RSC Advances

View Article Online

View Journal | View Issue

PAPER

Cite this: RSC Adv., 2015, 5, 16125

Diastereoselective synthesis of functionalised carbazoles *via* a sequential Diels–Alder/ene reaction strategy[†]

Joseph Cowell, Matokah Abualnaja, Stephanie Morton,‡ Ruth Linder, Faye Buckingham, Paul G. Waddell, Michael R. Probert and Michael J. Hall*

An operationally simple one-pot, three-component, diastereoselective synthesis of saturated carbazoles and related pyridazino[3,4-b]indoles, based on two sequential intermolecular pericyclic reactions, is described. The reaction sequence involves an intermolecular Diels–Alder (D–A) reaction of a 3-vinyl-1*H*-indole, containing an electron withdrawing N-protecting group, with a suitable dienophile. Due to the electron withdrawing nature of the N-protecting group the resultant D–A cycloadducts are sufficiently stabilised to allow for a subsequent *in situ* diastereospecific intermolecular ene reaction to take place with an added enophile, generating functionalised carbazoles with relative stereocontrol of up to four stereocentres.

Received 9th January 2015 Accepted 19th January 2015 DOI: 10.1039/c5ra00499c

www.rsc.org/advances

Introduction

Carbazole scaffolds are common in many bioactive compounds (*e.g.* staurosporine)^{1,2} with the indolocarbazole scaffold in particular being found in a number of molecules with potential therapeutic application, several of which have entered clinical trials for the treatment of cancer (midostaurin (PKC412), lestaurtinib (CEP-701), CEP-751, CEP-1347, edotecarin and becatecarin).^{3,4} Therefore there is a growing interest in the development of new synthetic routes to functionalised carbozoles.⁵⁻⁹ Herein we describe our progress in the development of a diastereoselective one-pot, three-component approach for the synthesis of functionalised, partially saturated carbazoles and pyridazino[3,4-*b*]indoles.

Results and discussion

The vinyl-indole synthesis of carbazoles, originally developed by Nolan, Pindur, Porter and others, involves the D–A cycloaddition of a 2- or 3-vinyl-1*H*-indole (typically either unprotected or containing an electron donating N-protecting group) with a dienophile.^{10–22} The resulting D–A cycloadducts are often unstable and are therefore typically oxidised or undergo an *in situ* 1,3-H shift to rearomatise the indole. We postulated that if the intermediate D–A cycloadduct could instead be intercepted *via* an alternative intermolecular reaction this would provide a new multi-component route to functionalised carbazoles. Following on from our recent work on the D–A reactions of vinyl-imidazoles,^{23,24} we decided to investigate if the D–A cycloadducts of 3-vinyl-1*H*-indoles could be reacted *in situ* with enophiles to give a new stereoselective three-component, intermolecular D–A/intermolecular ene approach to the carbazole or pyridazino[3,4-*b*]indole scaffold (Fig. 1).^{25–29}

We decided to focus our investigation on the D-A reactions of 3-vinyl-1*H*-indoles containing an electron withdrawing

Fig. 1 Typical products of the D–A reaction between 3-vinyl-1*H*-indoles and maleimides verses our proposed trapping of the D–A cycloadduct *via* an intermolecular ene reaction.

School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. E-mail: michael.hall@newcastle.ac.uk

[†] Electronic supplementary information (ESI) available: ¹H and ¹³C spectra for all new compounds, crystal data and structure refinement tables for compounds 2a, 2b, 2d, 3l, 3r, 3u and 3v. The crystallographic coordinates of 2a, 2b, 2d, 3l, 3r, 3u and 3v have been deposited with the Cambridge Crystallographic Data Centre, deposition nos. CCDC 952356, 1040305, 1040306, 952229, 1040307, 1040308 and 952357. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ra00499c

[‡] Authors contributed equally.

N-protecting group as we postulated that this would stabilise the desired D–A cycloadducts sufficiently to allow either isolation or further *in situ* chemistry.^{19,20} Despite the extensive body of work that has been published on the vinyl-indole synthesis of carbazoles,^{11–18} the incorporation of electron withdrawing Nprotecting groups has been less well studied with the phenylsulfonyl group being the most common.^{25,30–33} We therefore decide to focus our initial investigation on tosyl protected systems and embarked on the synthesis of two *N*tosyl protected 3-alkenyl-indoles through reaction of 1*H*indole-3-carbaldehyde with tosyl chloride, followed by a Wittig reaction with methylenetriphenyl- λ^5 -phosphane or ethyl 4-(triphenyl- λ^5 -phosphanylidene)butanoate to give **1a** and **1b** respectively (Scheme 1).

When we reacted 1-tosyl-3-vinyl-1*H*-indole **1a** with 1-methyl-1*H*-pyrrole-2,5-dione in DCM at reflux for 48 hours, we were pleased to isolate, in a 74% yield, the *N*-tosyl protected *endo*-cycloadduct **2a**, which showed little propensity towards spontaneous rearomatisation or oxidation. Whilst 4-phenyl-1,2,4-triazole-3,5-dione (PTAD) reacted rapidly with **1a** at -78 °C in DCM to give the stable D-A cycloadduct **2b** in 88% yield (Table 1).

Attempts to react the more sterically demanding ethyl (Z)-5-(1-tosyl-1H-indol-3-yl)pent-4-enoate **1b** with 1H-pyrrole-2,5diones under thermal conditions proved unsuccessful with no D-A reaction being observed after prolonged heating in toluene,

DCM or iso-propanol. The addition of 20 mol% of 1,3-bis(3,5bis(trifluoromethyl)phenyl)thiourea³⁴ also showed no improvement in the D-A reaction, whilst the addition of one equivalent of TiCl₄ at -78 °C for 10 minutes resulted in an efficient D-A reaction but was accompanied by the unwanted rearomatisation of the indole. Addition of one equivalent of AlCl₃ or Me₂AlCl in DCM at r.t., followed by heating to reflux gave low yields of the desired product 2c along with recovered starting material. Further optimisation resulted in a final protocol whereby 2 equivalents of Me2AlCl were added to a DCM solution of 1b and the requisite 1*H*-pyrrole-2,5-dione at -78 °C, followed by warming to reflux in DCM for 48 hours to give N-tosyl protected D-A cycloadducts 2(c-e) in good yields (Table 2). The structures of 2(a), 2(b) and 2(d) were confirmed by single crystal X-ray analysis and are consistent with an endo-selective D-A reaction (see ESI[†]).

Next we examined the reactivity of N-tosyl protected endocycloadducts 2(a-e) towards enophiles. Reaction of 2a with nitrosobenzene proceeded well at r.t. in 18 hours to give the ene adduct 3a in 68% isolated vield. We therefore reacted D-A adducts 2(a-e) with nitrosobenzene and 1-methyl-2nitrosobenzene at r.t. in DCM, giving high yields of the corresponding ene adducts 3(a, b and e-h). The ene reactions of 2(a-c) also proceeded smoothly with PTAD at 0 °C to give 3(c, c)i and j). The reaction of 2a with 2,3,4,5,6-pentafluorobenzaldehyde under thermal conditions was unsuccessful. However addition of one equivalent of Me₂AlCl at -78 °C to a mixture of 2a and 2,3,4,5,6-pentafluorobenzaldehyde resulted in formation of the ene cycloadduct 3d as a 6:1 mixture of diastereomers, epimeric at the exo-cyclic hydroxyl position³⁵ (Table 3).

