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The glycoside-to-carbocycle transformation[1] provides an
attractive route for the synthesis of functionalized carbocycle
derivatives from readily available sugar precursors. Usually
these transformations rely on the cleavage of the glycosidic
acetal functionality to liberate the reactive carbonyl group
that undergoes carbocyclization.[1b] The disadvantage of these
approaches is the loss of the aglycon. Furthermore it is
impossible to apply this method to sugars bearing unusual
aglycons, particularly C-glycosides, where no acetal function-
ality is present. Herein, we report the first direct trans-
formation of hex-5-eno S-, Se-, and C-glycosides into carbo-
cycles with retention of the aglycon.

We reported that hex-5-enopyranosides such as 1 undergo
reductive rearrangement with triisobutylaluminum (TIBAL)
to afford highly substituted cyclohexane derivatives such as
2,[2] where both the aglycon moiety and anomeric configu-
ration are retained[3] (Scheme 1). The key step in this trans-
formation is the endo cleavage of the glycosidic bond to give a
stabilized carbocationic intermediate A, which then recyclizes
and undergoes reduction to afford the observed major
product 2.
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Scheme 1. The key step of the TIBAL-promoted rearrangement: endo-
glycosidic cleavage (the detailed mechanism of this process is not known).
Bn�benzyl.

We assumed that it should be possible to replace the
methoxy group by other electron-donating groups that would
stabilize the analogous carbocationic intermediate B and
therefore promote endo cleavage (Scheme 2). However, when
the known C-glucoside 3[4] was treated with five equivalents of
TIBAL at 50 8C, we failed to observe the desired carbocycle

In conclusion, this method represents a novel, efficient and
selective synthesis of (Z)-vinyl bromides through a simple
addition.[12] The ability to obtain both trans- and cis-haloal-
kylation of alkynes is synthetically useful as well as mecha-
nistically intriguing. Current work is focused on further
elucidation of the mechanism and expansion of the scope of
the reaction.
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Scheme 2. Putative mechanism for the general sugar-to-carbocycle rear-
rangement promoted by TIBAL. EDG� electron-donating group.

and instead isolated the known open-chain product 4[4] in
82 % yield (Scheme 3, the physical and spectroscopic data of
the rearrangement products are given in the Supporting
Information). Product 4 is the result of an overall reductive
cleavage of the endocyclic C5ÿO bond, a reaction which has
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Scheme 3. Formation of 4 by a postulated hydroalumination ± elimination
mechanism.

already been described for simple enol ethers.[5] An hydro-
alumination ± elimination mechanism, as shown in Scheme 3,
may explain this process.

In light of this observation we proposed that only stronger
stabilization of the carbenium intermediate B (Scheme 2)
would kinetically favor endo cleavage and subsequent rear-
rangement over competitive hydroalumination ± elimination.
Indeed, reaction of the C-phenyl glycoside 5[6] resulted in the
desired cyclohexane 6 (35 %) along with the open-chain by-
product 7 (35 %; Scheme 4). The increased electron-donating
ability of the para-methoxyphenyl group in 8[7] further biased
the reaction towards rearrangement, and the desired carbo-
cycles 9 and 10 were isolated in 85 % yield as a 4:1 mixture
along with only 10 % of the open-chain product 11. Finally,
reaction of the trimethoxyphenyl derivative 12[8] afforded
exclusively the carbocyclization products 13 and 14 in 95 %
yield as an inseparable mixture (3:2); no traces of the open-
chain product were detected.

In the case of the C-vinyl glycoside 15,[9] no six-membered
ring was observed as a product of carbocyclization. Instead
Claisen rearrangement catalyzed by TIBAL[10] afforded cyclo-
octene 16 in 98 % yield (Scheme 5). Thiem and Wershkun
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Scheme 5. TIBAL-catalyzed Claisen rearrangement of the C-vinyl glyco-
side 15.
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Scheme 4. TIBAL-promoted rearrangement of 5, 8, and 12. Increasing electron-donating ability of the substituent at C1 favors carbocyclization over
reductive cleavage of the endocyclic C5ÿO bond.



COMMUNICATIONS

364 � WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000 0570-0833/00/3902-0364 $ 17.50+.50/0 Angew. Chem. Int. Ed. 2000, 39, No. 2

applied the thermal variant of this reaction to sugars under
more forcing conditions.[11]

The reaction of the thiophenyl substrate 17[12] with five
equivalents of TIBAL at 50 8C also gave the desired carbo-
cycle 18 in 81 % yield (Scheme 6). In contrast, the Ferrier-II[13]

reaction has been applied[14] to the thiophenyl derivative 19 to
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Scheme 6. Application of the TIBAL-promoted rearrangement to a
thiophenyl glucoside.

give the hydroxy ketone 20 (i.e., with loss of the thiophenyl
moiety, Scheme 7). However, in our case the sulfur atom
stabilizes the carbenium intermediate (B, EDG� SPh in
Scheme 2) to afford the cyclohexane with retention of the
thiophenyl functionality, as predicted. This example illustrates
the fundamental difference between the TIBAL-promoted
rearrangement and the Ferrier-II reaction.
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Scheme 7. Application of the Ferrier-II rearrangement to a thiophenyl
glucoside.[14] PMB� para-methoxybenzyl; R� substituted monosacchar-
ide.

Similarly, the same conditions were applied to the seleno-
phenyl glucoside 21,[15] which was converted into the cyclo-
hexane 22 (84 %; Scheme 8).
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Scheme 8. Application of the TIBAL-promoted rearrangement to a
selenophenyl glucoside.

In conclusion we have demonstrated that the
TIBAL-promoted rearrangement of unsaturated
glycosides (5-hex-enopyranosides) into carbocycles
is generally applicable to carbohydrates, provided
the aglycon is sufficiently electron donating in
nature (O-, S-, Se-, and C-glycosides). We are
currently exploring further suitable systems known
to stabilize cations and also the wider application of
this rearrangement in non-carbohydrate systems.

Experimental Section

TIBAL (0.9 mL, 0.9 mmol, 1m in toluene) was added to a
stirred solution of 12 (100 mg, 0.17 mmol) in anhydrous
toluene (1 mL) at room temperature under argon. The reaction
mixture was heated at 50 8C for 30 min, when TLC (EtOAc/

cyclohexane 3/7) indicated no starting material (Rf� 0.5) and a major
product (Rf� 0.3). The mixture was cooled to room temperature, and water
(2 mL) was added. The mixture was extracted with EtOAc (3� 10 mL) and
washed with water (10 mL). Combined extracts were dried (MgSO4) and
filtered, and the solvent was removed in vacuo. The residue was purified by
flash chromatography (eluent, EtOAc/cyclohexane 3/7) to afford an
inseparable mixture of the two isomers 13 and 14 as an oil (95 mg, 95%).
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Scheme 9. Preparation of unsaturated C-aryl glucosides. Reagents: a) MeONa, MeOH;
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