

Catalyst-Controlled Asymmetric Synthesis of Fostriecin and 8-epi-Fostriecin

Keisuke Maki,[†] Rie Motoki,[†] Kunihiko Fujii,[†] Motomu Kanai,^{*,†} Takayasu Kobayashi,[‡] Shinri Tamura,[‡] and Masakatsu Shibasaki*,[†]

Contribution from the Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, and Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi, Aobaku, Sendai, 980-8570, Japan

Received September 16, 2005; E-mail: mshibasa@mol.f.u-tokyo.ac.jp

Abstract: Catalytic asymmetric synthesis of the natural antibiotic fostriecin (CI-920) and its analogue 8-epifostriecin and evaluation of their biological activity are described. We used four catalytic asymmetric reactions to construct all of the chiral centers of fostriecin and 8-epi-fostriecin; cyanosilylation of a ketone, Yamamoto allylation, direct aldol reaction, and Noyori reduction, two of which were developed by our group. Catalytic enantioselective cyanosilylation of ketone 13 produced the chiral tetrasubstituted carbon at C-8. Both enantiomers of the product cyanohydrin were obtained with high enantioselectivity by switching the center metal of the catalyst from titanium to gadolinium. Yamamoto allylation constructed the C-5 chiral carbon in the α,β -unsaturated lactone moiety. A direct catalytic asymmetric aldol reaction of an alkynyl ketone using LLB catalyst constructed the chirality at C-9 with the introduction of a synthetically versatile alkyne moiety, which was later converted to cis-vinyl iodide, the substrate for the subsequent Stille coupling for the triene synthesis. Noyori reduction produced the secondary alcohol at C-11 from the acetylene ketone 6 with excellent selectivity. Importantly, all the stereocenters were constructed under catalyst control in this synthesis. This strategy should be useful for rapid synthesis of stereoisomers of fostriecin.

Introduction

Fostriecin (1, CI-920) is a structurally unique antibiotic isolated from Streptomyces pulveraceus by a research group at Warner Lambert-Parke Davis in 1983 (Figure 1).¹ It displays cytotoxic activity against a broad range of cancerous cell lines such as leukemia, lung cancer, breast cancer, and ovarian cancer in vitro, and also antitumor activity against leukemia in vivo.² Initially, fostriecin was considered to be a topoisomerase II poison; however, there is no relation between this mechanism and its cancer suppression activity.³ It is proposed that the anticancer activity is derived from the perturbation of the mitotic entry checkpoint through potent inhibition of protein phosphatases (PP). Specifically, fostriecin has the most selective

- (a) Tunac, J. B.; Graham, B. D.; Dobson, W. E. J. Antibiot. 1983, 36, 1595.
 (b) Stampwala, S. S.; Bunge, R. H.; Hurley, T. R.; Wilmer, N. E.; Brankiewicz, A. J.; Steinman, C. E.; Smitka, T. A.; French, J. C. J. Antibiot. 1983, 36, 1601.
- (2) Reviews: (a) Lewy, D. S.; Gauss, C.-M.; Soenen, D. R.; Boger, D. L. Curr. Med. Chem. 2002, 9, 2005. (b) Jackson, R. C.; Fry, D. W.; Boritzki, T. J.; Roberts, B. J.; Hook, K. E.; Leopold, W. R. Adv. Enzyme Regul. 1985, 23, 193. (c) De Jong, R. S.; De Vries, E. G. E.; Mulder, N. H. Anti-Correspondence of the second s
- Cancer Drugs. 1997, 8, 413. (d) Scheithauer, W.; Hoff, D. D. V.; Clark.
 G. M.; Shillis, J. L.; Elslager, E. F. *Eur. J. Clin. Oncol.* 1986, 22, 921.
 (a) Roberge, M.; Tudan, C.; Hung, S. M. F.; Harder, K. W.; Jirik, F. R.;
 Anderson, H. *Cancer Res.* 1994, 54, 6115. (b) Guo, X. W.; Th'ng, J. P.
 H.; Swank, R. A.; Anderson, H. J.; Tudan, C.; Brandbury, E. M.; Roberge, M. EMBO J. 1995, 14, 976. (c) Ho, D. T.; Roberge, M. Carcinogenesis M. EMBO J. 1995, 14, 976. (c) Ho, D. 1.; Roberge, M. Carcinogenesis 1996, 17, 967. (d) Walsh, A. H.; Cheng, A.; Honkanen, R. E. FEBS Lett. 1997, 416, 230. (e) Hastie, C. J.; Cohen, P. T. W. FEBS Lett. 1998, 431, 357. (f) Cheng, A.; Balczon, R.; Zuo, Z.; Koons, J. S.; Walsh, A. H.; Honkanen, R. E. Cancer Res. 1998, 58, 3611.

Figure 1. Structures of fostriecin (1) and 8-epi-fostriecin (2).

serine/threonine phosphatase 2A (PP2A) inhibition known to date (10⁴ times greater selectivity for PP2A versus PP1).⁴ Due to this unique property, fostriecin is expected to be a novel and potent lead compound for antitumor drugs.⁵ Considering the importance of protein phosphorylation and dephosphorylation reactions in living organisms, it might also be a valuable biological tool. Unfortunately, the clinical trial of fostriecin at the National Institute of Cancer was halted in phase I due to its instability and unpredictable purity.⁵ Therefore, stable analogues of fostriecin are in high demand.