Since both the D–A and ene reactions are performed in DCM we then decided to examine the potential for reaction telescoping by attempting a D–A/ene reaction sequence under "domino" conditions.³⁶ 1-Tosyl-3-vinyl-1*H*-indole **1a**, 1-methyl-

^a Isolated yields. ^b Structure confirmed by single crystal X-ray analysis.

 Table 2
 D-A reactions of ethyl (Z)-5-(1-tosyl-1H-indol-3-yl)pent-4-enoate 1b

	Starting material	Dienophile	Reaction conditions	\mathbf{R}'	Х	Yield ^a	Product
1	1b	o <u> </u>	2 eq. Me ₂ AlCl, -78 °C 30 min, then 40 °C 48 h	Ме	СН	85%	2 c
2	1b	o ₹ N D D D D	2 eq. Me ₂ AlCl, $-78\ ^{\circ}\mathrm{C}$ 30 min, then 40 $^{\circ}\mathrm{C}$ 48 h	н	СН	64%	$2\mathbf{d}^b$
3	1b		2 eq. Me ₂ AlCl, $-78\ ^{\circ}C$ 30 min, then 40 $^{\circ}C$ 48 h	Ph	СН	71%	2e

^{*a*} Isolated yields. ^{*b*} Structure confirmed by single crystal X-ray analysis.

1*H*-pyrrole-2,5-dione and nitrosobenzene were stirred together for 5 days at r.t. in DCM, until **1a** had been consumed by TLC. Examination of the crude reaction mixture showed the formation of a number of by-products (including a rearomatised isomer of D–A cycloadduct **2a**) but the desired domino D–A/ene product **3a** could be isolated as a single diastereomer in a 40% yield.

To improve both the yield and reaction flexibility whilst maintaining operational simplicity we next examined a one-pot, sequential addition approach. 1-Tosyl-3-vinyl-1H-indole 1a and 5-methoxy-1-tosyl-3-vinyl-1H-indole 1c (synthesised as previvia tosyl protection of 5-methoxy-1H-indole-3ously carbaldehyde followed by a Wittig reaction with methylenetriphenyl- λ^5 -phosphane) were reacted with 1-methyl-1*H*-pyrrole-2,5-dione or 1H-pyrrole-2,5-dione in refluxing DCM for 48 hours to give the corresponding D-A cycloadducts. Nitrosobenzene, 1-methyl-2-nitrosobenzene, 2,3,4,5,6-pentafluorobenzaldehyde with one equivalent of Me₂AlCl, or PTAD, were then added directly to the reaction vessels containing the D-A cycloadducts and the ene reactions conducted were under the previously optimised conditions, depending on the enophile. This one-pot three-component approach gave the corresponding D-A/ene products 3(a-d and k-q) in excellent (70-89%) yields with no purification or work-up of the intermediate D-A cycloadducts required (Table 4).

We therefore continued with this approach, reacting **1a** and **1c** with PTAD as the dienophile followed by *in situ* addition of enophiles (nitrosobenzene, 1-methyl-2-nitrosobenzene, or PTAD) again giving the D–A/ene products **3(e, f, r and s)** cleanly and in good yields (Table 4).

We then decided to examine the range of electron withdrawing N-protecting groups tolerated in our one-pot D-A/ene reaction sequence with a view towards flexibility in the deprotection of the products. Boc protection of 1*H*-indole-3carbaldehyde proceeded in high yield (triethylamine, Boc anhydride, DCM, 18 h, r.t.), however attempts to synthesise *tert*butyl 3-vinyl-1*H*-indole-1-carboxylate, by reaction of *tert*-butyl 3-formyl-1*H*-indole-1-carboxylate with methylenetriphenyl- λ^5 phosphane, gave only a 13% yield of the desired product with the major products arising from loss of the Boc group. We therefore focused our efforts on use of the DMAS (dimethylaminosulfonyl) and Cbz protecting groups, and synthesised *N*,*N*dimethyl-3-vinyl-1*H*-indole-1-sulfonamide **1d** (DMAS), benzyl-3vinyl-1*H*-indole-1-carboxylate **1e** and benzyl-5-methoxy-3-vinyl-1H-indole-1-carboxylate **1f** (Cbz) *via* appropriate protection of 1*H*-indole-3-carbaldehyde followed by reaction with methylenetriphenyl- λ^5 -phosphane as previously.

N,N-Dimethyl-3-vinyl-1H-indole-1-sulfonamide 1d was reacted in DCM with 1H-pyrrole-2,5-dione, 1-methyl-1H-pyrrole-2,5dione, 1-phenyl-1H-pyrrole-2,5-dione and PTAD. After 48 hours at 40 °C for the maleimides, or 1 hour at -78 °C for PTAD, the D-A reactions were complete and in situ ene reactions with nitrosobenzene, 1-methyl-2-nitrosobenzene, 1,3-dibromo-2nitrosobenzene²³ or 2,3,4,5,6-pentafluorobenzaldehyde (catalysed by one equivalent of Me₂AlCl) were carried out to give 69-77% isolated yields of the desired three-component D-A/ene products 3(t-x) (Table 4). Cbz protected 3-vinyl-1H-indoles 1(e and f) also underwent D-A reactions with 1H-pyrrole-2,5dione, 1-methyl-1H-pyrrole-2,5-dione or PTAD followed by in situ ene reactions with nitrosobenzene, 1-methyl-2nitrosobenzene or PTAD to give 54-82% yields of 3(y-ll) (Table 4). The Cbz protected products 3(y-ll) were isolable by silica gel chromatography but proved less stable than their DMAS or Tos protected counterparts. NMR investigations of these compounds showed evidence of decomposition in solution at r.t., however they could be stored as solids under an

Table 3 Ene reactions of *N*-tosyl protected cycloadducts 2(a-e)

			\ <i> </i>	R					
			N H Ts	-x'```f N	O enophile DCM `R'	X, X, O Ts			
			2(a	·e)		3(a-j)			
	Starting material	R	R′	х	Enophile	Reaction conditions	R″	Yield ^a	Product
1	2a	Н	Ме	СН	O=N N	r.t., 18 h	N(Ph)OH	68%	3a
2	2a	Н	Ме	СН	O=N N	r.t., 18 h	N(o-Tol)OH	72%	3b
3	2a	Н	Ме	СН		0 °C, 2.5 h	Ph O N N N N N N N	73%	3c
4	2a	Н	Ме	СН		1 eq. Me ₂ AlCl, –78 °C, 15 min r.t., 18 h	CH(C ₆ F ₅)OH	82%	3 d ^b
5	2b	Н	Ph	Ν	O=N N	r.t., 18 h	N(Ph)OH	74%	3e
6	2b	н	Ph	N	O=N N	r.t., 18 h	N(o-Tol)OH	72%	3f
7	2c	(CH ₂) ₂ CO ₂ Et	Ме	СН	O=N N	r.t., 24 h	N(o-Tol)OH	59%	3g
8	2e	(CH ₂) ₂ CO ₂ Et	Ph	СН	O = N	r.t., 24 h	N(o-Tol)OH	58%	3h
9	2c	(CH ₂) ₂ CO ₂ Et	Ме	СН		0 °C, 6 h		56%	3i
10	2d	(CH ₂) ₂ CO ₂ Et	Н	СН	Ph N=N N=N	0 °C, 6 h	Ph O N N N N N N N	56%	3ј

