield (entry 6). The an-
hydrous TfOH, prepared by the pretreatment with Tf2O (5
mol% to TfOH), considerably improved the yield up to
91%. When only even 0.001 mol% of Tf2O was solely
used, the product 8 was obtained in good yield (entry 8),
probably due to the generation of TfOH by in situ hydrol-
ysis of Tf2O in the presence of a trace amount of water. An
excess amount of HCl provided 12 in good yield (entry
10), and TsOH and TFA were less effective (entries 11,
12). The divinyl ketones were inert to acetic acid (entry
13).

The crossover experiment using the divinyl ketones 13
and 14 afforded a mixture of 15a–d (Scheme 4). When the
products (e.g. 8) were exposed to methanol in the pres-
ence of acids, nothing happened. These results support
that the products are stable enough to the acid and the
intermolecular interruption of the oxyallyl cations by
ethanol is irreversible.

Several b-alkoxy divinyl ketones were examined under
catalytic conditions using TfOH and/or Tf2O (0.1 mol%)
or Sc(OTf)3 (10 mol%, Table 2). Substrates equipped with
the a,a¢-dialkyl group (Me or i-Pr) provided the 5-alkoxy-
cyclopent-2-enones in good to excellent yields (entries 1–
8, 12). An isopropoxy group can also be introduced at the

Scheme 3 Preparation of b-alkoxy divinyl ketone
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Table 1 Acid-Catalyzed Nazarov Reaction

Entry Acid mol% Conditionsa Product Yield (%)

1 FeCl3 10 r.t., 3 min 8 62

2 Sc(OTf)3 1 r.t., 10 min 8 76

3 Sc(OTf)3 10 r.t., 3 minb 11 72

4 Sc(OTf)3 10 0 °C, 20 minc 9 94

5 TiCl4 100 r.t., 1 h 12 73

6 TfOH 0.1 r.t., 3 mind 8 74

7 TfOH/Tf2O 0.1/0.005 r.t., 3 mind 8 91

8 Tf2O 0.001 r.t., 3 mind 8 80

9 Tf2NH 0.1 r.t., 3 mind 8 76

10 HCl 300 r.t., 3 min 12 83

11 TsOH 10 r.t., 10 min 8 40

12 CF3CO2H 200 r.t., 4 h 9 39

13 AcOH 100 r.t. n.r.

a 0.025 M in CH2Cl2, unless otherwise noted.
b In the presence of MeOH (10 equiv).
c In the presence of H2O (1 equiv) in MeCN.
d 0.25 M.
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a-position (entry 3–5). The divinyl ketone 22 bearing
cyclohexene mainly provided the dienone 23 (entries 9,
10), and in the presence of 10 equivalents of ethanol, the
a-ethoxy product 24 was obtained (entry 11). Owing to
the steric hindrance of the cyclohexene, the b-elimination
might compete with the addition of ethanol to the cation.
From these results, the a,a¢-dialkyl-b-alkoxy divinyl
ketones were found to be excellent substrates for the
Nazarov reaction.

Since the reactions with the a,a¢-monoalkyl substrates 27
and 28 gave a complex mixture, we reasoned that the a,a¢-
alkyl group is essential. Furthermore, the fact that the
reaction of nonoxygenated divinylketone 29 (Figure 1)

did not provide the cyclized product under the catalytic
conditions (A, A¢, and B) indicated the importance of the
b-alkoxy group. The b-alkoxy and the a,a¢-dialkyl groups
stabilize 3b and 4b (Scheme 2), respectively, resulting in
their equilibrium. Nucleophilic attack by a nucleophile
such as alkoxide or triflate, followed by the irreversible
elimination of b-alkoxide, would lead to the product along
with the regeneration of the acid catalyst. If the nucleo-
philic attack is prevented for steric reasons, b-elimina-
tion would proceed to give a dienone like 23.14 An
investigation into a detailed mechanism is now in
progress.

Figure 1

In conclusion, we have developed a highly efficient acid-
catalyzed Nazarov reaction of b-alkoxy divinyl ketones
providing 5-oxycyclopent-2-enones. The remarkable ef-
fects of the b-alkoxy group on the high catalyst turnover
and the regioselective formation of products are based on
the stabilization of the intermediates and the spontaneous
elimination of the group followed by interruption.

Scheme 4 Crossover experiment
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Table 2 TfOH- and Sc(OTf)3-Catalyzed Nazarov Reaction

Entry Substrate Product Conditionsa Yield (%)

1

16 17

A 96

2 16 17 Bb 89

3

18 19
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4 18 19 A¢ 73

5 18 19 Bc 70
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