Only the two-dimensional structure of fostriecin was known⁶ until Boger's pioneering synthetic and degradation studies in 1997 to determine the relative and absolute configuration of fostriecin.⁷ Boger and colleagues subsequently achieved the first total synthesis in 2001.⁸ Since then, several total syntheses have

[†] The University of Tokyo.

[‡] Tohoku University.

⁽⁴⁾ Boritzki, T. J.; Wolfard, T. S.; Besserer, J. A.; Jackson, R. C.; Fry, D. W.; Biochem. Pharmacol. 1998, 37, 4063.

⁽⁵⁾ De Jong, R. S.; Mulder, N. H.; Uges, D. R. A.; Sleijfer, D. Th.; Hoppener, (5) De Jong, K. S., Mulder, W. H., Oges, D. K. A., Steijer, D. H., Hoppener, F. J. P.; Groen, H. J. M.; Willemse, P. H. B.; Van der Graaf, W. T. A.; Dc Vries, E. G. E. *Br. J. Cancer* **1999**, *79*, 882.
 (6) Honkanson, G. C.; French, J. C. J. Org. Chem. **1985**, *50*, 462.
 (7) Boger, D. L.; Hikota, M.; Lewis, B. M. J. Org. Chem. **1997**, *62*, 1748.

Figure 2. Summary of the stereocontrol strategies in the total syntheses of fostriecin.

been reported,^{9,10} including one from our group.¹¹ Stereoselective construction of fostriecin's four chiral carbons is the key for success of the total synthesis. The strategies utilized in the reported total syntheses are summarized in Figure 2. Although various methods are available for construction of the chiral trisubstituted carbons at C-5, 9, and 11, there are few methods available for the chiral tertiary alcohol at C-8. Our synthesis is unique in that all the stereogenic centers were constructed using external asymmetric catalysts. Specifically, the tertiary alcohol at C-8 was constructed through catalytic enantioselective cyanosilylation of a ketone developed in our group.¹² An advantage of our synthesis over that of other groups is its applicability to the synthesis of stereoisomers of fostriecin. For example, it is possible to synthesize 8-epi-fostriecin 2 just by switching the enantioselectivity of the cyanosilylation. It is not very straightforward to synthesize 2 using the synthetic methods of the other groups. Investigation of the stereochemistry and biological activity relationship is the starting point for understanding the protein-drug interactions. In this sense, we are especially interested in the effect of the configuration of the C-8 tertiary alcohol of fostriecin and, more generally, in how the configuration of the chiral tetrasubstituted carbon is distinguished in nature. In this paper, we report catalytic asymmetric synthesis of fostriecin and its epimer 8-epi-fostriecin and the effect of the configuration of the tertiary alcohol (C-8) on their biological activity.

- (8) Boger, D. L.; Ichikawa, S.; Zhong, W. J. Am. Chem. Soc. 2001, 123, 4161.
 (9) (a) Chavez, D. E.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2001, 40, 3667. (a) Chaves, D. E., Jacobsell, E. N. Angew. Chem., Mr. Ed. 2001, 49, 5071.
 (b) Reddy, Y. K.; Falck, J. R. Org. Lett. 2002, 4, 969. (c) Miyashita, K.;
 Rejiri, M.; Kawasaki, H.; Maemura, S.; Imanishi, T. Chem. Commun. 2002, 9, 742. (d) Wang, Y.-G.; Kobayashi, Y.; Org. Lett. 2002, 4, 4615. (e) Esumi, T.; Okamoto, N.; Hatakeyama, S. Chem. Commun. 2002, 9, 3042. (f) Miyashita, K.; Ikejiri, M.; Kawasaki, H.; Maemura, S.; Imanishi, T. J. Am. Chem. Soc. 2003, 125, 8238. (g) Trost, B. M.; Frederiksen, M. U.; Papillon, J. P. N.; Harrington, P. E.; Shin, S.; Shireman, B. T. J. Am. Chem. Soc. 2005, 127, 3666.
- (10) Synthetic studies: (a) Just, G.; O'Connor, B. Tetrahedron Lett. 1988, 29, Synthetic studies. (a) sust, G., O'Connor, D. *Terranearon Lett.* 1986, 29, 753. (b) Liu, S. U.; Huang, D. F.; Huang, H. H.; Huang, L. *Chin. Chem. Lett.* 2000, 11, 957. (c) Cossy, J.; Pradaux, F.; BouzBouz, S. *Org. Lett.* 2001, 3, 2233. (d) Kiyotsuka, Y.; Igarashi, J.; Kobayashi, Y. *Tetrahedron Lett.* 2002, 43, 2725. (e) Marshall, J. A.; Bourbeau, M. P. *Org. Lett.* 2003, 5 2107. (f) Pameabandran P. V. Liu, H. P. P. *Edit. M. Y. P. P. P.* 5, 3197. (f) Ramachandran, P. V.; Liu, H. P.; Reddy, M. V. R.; Brown, H. C. Org. Lett. 2003, 5, 3755.
- (11) Fujii, K.; Maki, K.; Kanai, M.; Shibasaki, M. Org. Lett. 2003, 5, 733.
- (12) (R)-selective: (a) Hamashima, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 7412. (b) Hamashima, Y.; Kanai, M.; Shibasaki, M. Tetrahedron Lett **2001**, 42, 691. (S)-selective: (c) Yabu, K.; Masumoto, S.; Yamasaki, S.; Hamashima, Y.; Kanai, M.; Du, W.; Curran, D. P.; Shibasaki, M. J. Am. Chem. Soc. **2001**, 123, 9908. (d) For a recent review, see: Kanai, M.; Kato, N.; Ichikawa, E.; Shibasaki, M. Synlett 2005, 1491.