R"

^a Isolated yields. ^b Isolated as a 6 : 1 mixture of diastereomers.

atmosphere of nitrogen at -20 °C for months at a time. Interestingly the ene reactions of 2,3,4,5,6-pentafluorobenzaldehyde with D-A cycloadducts 3(d, m, p and v) gave a mixture of diastereomers at the exo-cyclic hydroxyl group, with ratios from 5:1 to >25 : 1. The relative stereochemistry of 3v was confirmed through the solution of a single crystal X-ray structure (see ESI⁺) and is consistent with an endo-selective ene reaction, providing some support for an ene mechanism in this reaction rather than a nucleophilic attack of the D-A cycloadducts to the carbonyl carbon of the aldehyde in the manner of an vinylogous enamine.37

Finally we investigated the deprotection of our D-A/ene reaction products. Tosyl and DMAS protected compounds 3(a-x) proved intransient to a range of basic (NaOH, KOH or KOEt in EtOH, MeOH or H₂O with Bu₄NBr) and reducing (Mg, Mg/Hg or Na/Hg) deprotection conditions. We therefore focused on the deprotection of Cbz protected compounds 3(y-ll). Initial attempts at Cbz removal with H₂ and Pd/C proved unsuccessful. Atmospheric pressure hydrogenation with Adam's catalyst in either MeOH and EtOH resulted in the removal of the Cbz group from 3z, however unexpected

	Starting Material	Р	R‴	R′	Х	Enophile	R″	Reaction conditions	Product	Yield ^a
1	1a	Tos	Н	Ме	СН	O N	-N(Ph)OH	(i) 40 °C, 48 h, (ii) r.t., 18 h	3a	71%
2	1a	Tos	Н	Ме	СН	O=N	-N(o-Tol)OH	(i) 40 °C, 48 h, (ii) r.t., 18 h	3b	71%
3	1a	Tos	Н	Ме	СН	Ph ○→ N=N		(i) 40 °C, 48 h, (ii) 0 °C, 4 h	3c	76%
4	1a	Tos	н	Ме	СН	$F \to F$ $F \to F$ $F \to F$	-CH(C ₆ F ₅)OH	(i) 40 °C, 48 h, (ii) Me₂AlCl, −78 °C to r.t., 18 h	3d	72% ^b
5	1a	Tos	н	Ph	N	O=N	-N(Ph)OH	(i) –78 °C, 4 h, (ii) r.t., 24 h	3e	66%
6	1a	Tos	Н	Ph	Ν	O=N	-N(o-Tol)OH	(i) –78 °C, 4 h, (ii) r.t., 24 h	3f	66%
7	1a	Tos	Н	н	СН	O N	-N(Ph)OH	(i) 40 °C, 48 h, (ii) r.t., 4 h	3k	89%
8	1a	Tos	Н	н	СН	O=N	-N(<i>o</i> -Tol)OH	(i) 40 °C, 48 h, (ii) r.t., 4 h	31	82% ^c
9	1a	Tos	н	Н	СН	F = 0 $F = F$ $F = F$	-CH(C ₆ F ₅)OH	(i) 40 °C, 48 h, (ii) Me ₂ AlCl, 0 °C to r.t., 18 h	3m	71% ^d
10	1a	Tos	Н	н	СН	Ph ○ N=N	Ph O N N-NH	(i) 40 °C, 48 h, (ii) 0 °C, 4 h	3n	75%
11	1c	Tos	ОМе	Н	СН	O N	-N(o-Tol)OH	(i) 40 °C, 48 h, (ii) r.t., 24 h	30	76%
12	1c	Tos	ОМе	Ме	СН	F = 0 $F = F$ $F = F$	–CH(C ₆ F ₅)OH	(i) 40 °C, 48 h, (ii) Me₂AlCl, −78 °C, 15 min then r.t., 18 h	3р	70% ^e
13	1c	Tos	ОМе	н	СН	Ph ○ N=N		(i) 40 °C, 48 h, (ii) 0 °C, 4 h	3q	72%

	Starting Material	Р	R‴	R′	Х	Enophile	R″	Reaction conditions	Product	Yield ^a
14	1 a	Tos	Н	Ph	N	Ph ○≺ ^N ≻O N=N	Ph O⋞Ń _≻ O _{"?č} N−NH	(i) –78 °C, 4 h, (ii) 0 °C, 4 h	3r	65% ^c
15	1c	Tos	ОМе	Ph	N	N N	-N(o-Tol)OH	(i) –78 °C then r.t. 23 h, (ii) r.t., 23 h	3s	72%
16	1d	DMAS	Н	Ме	СН	O N N	-N(o-Tol)OH	(i) 40 °C, 48 h, (ii) r.t., 3 h	3t	74%
17	1d	DMAS	Н	Ph	СН	Br O N Br	-N(2,4- (Br) ₂ C ₆ H ₄)- OH	(i) 40 °C, 48 h, (ii) r.t., 18 h	3u	69% ^c
18	1d	DMAS	Н	Ме	СН	$F \to F$ $F \to F$ $F \to F$	-CH(C ₆ F ₅)OH	(i) 40 °C, 48 h, (ii) Me ₂ AlCl, –78 °C, 1 h	3v	77% ^{c,f}
19	1d	DMAS	Н	Ph	N	O=N	-N(o-Tol)OH	(i) –78 °C, 1 h, (ii) r.t., 4 h	3w	76%
20	1d	DMAS	Н	Н	СН	O=N	-N(<i>o</i> -Tol)OH	(i) 40 °C, 48 h, (ii) r.t., 3 h	3x	77%
21	1e	Cbz	Н	Me	СН	O = N	-N(Ph)OH	(i) 40 °C, 24 h, (ii) r.t., 18 h	Зу	74%
22	1e	Cbz	Н	Ме	СН	O = N	-N(o-Tol)OH	(i) 40 °C, 24 h, (ii) r.t., 18 h	3z	78%
23	1e	Cbz	Н	Ме	СН	Ph ○ N=N	Ph O N N-NH	(i) 40 °C, 24 h, (ii) 0 °C, 1 h then r.t., 18 h	3aa	54%
24	1e	Cbz	Н	Н	СН	O = N	-N(Ph)OH	(i) 40 °C, 24 h, (ii) r.t., 18 h	3bb	70%
25	1e	Cbz	Н	н	СН	O=N	-N(<i>o</i> -Tol)OH	(i) 40 °C, 24 h, (ii) r.t., 4 h	300	83%
26	1e	Cbz	Н	н	СН	Ph N=N N=N	Ph O N N-NH	(i) 40 °C, 24 h, (ii) 0 °C, 1 h	3dd	58%

	Starting Material	Р	R‴	R′	х	Enophile	R″	Reaction conditions	Product	Yield ^a
27	1e	Cbz	Н	Ph	N	O=N N	–N(Ph)OH	(i) –78 °C, 5 h, (ii) r.t., 3 h	3ee	72%
28	1e	Cbz	Н	Ph	N	O N N	-N(o-Tol)OH	(i) –78 °C, 5 h, (ii) r.t., 18 h	3ff	68%
29	1f	Cbz	OMe	Ме	СН	O=N	-N(Ph)OH	(i) 40 °C, 18 h, (ii) r.t., 1.5 h	3gg	73%
30	1f	Cbz	OMe	Ме	СН	O=N	-N(o-Tol)OH	(i) 40 °C, 18 h, (ii) r.t., 3 h	3hh	74%
31	1f	Cbz	OMe	Н	СН	O=N	-N(Ph)OH	(i) 40 °C, 18 h, (ii) r.t., 2.5 h	3ii	79%
32	1f	Cbz	OMe	Н	СН	O=N	-N(o-Tol)OH	(i) 40 °C, 18 h, (ii) r.t., 3.5 h	3jj	76%
33	1f	Cbz	ОМе	Ph	N	O=N	-N(Ph)OH	(i) –78 °C, 1.5 h, (ii) r.t., 20 h	3kk	78%
34	1f	Cbz	OMe	Ph	N	O N N	-N(o-Tol)OH	(i) –78 °C, 1.5 h, (ii) r.t., 24 h	311	82%

^{*a*} Isolated yields. ^{*b*} 5:1 endo: exo. ^{*c*} Structure confirmed by single crystal X-ray analysis. ^{*d*} 25:1 endo: exo. ^{*e*} 10:1 endo: exo. ^{*f*} Only one diastereomer observed.

nucleophilic substitutions of the hydroxy(aryl)amino group by MeOH or EtOH also occurred to give **4a** and **4b** respectively. This gave the first indication that the removal of the electronically stabilising N-protecting group perhaps unsurprisingly lowers the activation energy barrier towards substitution chemistry at the indolylic position.³⁸⁻⁴⁰ Replacement of the alcoholic solvent with THF resulted in a cleaner deprotection of Cbz protected indoles **3(y-ll)** to give **4(c-p)** in 38–91% yields. However the products **4(c-p)** showed some evidence of decomposition in CDCl₃ after a few hours at r.t., with the appearance of new peaks in the ¹H NMR spectra. Therefore NMR analysis of **4(c-p)** was carried out in either d₂-DCM or d₆-DMSO (depending on solubility) in which decomposition was slowed, although the appearance of minor peaks in the ¹H NMR could still be observed over time. The deprotection of indoles 3(y-ll) with H₂ and Adam's catalyst in THF has allowed us to successfully demonstrate a one-pot, three-component approach to our target library of deprotected partially saturated carbazoles and pyridazino[3,4-*b*]indoles, which will be the focus of future investigations (Table 5).

Conclusions

In conclusion, we have developed a practically simple three-component approach to Tos, DMAS and Cbz protected partially saturated carbazoles and pyridazino[3,4-*b*]-indoles, based on a one-pot D–A/ene reaction, including the examination of a deprotection strategy of the Cbz

Yield^a

-								
1	3z	Ме	CH	-N(o-Tol)OH	Н	MeOH	4a	60%
2	3z	Me	СН	-N(o-Tol)OH	Н	EtOH	4b	24%
3	3 y	Me	CH	-N(Ph)OH	Н	THF	4 c	75%
4	3z	Ме	CH	-N(o-Tol)OH	Н	THF	4d	87%
				Ph				
-	200	Мо	CH	0 N 0	ы	THE	40	0104
5	544	Me	Сп	N-NH	п	ПГ	40	91%0
				N.				
6	3bb	Н	CH	-N(Ph)OH	Н	THF	4 f	41%
7	3cc	Н	CH	-N(o-Tol)OH	Н	THF	4g	70%
				Ph				
	. 1 1			0 _₹ N €0			.1	5 40V
8	300	н	СН	"N–NH	н	THF	4h	64%
				×2.				
9	3ee	Ph	Ν	-N(Ph)OH	Н	THF	4i	65%
10	3ff	Ph	Ν	-N(o-Tol)OH	Н	THF	4j	44%
11	3gg	Me	CH	-N(Ph)OH	OMe	THF	4k	70%
12	3hh	Me	CH	-N(o-Tol)OH	OMe	THF	41	70%
13	3ii	Н	CH	-N(Ph)OH	OMe	THF	4m	60%
14	3jj	Н	CH	-N(o-Tol)OH	OMe	THF	4 n	85%
15	3kk	Ph	Ν	-N(Ph)OH	OMe	THF	40	38%
16	311	Ph	Ν	-N(o-Tol)OH	OMe	THF	4p	61%
^a Isolat	ad vielde							
150140	la yielas.							

group. Current work is looking into controlling the reactivity and biological activity of the final products as well as investigating enantioselective D–A/ene approaches for molecules of this type.

Experimental

3-Vinyl-1H-indole

In a Schlenk flask, methyltriphenylphosphonium iodide (2.14 g, 5.3 mmol) was dissolved in dry THF (13 mL). The solution was cooled to -78 °C and "butyllithium (2.9 mL, 4.6 mmol) was added over 10 minutes. The yellow solution was warmed to 0 °C and was left to stir for 1 hour before being cooled to -78 °C. In a separate Schlenk flask, 1*H*-indole-3-carboxylate (0.67 g, 4.6 mmol) was dissolved in THF (7 mL) and to the solution sodium bis(trimethylsilyl)amide (2.3 mL, 4.6 mmol) was added. This solution was transferred into the first Schlenk flask and the red solution was allowed to stir at room temperature for 1 hour. The reaction was poured into water (30 mL) and extracted with ethyl acetate (2 × 20 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent removed under pressure to leave the crude product as yellow oil. The product was purified using column chromatography (petrol (40/60)–diethyl

ether 7:3, column diameter = 4 cm, silica = 20 cm) to give 3-vinyl-1*H*-indole (0.636 g, 4.4 mmol, 95%) as a yellow powder.

Mp: 78.4–80.7 °C; $R_{\rm f}$: 0.76 (Pet(40/60)–EA, 1 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 8.02 (1H, br s), 7.85–7.80 (1H, m), 7.32–7.28 (1H, m), 7.18 (1H, s), 7.18–7.09 (2H, m), 6.83 (1H, ddd, J = 17.7, 11.2, 0.5 Hz), 5.65 (1H, dd, J = 17.7, 1.5 Hz), 5.11 (1H, dd, J = 11.2, 1.5 Hz); ¹³C NMR (101 MHz, CDCl₃): δ 136.8, 129.5, 125.7, 123.6, 122.6, 120.4, 120.2, 115.9, 111.4, 110.9; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3660, 2981.