Results and Discussion

Synthetic Plan. One of our focal points in this project was to assess and demonstrate the power of catalytic asymmetric reactions in the practical synthesis of a biologically active compound with a considerably complex structure. Thus, we planned to construct all of the stereogenic centers using four catalytic asymmetric reactions. This strategy will be advantageous for rapid synthesis of stereoisomer analogues of fostriecin, if each reaction proceeds with catalyst control.

Our retrosynthesis is shown in Scheme 1. Because of its instability, the triene moiety should be introduced at a late stage through Stille coupling of vinyl tin **3** and vinyl iodide **4**.¹³ The stereogenic center at C-11 of 4 should be produced through Noyori transfer hydrogenation¹⁴ of alkynyl ketone **6**. The secondary alcohol at C-9 can be constructed through a direct catalytic asymmetric aldol reaction between aldehyde 8 and alkynyl methyl ketone 9 promoted by a heterobimetallic LLB complex 7.¹⁵ α , β -Unsaturated lactone can be constructed through Yamamoto allylation¹⁶ of aldehyde **10**, acryloylation, and ring closing metathesis. Finally, we planned to apply catalytic

- (15) (a) Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. (a) Ioshikawa, IV., Fandud, I. M. A., Das, J., Sasai, H., Shibasadi, M. J.
 Am. Chem. Soc. 1999, 121, 4168. (b) Yamada, Y. M. A.; Yoshikawa, N.;
 Sasai, H.; Shibasaki, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 1871.
 Yanagisawa, A.; Kageyama, H.; Nakatsuka, Y.; Asakawa, K.; Matsumoto,
 Y.; Yamamoto, H. Angew. Chem., Int. Ed. 1999, 38, 3701.
- (16)

⁽¹³⁾ Jacobsen, Imanishi, Hatakeyama, and Falck utilized Stille or Suzuki crosscoupling for the triene construction. Vinyl iodide **4** is the common intermediate of Jacobsen, Imanishi, Hatakevama, and Kobavashi.

⁽¹⁴⁾ Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738.

enantioselective cyanosilylation of ketone 13 developed in our group¹² to control the C-8 stereocenter.

Synthesis of Fostriecin (1). Our synthesis of fostriecin began with the catalytic asymmetric cyanosilylation of ketone 13. A titanium complex derived from ligand 11 or 12 and Ti(OⁱPr)₄ in a 1:1 ratio generally gives (R)-ketone cyanohydrins with excellent enantioselectivity, while a gadolinium complex derived from **11** and $Gd(O^{P}r)_{3}$ in a 2:1 ratio generally gives (S)-ketone cvanohvdrins (Scheme 2).¹² In natural fostriecin synthesis, the former reaction was used. Both the reactivity and selectivity of this reaction heavily depended on the protective group of the allylic alcohol of the substrate. Examination of several substrates¹⁷ indicated that the benzyl group was the protective group of choice. Thus, using 5 mol % of the catalyst derived from ligand 11, product 16 was obtained in 94% yield with 71% ee (-20 °C, 36 h). Enantioselectivity was improved using ligand 12 containing a benzoyl group at the catechol,^{12b} and the product was obtained in 86% yield and 87% ee (-25 °C, 48 h). The higher enantioselectivity obtained when using 12 compared to 11 might be partly due to the enhanced Lewis acidity of titanium by the electron-withdrawing group at the catechol, which would more efficiently stabilize the hypothetical dual activation transition state 14. This reaction was performed on a 50 g scale without a significant change in efficiency (93%, 85% ee). The chiral ligand 12 was recovered in 95% yield after silica gel column chromatography, which could be reused at least several times without any loss of catalyst activity.

The cyanohydrin 16 was transformed to the primary alcohol 17 via ethanolysis and NaBH₄ reduction (Scheme 3). Enantiomerically pure 17 was obtained after converting to the pnitrobenzoyl ester 18, recrystallization, and hydrolysis (78% yield in three operations). Subsequent protection of the primary and tertiary alcohols with TIPS and MOM groups, respectively, followed by debenzylation led to the allyl alcohol, which was oxidized by MnO_2 to give the allylation precursor 10.¹⁸ To

⁽¹⁸⁾ In the previous communication, debenzylation and oxidation were conducted with LiDBB and TPAP, respectively. The current reaction conditions produced higher chemical yield and reproducibility.