1a – 1-tosyl-3-vinyl-1H-indole

Into a Schlenk flask, was placed 1*H*-indole-3-carbaldehyde (5.0 g, 34.5 mmol) and DCM (100 mL). The resulting stirred solution was cooled to 0 °C before triethylamine (12 mL, 86.2 mmol) was added dropwise *via* syringe. To the stirred solution, *p*-toluenesulfonyl chloride (7.23 g, 37.9 mmol) in DCM was added dropwise over a period of 20 minutes. The solution was stirred at 0 °C for a further one hour before warming to room temperature over 18 hours. The solution was washed into a separating funnel with DCM (20 mL) and washed with water $(2 \times 100 \text{ mL})$ and brine (100 mL). The organic extracts were dried over MgSO₄, filtered and the solvent removed under reduced pressure to give the crude product as a pale orange oil.

The product was purified by recrystallisation from hot ethyl acetate (150 mL) to give 1-tosyl-1*H*-indole-3-carbaldehyde (8.38 g, 28 mmol, 82%) as orange crystals.

Mp: 145.3–148.8 °C; $R_{\rm f}$: 0.83 (Pet(40/60)–EA 1 : 4); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 10.11 (1H, s), 8.29–8.26 (1H, m), 8.19–8.16 (1H, m), 8.16 (1H, s), 7.89–7.85 (1H, m), 7.78 (2H, d, J = 8.4 Hz), 7.36–7.25 (2H, m), 7.22 (2H, d, J = 8.4 Hz), 2.29 (3H, s); ¹³C NMR (101 MHz, CDCl₃): δ 185.3, 146.1, 136.2, 135.4, 134.1, 130.3, 130.2, 127.2, 127.1, 126.2, 124.9, 122.5, 122.2, 113.1, 21.5; IR (neat): $\nu_{\rm max}$ /cm⁻¹ 3140, 1663; anal. calcd for C₁₆H₁₃NO₃S: C, 64.20; H, 4.38; N, 4.68. Found: C, 63.97; H, 4.52; N, 4.72.

Α Schlenk flask was charged with methyltriphenylphosphonium iodide (1.29 g, 3.2 mmol) dissolved in dry THF (25 mL) under a nitrogen atmosphere. The solution was cooled to -78 °C and ⁿbutyllithium (1.81 mL, 2.97 mmol) was added dropwise via syringe over 10 minutes. The solution was warmed to 0 °C and left to stir for 2 hours. In a separate Schlenk flask, 1-tosylindoline-3-carbaldehyde (0.8 g, 2.7 mmol) was dissolved in THF (5 mL). The indole solution was transferred via cannula to the Schlenk flask containing the solution of methyltriphenylphosphonium iodide and the solution was stirred for 18 hours. The reaction poured into water (50 mL) and extracted with ether (3 \times 40 mL). The organic layers were washed with brine (20 mL), dried over MgSO₄, filtered and the solvent was removed under reduced pressure to leave the crude product as an orange oil. The crude product was purified by column chromatography (petrol (40/60)-ethyl acetate; 10:1, 2 cm diameter column) to give 1-tosyl-3-vinyl-1H-indole (0.56 g, 3.9 mmol, 70%) as a pale yellow powder.

Mp: 90.3–94.6 °C; $R_{\rm f}$: 0.86 (Pet(40/60)–EA, 1 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.93–7.90 (1H, m), 7.69 (2H, d, J = 8.4 Hz), 7.70–7.65 (1H, m), 7.53 (1H, s), 7.29–7.19 (2H, m), 7.29–7.17 (2H, m), 7.15 (2H, d, J = 8.4 Hz), 6.70 (1H, app ddd, J = 17.9, 11.3, 0.7 Hz), 5.72 (dd, 1H, J = 17.9, 1.2 Hz), 5.28 (1H, dd, J = 11.3, 1.2 Hz), 2.26 (3H, s); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 145.1, 135.6, 135.2, 130.0, 129.1, 127.6, 126.9, 125.0, 124.2, 123.6, 121.0, 120.5, 115.4, 113.8, 21.7; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3119, 3072; anal. calcd for C₁₇H₁₅NO₂S: C, 68.66; H, 5.08; N, 4.71. Found: C, 68.70; H, 5.21; N, 4.61.

1b - ethyl (Z)-5-(1-tosyl-1H-indol-3-yl)pent-4-enoate

In a Schlenk flask, (4-ethoxy-4-oxobutyl) triphenylphosphonium bromide (3.32 g, 7.26 mmol) was dissolved in dry THF (20 mL). The solution was cooled to -78 °C and sodium bis (trimethylsilyl) amide (1.00 M in THF, 8.58 mL, 8.58 mmol) was added dropwise over 10 min. The mixture was warmed to 0 °C and left to stir. After 2 hours, 1-(toluene-4-sulfonyl)-1*H*-indol-3carboxaldehyde (2.00 g, 6.60 mmol) was dissolved in dry THF (10 mL) in a separate round bottomed flask, and transferred *via* cannula into the reaction solution. The reaction mixture was stirred at room temperature and for 48 hours, quenched with saturated NH₄Cl_(aq.) (30 mL), extracted with EtOAc (2 × 200 mL), and the combined organic layers washed with brine, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure to give a crude product as orange oil. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 10 : 1) to give two fractions the first containing ethyl (*Z*)-5-(1-tosyl-1*H*-indol-3-yl)pent-4-enoate (1.568 g, 3.94 mmol, 60%) as a colourless oil, and a second fraction containing a 20 : 1 mixture of (*Z*) and (*E*) ethyl-5-(1-tosyl-1*H*-indol-3-yl)pent-4enoate (0.294 g, 0.739 mmol, 11%) also as a colourless oil.

 $R_{\rm f}:$ 0.70 (Pet(40/60)–EA 7 : 3); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.97 (1H, d, J = 7.9 Hz, 1H), 7.77 (2H, d, J = 7.8 Hz), 7.57 (1H, s), 7.49 (1H, d, J = 7.9 Hz), 7.32 (1H, t, J = 7.9 Hz), 7.25 (1H, t, J = 7.9 Hz), 7.20 (2H, d, J = 7.8 Hz), 6.44 (1H, d, J = 11.2 Hz), 5.78 (1H, dt, J = 11.2, 7.5 Hz), 4.14 (2H, q, J = 6.5 Hz), 2.67–2.62 (2H, m), 2.48 (2H, t, J = 6.9 Hz), 2.30 (3H, s), 1.24 (3H, t, J = 6.5 Hz); $^{13}{\rm C}$ NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 172.8, 145.1, 135.1, 134.6, 132.1, 130.8, 129.9, 126.8, 124.9, 123.6, 123.4, 119.5, 118.96, 113.6, 60.5, 34.1, 25.2, 21.6, 14.3; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$: 1727, 1597. MS (pNSI): 415.2 (100%, [M + NH₄]⁺), 398.1 (20%, [M + H]⁺), 420.1 (10%, [M + Na]⁺); HRMS (pNSI): calcd C₂₂H₂₄NO₄S [M + H]⁺: 398.14120; observed: 398.14120.

1c - 5-methoxy-1-tosyl-3-vinyl-1H-indole

To a stirred round bottomed flask was added 5-methoxy-1*H*indole-3-carbaldehyde (0.70 g, 4.00 mmol) and DCM (20 mL) and the solution was cooled to 0 °C. To the stirred solution was added triethylamine (1.40 mL, 10.0 mmol) and the resulting solution was stirred at 0 °C for 1 hour. To the stirred solution was added *p*-toluenesulfonyl chloride (0.84 g, 4.40 mmol) in DCM (10 mL) and the solution was stirred at room temperature for 18 hours. The reaction was poured into water (50 mL) and extracted with DCM (3 × 20 mL). The combined organic extracts were dried over MgSO₄, filtered and the solvent was removed under reduced pressure to leave the crude product as a pale orange solid. The product was purified using column chromatography (petrol (40/60)–ether–DCM 2 : 1 : 1, column diameter = 2 cm, silica = 15 cm) to give 5-methoxy-1-tosyl-1*H*-indole-3carbaldehyde (1.14 g, 3.48 mmol, 87%) as a pale brown powder.

Mp: 126.1–128.4 °C; $R_{\rm f}$: 0.71 (Pet(40/60)–Et₂O–DCM 2 : 1 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 10.07 (1H, s), 8.19 (1H, s), 7.86–7.83 (1H, m), 7.84 (2H, d, J = 8.5 Hz), 7.72 (1H, d, J = 2.6 Hz), 7.29 (2H, d, J = 8.5 Hz), 7.02 (1H, dd, J = 9.1, 2.6 Hz), 3.86 (3H, s), 2.38 (3H, s); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 185.6, 157.8, 146.2, 136.8, 134.4, 130.4, 129.8, 127.4, 127.2, 122.3, 116.2, 114.2, 104.1, 55.8, 21.8; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3128, 2832, 1671; anal. calcd for C₁₇H₁₅NO₄S: C, 61.99; H, 4.59; N, 4.25. Found: C, 61.77; H, 4.70; N, 4.29.

In a Schlenk flask, methyltriphenylphosphonium iodide (1.35 g, 3.34 mmol) was dissolved in dry THF (30 mL). The solution was cooled to -78 °C and ^{*n*}BuLi (1.2 mL, 3.03 mmol) was added over 5 minutes. The yellow solution was warmed to 0 °C and was allowed to stir for 1 hour before being cooled to -78 °C. To the stirred solution, 5-methoxy-1-tosyl-1*H*-indole-3-carbaldehyde (1.00 g, 3.03 mmol) in DCM (10 mL) was added and the solution was stirred at room temperature for 3 hours. The reaction was poured into water (40 mL) and extracted with ethyl acetate (3 × 20 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent removed under pressure to leave the crude product an orange oil. The product was purified using column chromatography (petrol (40/60)–

ethyl acetate 2 : 1, column diameter = 2 cm, silica = 16 cm) to give 5-methoxy-1-tosyl-3-vinyl-1*H*-indole (0.79 g, 2.42 mmol, 80%) as a brown powder.

Mp: 101.4–103.9 °C; $R_{\rm f}$: 0.66 (Pet(40/60)–EA 2 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.87 (1H, d, J = 9.0 Hz), 7.73 (2H, d, J = 8.4 Hz), 7.55 (1H, s), 7.19 (2H, d, J = 8.3 Hz), 7.14 (1H, d, J = 2.5 Hz), 6.93 (1H, dd, J = 9.0, 2.5 Hz), 6.72 (1H, dd, J = 17.9, 11.3 Hz), 5.73 (1H, dd, J = 17.9, 1.1 Hz), 5.32 (1H, dd, J = 11.3, 1.1 Hz), 3.82 (3H, s), 2.31 (3H, s); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 156.7, 145.0, 135.1, 130.3, 130.1, 130.0, 127.6, 126.9, 124.9, 121.1, 115.2, 114.7, 113.7, 103.2, 55.8, 21.7; IR (neat): $\nu_{\rm max}$ /cm⁻¹ 3128, 2832, 1671; MS (pNSI): 328.1 (100%, (M + H)⁺), 350.1 (15%, (M + Na)⁺), 672.2 (2M + NH₄)⁺; HRMS (pNSI): calcd for C₁₈H₁₈NO₃S [M + H]⁺: 328.1002; observed: 328.1007.

1d - N,N-dimethyl-3-vinyl-1H-indole-1-sulfonamide

To a stirred round bottomed flask was added 1*H*-indole-3carbaldehyde (3.0 g, 20.7 mmol) and THF (70 mL) and the solution was cooled to 0 °C. To the stirred solution was added sodium hydride (1.7 g, 41.4 mmol) in THF (30 mL) and the resulting solution was stirred at 0 °C for 1 hour. To the stirred solution was added dimethylsulfamoyl chloride (2.4 mL, 20.7 mmol) and the solution was stirred at room temperature for 18 hours. The reaction was poured into water (100 mL) and extracted with DCM (3 × 60 mL). The combined organic extracts were dried over MgSO4, filtered and the solvent was removed under reduced pressure to leave the crude product as a pale red pink solid. The product was purified by recrystallization from ethyl acetate to give 3-formyl-*N*,*N*-dimethyl-1*H*-indole-1sulfonamide (97%, 5.07 g, 20.1 mmol) as a pink powder.

Mp: 149.0–150.9 °C; $R_{\rm f}$: 0.63 (Pet(40/60)–EA, 1 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 10.08 (1H, s), 8.31 (1H, app dd, J = 7.2, 1.4 Hz), 8.09 (1H, s), 7.94–7.88 (1H, m), 7.40 (2H, app ddd, J = 5.9, 3.3, 1.6 Hz), 2.91 (6H, s); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 185.5, 137.3, 136.0, 126.1, 125.9, 124.9, 122.6, 120.8, 113.6, 38.6; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3124, 2945, 1662; anal. calcd for C₁₁H₁₂N₂O₃S: C, 52.37; H, 4.79; N, 11.10. Found: C, 52.23; H, 4.91; N, 10.92.

In a Schlenk flask, methyltriphenylphosphonium iodide (7.00 g, 17.4 mmol) was dissolved in dry THF (75 mL). The solution was cooled to -78 °C and ⁿBuLi (6.4 mL, 15.9 mmol) was added over 10 minutes. The yellow solution was warmed to 0 °C and was left to stir for 1 hour before being cooled to -78 °C. To the stirred solution, 3-formyl-N,N-dimethyl-1H-indole-1sulfonamide (4.00 g, 15.9 mmol) was added and the solution was stirred at room temperature for 3 hours. The reaction was poured into water (70 mL) and extracted with ethyl acetate $(3 \times 50 \text{ mL})$. The combined organic layers were dried over MgSO₄, filtered and the solvent removed under pressure to leave the crude product as yellow oil. The product was purified using column chromatography (petrol (40/60)-diethyl ether 4:1, column diameter = 3 cm, silica = 14 cm) to give N_{N} -dimethyl-3vinyl-1H-indole-1-sulfonamide (3.11 g, 12.4 mmol, 78%) as a pale orange powder.