^a Reagents and conditions: (a) Ti(O'Pr)₄ (5 mol %), ligand 12 (5 mol %), TMSCN, THF, -25 °C, 93%, 85% ee; (b) 6 N HCl/EtOH, 60 °C, 83%; (c) NaBH₄, MeOH, 88%; (d) *p*-NO₂-C₆H₄COCl, py, CH₂Cl₂, 100%; recryst. from CH₂Cl₂/hexane, 78% (>99% ee); (e) K₂CO₃, MeOH-CH₂Cl₂, 100%; (f) TIPSCl, imidazole, DMF, 96%; (g) MOMCl, ⁱPr₂NEt, CH₂Cl₂, 100%; (h) Na, NH₃, -78 °C, 93%; (i) MnO₂, CH₂Cl₂, 93%; (j) AgF (20 mol %), (R)-p-tol-BINAP (20 mol %), allyltrimethoxysilane, MeOH, -20 °C, 80% (d.r. = 28:1); (k) acryloyl chloride, Et₃N, CH₂Cl₂, 76%; (l) first generation Grubbs catalyst (15 mol %), CH2Cl2, 94%; (m) 3HF-Et3N, THF, 90%; (n) DMP, CH₂Cl₂, 92%.

construct the chiral lactone part, we investigated several catalytic asymmetric allylations.¹⁹ Yamamoto's AgF-catalyzed reaction gave the best results in the current system. Diastereoselectivity was as high as 28:1 in favor of the desired isomer 20.²⁰ α , β -Unsaturated lactone 21 was constructed from 20 through treatment with acryloyl chloride and ring closing olefin metathesis using the first generation Grubbs' catalyst.²¹ Deprotection of the primary alcohol and oxidation with Dess-Martin periodinane (DMP) produced aldehyde 8, the substrate for the catalytic asymmetric aldol reaction.

Before performing the catalytic asymmetric aldol reaction with an alkynyl ketone in the actual system, its feasibility was tested using a model aldehyde 22, because this type of reaction had not been explored.²² Neither the lithium enolate nor zinc enolate of 9 provided the target molecule 23 in reasonable yield (Table 1, entries 1 and 2). On the other hand, Lewis acid-Brönsted base two-center asymmetric catalyst²³ LLB (10 mol %) promoted the reaction in good yield with high enantioselectivity (entry 3). Less satisfactory results were obtained when the more basic LLB/KOH system^{15a} was utilized (entry 4), probably because the highly basic catalyst facilitated the retroaldol reaction. Application of the best reaction conditions to the actual system (8 + 9) afforded the desired aldol adduct with 3.6:1 diastereomeric ratio in 65% yield.²⁴ All attempts to

⁽¹⁹⁾ Keck allylation (Keck, G. E.; Krishnamurthy, D.; Grier, M. C. J. Org. Chem. **1993**, 58, 6543) gave unsatisfactory results, perhaps due to the coordination of the MOM-oxy group to the titanium of the catalyst. See SI for details.

The C-5 configuration was determined after conversion to 4 by comparing the ¹H and ¹³C NMR with Imanishi's NMR chart. The stereoselectivity was consistent with Yamamoto's transition state model. AgF-catalyzed (20)reaction in the absence of the chiral ligand gave a 1:1 diastereomixture. (21) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413.

⁽²²⁾

Trost recently reported a catalytic enantioselective aldol reaction using an alkynyl ketone as a donor: Trost, B. M.; Fetes, A.; Shireman, B. T.; J. Am. Chem. Soc. 2004, 126, 2660. (23)

For a recent review on two-center asymmetric catalysis, see: Shibasaki, M.; Kanai, M.; Funabashi, K. Chem. Commun. 2002, 1985.

^a 2 equiv of 9 and 1 equiv of LDA were used. ^b 1 equiv of ZnCl₂ to 9 was used as an additive. ^c 6 equiv of 9 and 10 mol % of (R)-LLB were used. d 9 mol % of KOH and 10 mol % of H₂O were used as additives.

Scheme 4^a

^a Reagents and conditions: (a) (S)-LLB (10 mol %), 9, THF, -20 °C, 65% (d.r. = 3.6:1); (b) 2,2-dimethoxypropane, PPTS, acetone, 80%; (c) Noyori's catalyst 5 (10 mol %)-KOH (10 mol %), PrOH, 49%; (other isomers: 18%); (d) TBSOTf, 2,6-lutidine, CH₂Cl₂, -78 °C, 73%; (e) NIS, AgNO₃, acetone, 88%; (f) NBSH, Et₃N, THF-^{*i*}PrOH, 40% (6% recovery); (g) 1 M HCl aq. MeOH, 47%; (h) TBSOTf, 2,6-lutidine, CH₂Cl₂, -78 °C; TESOTf, -78 °C to -10 °C, 52%; (i) 1 M HCl aq.-THF-CH₃CN (1:3: 6), -10 °C, 52%; (j) PdCl₂(CH₃CN)₂, **3**, DMF, 85%.

improve the moderate selectivity, including catalyst tuning by modifying the BINOL structure, were unsuccessful.²⁵

With the desired aldol in hand, construction of the remaining stereogenic center at C-11 was performed using Noyori hydrogenation. Thus, after acetonide formation to generate 6, Noyori's transfer hydrogenation effectively produced the secondary alcohol 24 in a highly stereoselective manner (d.r. = >15:1, Scheme 4). Diastereomerically pure 24 was obtained by preparative TLC purification.²⁶ At this stage, all the chiral centers of fostriecin were introduced. 24 was transformed to cis-vinyl iodide 25 via three steps: TBS protection of the secondary alcohol at C-11, iododesilylation of the TMS acetylene,²⁷ and diimide reduction of the iodoalkyne using p-nitrobenzenesulfonylhydrazide (NBSH).28 By modifying Imanishi's procedure, properly protected vinyl iodide 4 was afforded in three steps. Stille coupling between vinyl tin 3^{29} and 4 under ligand-free conditions³⁰ proceeded uneventfully to form **26**, the common intermediate of the fostriecin synthesis developed by Jacobsen, Imanishi, and Hatakeyama. Thus, the formal total synthesis of fostriecin was accomplished.

Synthesis of 8-epi-Fostriecin. Despite intensive studies, the structure-activity relationship of fostriecin, its binding feature to PP, and the molecular mechanism of PP inhibition are not yet clarified.² Specifically, the structure-activity relationship of 1 is limited to information obtained by either molecular modeling calculations or compounds that could be derivatized from 1 and its natural analogues. Three important pieces of information confirmed so far are as follows: (1) the α,β unsaturated lactone is a fundamental motif for the potent activity and PP2A selectivity of 1; (2) the phosphate ester at C-9 is essential; (3) the terminal allylic alcohol is not necessary.³¹ To obtain further insight into the binding mode of 1 to PP, we were interested in the effect of the configuration of chiral carbons on fostriecin's biological activity, especially the effect of chiral tertiary alcohol at C-8. The methyl group at C-8 is proposed to be a common pharmacophore in naturally occurring PP1 and PP2A inhibitors, and it mimics the methyl group of phosphothreonine, a PP substrate.³² Currently, the role of the tertiary alcohol is not well understood, but it might mimic the hydroxy group of the substrate threonine or displace the enzyme's metalbound water nucleophile in the active site.^{2a} Because our synthetic strategy is advantageous for preparing other isomers of fostriecin, we extended our strategy to the synthesis of 8-epifostriecin (2). A main interest in this synthetic endeavor is whether catalyst control dominates over substrate control in this linear system.

The first reaction was (S)-selective cyanosilylation of 13 using a gadolinium complex (2 mol %) derived from ligand 11 (Scheme 5). Product 27, which is the enantiomer of the previous 16, was obtained in 95% yield with 86% ee. This reaction was performed on a 120 g scale. 27 was effectively converted to the allylation precursor 28 following the procedure for the fostriecin synthesis. Yamamoto allylation of this substrate produced the desired isomer 29 with excellent selectivity (d.r. = 16:1). Thus, stereochemistry at C-8 did not significantly affect stereoselectivity in this allylation, and the catalyst chirality

⁽²⁶⁾ Other diastereomers (9S,11S and 9S,11R) were obtained in 14% and 4% isolated yield. The relative configuration of C-9 and C-11 was determined by NOE measurement. See ref 11 for details.

- (27) Nishikawa, T.; Shibuya, S.; Hosokawa, S.; Isobe, M. Synlett 1994, 485.

- (27) Nishikawa, T.; Shibuya, S.; Hosokawa, S.; Isobe, M. Synlett 1994, 485.
 (28) Myers, A. G.; Zheng, B.; Morassaghi, M. J. Org. Chem. 1997, 62, 7507.
 (29) Mapp, A. K.; Heathcook, C. H. J. Org. Chem. 1999, 64, 23.
 (30) Stille, J. K.; Groh, B. L. J Am. Chem. Soc. 1987, 109, 813.
 (31) (a) Buck, S. B.; Hardouin, C.; Ichikawa, S.; Soenen, D. R.; Gauss, G.-M.; Hwang, I.; Swingle, M. R.; Bonness, K. M.; Honkanen, R. E.; Boger, D. L. J. Am. Chem. Soc. 2003, 125, 15694. (b) Leopold, W. R.; Shillis, J. L.; Martine, D. M., Schertz, P. L. Lablacet, P. C. Current, P. C. Mertus, A. E.; Nelson, J. M.; Roberts, B. J.; Jackson, R. C. Cancer Res. 1984, 44, 1928. (c) Fry, D. W.; Besserer, J. A.; Boritzki, T. J. Cancer Res. 1984, 44, 3366. (d) Mamber, S. W.; Okasinski, W. G.; Pinter, C. D.; Tunac, J. B. J. Antibiot. 1986, 39, 1467
- (32) Gauss, C.-M.; Sheppeck, J. E., II; Narin, A. C.; Chamberlin, R. Bioorg. Med. Chem. 1997, 5, 1751.