Mp: 68.7–67.8 °C; $R_{\rm f}$: 0.63 (Pet(40/60)–EA 2 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.98 (1H, dd, J = 8.0, 1.4 Hz), 7.85 (1H, dd, J = 7.7, 1.5 Hz), 7.35 (2H, app ddd, J = 7.0, 5.3, 1.6 Hz), 6.83 (1H,

dd, J = 17.8, 11.2 Hz), 5.84 (1H, dd, J = 17.8, 1.2 Hz), 5.38 (1H, dd, J = 11.3, 1.2 Hz), 2.86 (6H, s); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 136.1, 128.2, 127.8, 125.2, 124.7, 123.1, 120.4, 118.8, 114.9, 114.0, 38.6; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3123, 2945; anal. calcd for C₁₂H₁₄N₂O₂S: C, 57.58; H, 5.64; N, 11.19. Found: C, 57.68; H, 5.75; N, 11.05.

1e - benzyl-3-vinyl-1H-indole-1-carboxylate

To a solution of 1*H*-indole-3-carbaldehyde (1.0 g, 6.9 mmol) in DCM (20 mL) at 0 °C was added triethylamine (1.8 mL, 17.3 mmol) dropwise. The solution was stirred at room temperature for 1 hour before benzyl chloroformate (1.4 mL, 8.3 mmol) was added. The solution was stirred for 18 hours after which it was poured into water and extracted with DCM (3×20 mL). The organic fractions were combined, dried with MgSO₄, filtered and the solvent was removed under reduced pressure to give the crude product as an orange powder. The crude product was purified by column chromatography (column diameter = 2.5 cm, eluent = petrol (40/60)–ethyl acetate 2 : 1) to give benzyl-3-formyl-1*H*-indole-1-carboxylate (1.74 g, 6.35 mmol, 92%) as a pale orange powder.

Mp: 91–92 °C; $R_{\rm f}$: 0.68 (Pet–EA, 2 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 10.06 (1H, s), 8.30–8.25 (1H, m), 8.23 (1H, s), 8.17 (1H, d, J = 8.0 Hz), 7.50 (2H, app dd, J = 7.7, 1.8 Hz), 7.42 (3H, app ddd, J = 6.6, 5.1, 1.5 Hz), 7.38 (1H, app t, J = 1.6 Hz), 7.37–7.34 (1H, m), 5.49 (2H, s); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 185.8, 150.2, 136.1, 136.1, 134.3, 129.3, 129.0, 128.9, 126.5, 126.1, 125.0, 122.3, 122.3, 115.2, 69.9; IR (neat): $\nu_{\rm max}$ /cm⁻¹ 3127, 3008, 1733; MS (pNSI): 280.1 (100%, (M + H)⁺), 302.1 (96%, (M + Na)⁺), 581.2 (25%, (2M + Na)⁺); HRMS (pNSI): calcd for C₁₇H₁₄NO₃ [M + H]⁺: 280.0968; observed: 280.0970.

To a stirred Schlenk flask, methylenetriphenylphosphorane (2.38 g, 5.90 mmol) was dissolved in dry THF (30 mL). The solution was cooled to -78 °C and ⁿBuLi (2.15 mL, 5.35 mmol) was added over 10 minutes. The yellow solution was warmed to 0 °C and was left to stir for 1 hour before being cooled to -78°C. To the stirred solution, benzyl 3-formyl-1H-indole-1carboxylate (1.50 g, 5.35 mmol) was added and the solution was stirred at room temperature for 3 hours. The reaction was poured into water (50 mL) and extracted with ethyl acetate $(3 \times 40 \text{ mL})$. The combined organic layers were dried with MgSO₄, filtered and the solvent removed under pressure to leave the crude product as yellow oil. The product was purified using column chromatography (petrol (40/60)-ethyl acetate 2:1, column diameter = 2 cm, silica = 15 cm) to give benzyl-3vinyl-1H-indole-1-carboxylate (1.14 g, 4.07 mmol, 76%) as a yellow powder.

Mp: 43–45 °C; R_f : 0.73 (Pet(40/60)–EA, 2 : 1); ¹H NMR (300 MHz, CDCl₃): δ_H 8.33 (1H, d, J = 7.1 Hz), 7.91–7.86 (1H, m), 7.74 (1H, s), 7.58–7.55 (2H, m), 7.52–7.44 (4H, m), 7.43–7.36 (1H, m), 6.87 (1H, dd, J = 17.8, 11.3 Hz), 5.96–5.87 (1H, d, J = 17.8 Hz), 5.51 (2H, s), 5.44 (1H, d, J = 11.3 Hz); ¹³C NMR (101 MHz, CDCl₃): δ_C 150.8, 135.1, 128.9, 128.9, 128.8, 128.6, 128.4, 128.0, 125.1, 123.6, 123.4, 120.2, 120.2, 115.5, 115.0, 68.9; IR (neat): ν_{max}/cm^{-1} 3153, 2962, 1729; MS (pAPCI): 181.1 (50%), 260.1 (100%), 278.1 (25%, (M + H)⁺); HRMS (pAPCI): calcd for $C_{18}H_{16}NO_2 [M + H]^+$: 278.1176; observed: 278.1173.

1f - benzyl-5-methoxy-3-vinyl-1H-indole-1-carboxylate

To a stirred Schlenk flask, methylenetriphenylphosphorane (3.54 g, 8.70 mmol) was dissolved in dry THF (34 mL). The solution was cooled to -78 °C and ⁿBuLi (3.1 mL, 7.87 mmol) was added over 10 minutes. The yellow solution was warmed to 0 °C and was left to stir for 1 hour before being cooled to -78 °C. In a separate Schlenk flask, 5-methoxy-1H-indole-3carbaldehyde (1.38 g, 7.87 mmol) was dissolved in THF (10 mL) and to the solution sodium bis(trimethylsilyl)amide (7.87 mL, 7.87 mmol) was added. This solution was transferred into the first Schlenk flask and the red solution was allowed to stir at room temperature for 1 hour. The reaction was poured into water (50 mL) and extracted with ethyl acetate (2 \times 30 mL). The combined organic layers were dried with MgSO₄, filtered and the solvent removed under pressure to leave the crude product as yellow oil. The product was purified using column chromatography (petrol (40/60)diethyl ether 2 : 1, column diameter = 2.5 cm, silica = 16 cm) to give 5-methoxy-3-vinyl-1H-indole (1.38 g, 7.6 mmol, 97%) as a yellow powder.