⁽²⁴⁾ The diastereomeric ratio was determined based on the ¹H NMR analysis of the crude mixture of the aldol reaction. The diastereomers were not separable at this stage. The relative configuration of C-8 and C-9 was determined by NOE measurement on acetonide 6.

⁽²⁵⁾ For a beneficial effect of BINOL substitution on a catalytic asymmetric nitroaldol reaction, see: Shibasaki, M.; Sasai, H.; Arai, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 1236.

CN

Me

BnO

TMSO

^a Reagents and conditions: (a) Gd(OⁱPr)₃ (2 mol %), ligand **11** (4 mol %), TMSCN, EtCN, -65 °C, 95%, 86% ee; (b) AgF (5 mol %), (R)-ptol-BINAP (5 mol %), allyltrimethoxysilane, MeOH, -20 °C, 88% (d.r. = 16:1); (c) acryloyl chloride, Et₃N, CH₂Cl₂, 0 °C, 87%; (d) second generation Grubbs catalyst (2 mol %), CH₂Cl₂, reflux, 93%; (e) 3HF-Et₃N, THF, 50 °C, 82%; (f) DMP, H₂O (0.5 equiv), CH₂Cl₂, 94%.

Table 2. Additive Effect in Direct Catalytic Asymmetric Aldol Reaction of 31

entry	additive (mol %)	time (h)	d.r. (anti/syn)
1	none	25	2:1
2	LiOTf(10)	24	3:1
3	LiOTf(20)	4	4:1
4	LiOTf(30)	10	2.5:1
5	NaOTf(10)	15	1.5:1
6	KOTf(10)	24	2:1
7	LiClO ₄ (10)	34	2:1
8	$LiPF_{6}(10)$	34	2:1

determined the stereochemical outcome. This reaction was followed by ester formation with acryloyl chloride and ring closing metathesis catalyzed by the second generation Grubbs' ruthenium complex³³ to form α,β -unsaturated lactone **30**. The TIPS group was then removed, and the resultant primary alcohol was oxidized to the aldol precursor 31 by DMP.34 This oxidation, however, was tricky, and the yield of 31 was variable. Further investigations clarified that a small amount of water was essential for reproducible conversion. Thus, aldehyde 31 was obtained in 94% yield in the presence of 0.5 equiv of H₂O. A similar beneficial effect of water in DMP oxidation was reported by Schreiber et al.35

The (S)-LLB-catalyzed asymmetric aldol reaction of aldehyde 31 and alkynyl ketone 9 was then performed under the optimized conditions in natural fostriecin synthesis. Although the reaction proceeded under catalyst control in favor of the desired isomer **32**, the diastereoselectivity was only 2:1 (Table 2, entry 1).³⁶ In contrast to the case of natural fostriecin synthesis, the stereoselectivity of the catalyst did not match the 1,2-chirality transfer raised by the C-8 chiral tertiary alcohol in this case. To improve the selectivity, we intensively investigated the effect of additives (Table 2). Among the additive salts screened, 20

^a Reagents and conditions: (a) (S)-LLB (10 mol %), LiOTf (20 mol %), 9, THF, -20 °C; (b) 2,2-dimethoxypropane, 50 °C, 65% (for two steps, d.r. = 4:1); (c) Noyori's catalyst 5 (3.3 mol %), KOH (3 mol %), ⁱPrOH, 81%; (d) NIS, AgNO₃ (0.6 equiv), EtOH (10 equiv), acetone, 0 °C, 87%; (e) NBSH, NaHCO₃, MeOH, 58% (31% recovery); (f) 1 M HCl aq. MeOH, 73%; (g) TBSOTf, 2,6-lutidine, CH₂Cl₂, -78 °C; TESOTf, -78 °C to -40 °C, 89%; (h) 1 M HCl aq.-THF-CH₃CN (1:3:6), -10 °C, 53% (20% recovery); (i) PdCl₂(MeCN)₂ (50 mol %), 3, DMF, 40 °C, 85%; (j) ⁱPr₂NP(Oallyl)₂ (40), 1*H*-tetrazole, CH₂Cl₂, 0 °C; I₂, py-H₂O-THF (1:2: 7), -20 °C (k) Pd(PPh₃)₄ (100 mol %), PPh₃, formamide, THF; 48% HF aq.-H₂O-MeCN (1:2:20), py, 50% (4 steps).

mol % LiOTf gave the best results;37 the diastereomeric ratio was improved to 4:1 (entry 3). Other alkali metal triflates and other lithium counterions other than triflate gave almost the same diastereoselectivity as that in the absence of additives.

With the desired aldol 32 in hand, the next task was the construction of the C-11 stereocenter. Due to the instability of 32, it was directly transformed to acetonide 33 without column chromatographic purification. As might be expected, Novori reduction of 33 proceeded under catalyst-control irrespective of the configuration of C-8, giving product 34 with excellent selectivity (d.r. = >10:1, Scheme 6).³⁶ When the resulting propargyl alcohol 34 was subjected to the same iododesilylation conditions as the natural fostriecin synthesis (NIS and AgNO₃ in acetone), the desired iodoalkyne 35 was obtained in moderate yield (62%) with concomitant generation of an epimerized

⁽³³⁾ Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
(34) Other oxidants such as PDC, TPAP, and IBX did not promote the reaction.

Swern oxidation gave the product in 67% yield.

⁽³⁵⁾ Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549.
(36) The relative configurations between C-8, C-9, and C-11 were determined by NOE and/or NOESY measurements on the 33 and 34 derivative and later by X-ray crystallographic analysis of 37. See SI for details.

⁽³⁷⁾ It is proposed that the LLB-LiOTf oligomeric species is the actual asymmetric catalyst under these conditions. See: (a) Horiuchi, Y .: Gnanadesikan, V.; Ohshima, T.; Masu, H.; Katagiri, K.; Sei, Y.; Yamaguchi, K.; Shibasaki, M. Chem.-Eur. J. 2005, 11, 5195. (b) Gnanadesikan, V. Horiuchi, Y.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 7782.

Figure 3. ORTEP drawing of 37.

dioxane **36** (20%). Generation of Lewis acidic silyl species (TMSNO₂ or TMS-succinimide) during this reaction might cause the formation of **36**. Thus, Lewis acid mediated equilibration between the dioxolane and the dioxane, silicon trap of the tertiary alcohol to terminate this equilibrium, and epimerization at the propargylic position to the more stable isomer with the two substituents at the equatorial positions should produce **36**. To avoid the adverse effects of the Lewis acidic silyl species, we added EtOH as a scavenger. The yield of **35** then dramatically increased to 87%, with minimum generation of undesired **36** (2%).

cis-Reduction of the iodoalkyne **35** with NBSH, followed by deprotection in acidic media, gave triol **37** (Figure 3). X-ray crystallographic analysis of **37** unequivocally determined the stereochemistry of all the stereogenic centers. The two-step protection–deprotection sequence worked reasonably well as in the case of natural fostriecin synthesis, giving the coupling precursor **38**. The Stille coupling between **38** and **3** proceeded at 40 °C under ligandless conditions, and the triene was obtained in 85% yield. Careful temperature control was necessary for this Stille coupling reaction, because isomerization of the triene occurred gradually at 60 °C, while at room temperature the reaction was rather slow.

Finally, the phosphate moiety was added to the C-9 alcohol to complete the synthesis of 2. We used allyl-protected phosphoramidite 40 for this phosphorylation, according to Hatakeyama's fostriecin synthesis. The application of Hatakeyama's conditions using TBHP as an oxidizing reagent of the initially formed phosphite, however, produced a complex mixture of products. TLC analysis of the reaction revealed that decomposition occurred at the oxidation step. Thus, changing the oxidizing reagent to I_2 and performing the reaction at -20°C under careful TLC monitoring, the phosphorylation product was obtained in reasonable yield (80% based on TLC analysis). Deprotection of the phosphate and global desilylation were conducted under slightly modified conditions of the reported procedure.^{9e} These reactions should also be quenched in 4 h, otherwise significant decomposition occurs. After purification through a short pad reversed-phase silica gel column chromatography,³⁸ the synthesis of 8-epi-fostriecin was achieved.

Biological Assay. Inhibitory activities of okadaic acid (control), fostriecin (1), and 8-*epi*-fostriecin (2) against PP1 and PP2A were evaluated. Four kinds of assays were conducted in which the enzymatic activity was determined by hydrolysis of phosphorylated histone (assay A),³⁹ phosphorylated casein (assay

Table 3. IC₅₀ Values (in μ M) in Inhibition of PP2A and PP1^a

assay	inhibitor	PP2A	PP1
А	okadaic acid	0.0001	0.1
	fostriecin (1)	0.002	>100
	8-epi-fostriecin (2)	4	>100
В	okadaic acid	0.006	1
	fostriecin (1)	5	4
	8-epi-fostriecin (2)	40	>1000
С	okadaic acid	0.004	0.2
	fostriecin (1)	6	9
	8-epi-fostriecin (2)	770	>4000
D	okadaic acid	0.001	2
	fostriecin (1)	40	4
	8-epi-fostriecin (2)	6	510

^{*a*} Substrates of PPs are phosphorylated histone in assay A, phosphorylated casein in assay B, *p*-nitrophenyl phosphate in assay C, or commercial phosphorylated peptide or ProFluor Ser/Thr Phosphatase Assay Kit in assay D. Assays were performed at least three times.

B), *p*-nitrophenyl phosphate (assay C),⁴⁰ or commercial phosphorylated peptide (assay D)⁴¹ (Table 3). Although the IC₅₀ values of okadaic acid were similar in the four assay systems (IC₅₀ = 0.1–6 nM for PP2A and 0.1–2 μ M for PP1), those of 1 and 2 were highly dependent on the phosphorylated substrates. 1 exhibited excellent PP2A selective inhibitory activity in assay A, as previously reported (2 nM for PP2A and >100 μ M for PP1),^{3f} but almost no selectivity or even slight PP1-selectivity in assay B–D. 2 was a weaker PP inhibitor than 1 in assays A–C. Specifically, 2 did not demonstrate inhibitory activity in assay C using *p*-nitrophenyl phosphate as the substrate, which is more precisely a substrate analogue of tyrosine phosphatase. On the other hand, 2 inhibited PP2A more selectively and with higher potency than 1 in assay D.

Differences in the inhibitory activity and subtype selectivity between these three compounds are interesting from the viewpoint of protein-drug interactions and their inhibitory mechanisms. Although both okadaic acid and fostriecin are protein phosphatase inhibitors, the cellular responses caused by these compounds are different: okadaic acid has been reported to promote or suppress tumor formation depending on the duration of the drug application or cell type, while fostriecin is an antitumor agent. This contrasting outcome might be related to our observation that okadaic acid inhibited dephosphorylation of all four substrates examined with the IC50 values in the nanomolar range, while fostriecin's IC₅₀ values varied over 4 orders of magnitude depending on the substrate. These results also suggest that fostriecin might selectively interfere with specific intracellular signaling pathways depending on the phosphorylated substrate proteins. Based on the results in assays B, C, and D, 8-epi-fostriecin (2) appears to have an even higher substrate specificity with a higher PP2A selectivity than natural fostriecin (1). The difference between 1 and 2 should reflect the difference in their three-dimensional structures,⁴² and therefore interactions with the phosphatases. The stereochemistry at C-8 has a great influence on their biological activity, and this finding supports the proposed hypothesis that the methyl and hydroxyl groups at C-8 are important pharmacophores that

^{(38) 8-}epi-Fostriecin 2 is not very stable. It decomposes partially on reversedphase preparative TLC at 4 °C, and significantly on reversed-phase HPLC under buffered conditions at rt (eluent, MeCN/pH 6.8 phosphate buffer = 12:88).

^{(39) (}a) Honkanen, R. E.; Zwillwe, J.; Moore, R. E.; Daily, S. L.; Khatra, B. S.; Dukelow, M.; Boynton, A. L. J. Biol. Chem. **1990**, 265, 19401. (b) Huang, X.; Swingle, M. R.; Honkanen, R. E. Methods Enzymol. **2000**, 315, 579.

⁽⁴⁰⁾ Zwiller, J.; Ogasawara, E. M.; Nakamoto, S. S.; Boynton, A. L. Biochem. Biophys. Res. Commun. 1988, 155, 767.

⁽⁴¹⁾ The assay was performed using the commercially available ProFluor Ser/ Thr Phosphatase Assay Kit.

mimic the substrate threonine. Considering its high selectivity, both in terms of the substrates and the protein phosphatases subtypes, 8-*epi*-fostriecin is a unique biological tool. Further evaluation of the anticancer activity of 8-*epi*-fostriecin is ongoing.

Conclusions

We accomplished a catalytic enantioselective synthesis of fostriecin and 8-*epi*-fostriecin. All of the stereogenic centers of these compounds were constructed by combining catalytic enantioselective cyanosilylation of a ketone, catalytic asymmetric allylation, a direct catalytic asymmetric aldol reaction using an alkynyl ketone, and Noyori reduction, two of which were developed in our laboratories. Importantly, these key reactions proceeded under catalyst control. This strategy should facilitate the synthesis of the other stereosiomers of fostriecin. Four kinds of biological assays to evaluate the phosphatase inhibitory activity were performed. The results clarified that the inhibitory activities of fostriecin and 8-*epi*-fostriecin were substrate-dependent, and the stereochemistry at C-8 greatly affected the biological activity. Furthermore, in one assay, 8-*epi*-fostriecin was a more selective and more potent PP2A inhibitor than natural fostriecin. Therefore, 8-*epi*-fostriecin might be useful as a unique biological tool.

Acknowledgment. Financial support was provided by a Grant-in-Aid for Specially Promoted Research of MEXT. We gratefully acknowledge Professor Imanishi for providing us the NMR charts of the synthetic intermediates, Mr. M. Waki for technical support and useful advice about biological assay, Professor S. Kobayashi and Mr. H. Kiyohara for X-ray crystallographic analysis, and Dr. T. Ohshima and Mr. S. Nakamura for kind advice about theoretical calculations.

Supporting Information Available: Full experimental details including structure assignments and results of biological assays are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

JA0562043

⁽⁴²⁾ Preliminary conformation search by molecular mechanics calculations using CONFLEX5 [(a) Goto, H.; Osawa, E. J. Am. Chem. Soc. 1989, 111, 8950.
(b) Goto, H.; Osawa, E. J. Chem. Soc., Perkin Trans. 2 1993, 187. (c) Goto, H.; Osawa, E. J. Chem. Soc., Perkin Trans. 2 1993, 1647. (e) Osawa, E.; Goto, H.; Hata, T.; Deretey, E. THEOCHEM 1993, 1993, 1647. (e) Osawa, E.; Goto, H.; Hata, T.; Deretey, E. THEOCHEM 1997, 399, 229.] indicated that natural fostriecin is conformationally more flexible than 8-epi-fostriecin. Among about 8000 conformers generated in the MMFF94S force field using this program, more than 90% of them were distributed in the 2 kcal/mol range from the most stable conformer in the case of 8-epi-fostriecin. In the case of natural fostriecin, however, ca. 75% of conformers existed in the same range.