Mp: 190–193 °C; $R_{\rm f}$: 0.49 (Pet–Et₂O, 2 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 8.28 (1H, s), 7.66 (1H, d, J = 2.4 Hz), 7.29 (1H, d, J = 8.8 Hz), 7.24 (1H, d, J = 2.7 Hz), 7.20–7.10 (2H, m), 7.18 (1H, d, J = 2.5 Hz), 7.15 (2H, dd, J = 4.5, 2.1 Hz), 7.10 (1H, s), 5.95 (1H, dd, J = 17.8, 1.5 Hz), 5.46 (1H, dd, J = 11.2, 1.5 Hz), 4.07 (3H, s); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 154.4, 132.5, 130.8, 126.4, 126.1, 114.2, 113.0, 112.0, 109.1, 102.0, 55.9; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3410, 2925, 2836; MS (pNSI): 174.1 (100%, (M + H)⁺), 520.3 (100%, (3M + H)⁺); HRMS (pNSI): calcd for C₁₁H₁₂NO [M + H]⁺: 174.0913; observed: 174.0912.

To a stirred Schlenk flask, 5-methoxy-3-vinyl-1*H*-indole (1.15 g, 6.61 mmol) was dissolved in THF (30 mL) and the solution was cooled to 0 °C. To the stirred solution, sodium bis(trimethylsilyl)amide (7.27 mL, 7.27 mmol) was added and the solution was stirred for 30 minutes before benzyl chloroformate (0.90 mL, 6.61 mmol) was added. The solution was stirred for 30 minutes at room temperature before being added to water (50 mL) and extracted with ethyl acetate (3×30 mL). The combined organic washings were dried with MgSO₄, filtered and the solvent was removed under reduced pressure to give the crude product as an orange oil. The product was purified using column chromatography (petrol (40/60)–ethyl acetate 5 : 1, column diameter = 2.0 cm, silica = 15 cm) to give benzyl-5-methoxy-3-vinyl-1*H*-indole-1-carboxylate (1.78 g, 4.7 mmol, 71%) as a pale yellow oil.

 $R_{\rm f}$: 0.82 (Pet(40/60)-EA, 5 : 1); ¹H NMR (400 MHz), $\delta_{\rm H}$ 8.09 (1H, s), 7.66 (1H, s), 7.50 (2H, d, J = 7.2 Hz), 7.45–4.37 (1H, m), 7.25 (1H, d, J = 2.5 Hz), 6.96 (1H, dd, J = 9.0, 2.2 Hz), 6.79 (1H, dd, J = 17.8, 11.4 Hz), 5.80 (1H, d, J = 17.8 Hz), 5.42 (2H, s), 5.34 (1H, d, J = 11.4 Hz), 3.85 (3H, s); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 156.4, 135.2, 129.7, 128.9, 128.9, 128.7, 128.6, 128.0, 124.1, 124.1, 120.0, 116.1, 114.8, 113.3, 103.3, 68.8, 55.8; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 2955, 2834, 1726; MS (pAPCI):

181.1 (32%), 260.1 (100%), 308.1 (28%, $(M + H)^+$); HRMS (pAPCI): calcd for C₁₉H₁₈NO₃ $[M + H]^+$: 308.1281; observed: 308.1277.

2a – (3a*S**,10b*S**)-2-methyl-10-tosyl-4,10,10a,10btetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

Into a round bottomed flask, 1-tosyl-3-vinyl-1*H*-indole (2.0 g, 6.7 mmol) and DCM (10 mL) was added. To the stirred solution, *N*-methylmalemide (0.75 g, 6.7 mmol) was added and the solution was stirred at 40 °C for 48 hours. The solvent was removed under reduced pressure to leave the crude product as orange oil. The product was purified by column chromatography (petrol (40/60)–ethyl acetate, 4 : 1, column diameter = 4 cm, silica = 15 cm) to give $(3aS^*,10bS^*)$ -2-methyl-10-tosyl-4,10,10a,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione (2.01 g, 5.0 mmol, 76%) as a white powder.

Mp: 204.2–208.0 °C; $R_{\rm f}$: 0.09 (Pet(40/60)–EA, 1 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.72 (2H, d, J = 8.0 Hz), 7.61 (1H, d, J = 8.5 Hz), 7.21–7.19 (2H, d, J = 8.0), 7.21–7.16 (1H, m), 6.92 (1H, app t, J = 7.5 Hz), 6.01–5.96 (1H, m), 4.47 (1H, dd, J = 7.0, 3.3 Hz), 3.99 (1H, app t, J = 8.1 Hz), 3.12 (1H, app t, J = 8.1 Hz), 2.99–2.92 (1H, m), 2.76 (3H, s), 2.30 (3H, s), 2.11 (1H, ddd, J = 18.0, 6.4, 2.4 Hz); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 178.9, 174.2, 144.7, 144.6, 137.4, 134.3, 130.4, 129.9, 127.5, 126.4, 123.9, 121.0, 115.4, 112.9, 61.6, 43.3, 37.2, 25.3, 25.1, 21.7; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 2981, 2889, 1694; MS (pNSI): 409.2 (61%, (M + H)⁺), 426.1 (100%, (M + (NH₄))⁺), 834.3 (52%, (2M + (NH₄))⁺); HRMS (pNSI): calcd C₂₂H₂₁N₂O₄S [M + H]⁺: 409.1217; observed: 409.1218.

2b – 2-phenyl-11-tosyl-11,11a-dihydro-1*H*,5*H*-[1,2,4]triazolo [1',2':1,2]pyridazino[3,4-*b*]indole-1,3(2*H*)-dione

To a stirred round bottomed flask was added 1-tosyl-3-vinyl-1*H*indole (100 mg, 0.34 mmol) and DCM (7 mL) and the solution was cooled to -78 °C. To the stirred solution was added 4-phenyl-3*H*-1,2,4-triazole-3,5(4*H*)-dione (60 mg, 0.34 mmol) and the resulting solution was stirred at -78 °C for 3.5 hours before the solvent was removed under reduced pressure to leave the crude product as a pale red solid. The product was purified by column chromatography (petrol (40/60)–ether–DCM 2 : 1 : 1, column diameter = 1 cm, silica = 20 cm) to give 2-phenyl-11tosyl-11,11a-dihydro-1*H*,5*H*-[1,2,4]triazolo[1',2':1,2]pyridazino-[3,4-*b*]indole-1,3(2*H*)-dione (88%, 140 mg, 0.30 mmol) as a pale red powder.

Mp: 160.1–162.8 °C; $R_{\rm f}$: 0.14 (Pet(40/60)–Et₂O–DCM 2 : 1 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.86 (2H, d, J = 8.4 Hz), 7.63–7.55 (2H, m), 7.51–7.46 (2H, m), 7.46–7.42 (1H, m), 7.42–7.39 (1H, m), 7.38–7.34 (2H, m), 7.26–7.22 (2H, m), 7.09 (1H, app td, J = 7.5, 1.0 Hz), 6.26 (1H, td, J = 2.6, 1.8 Hz), 6.18 (1H, app dt, J = 5.3, 2.7 Hz), 4.56–4.46 (1H, app td, J = 17.6, 2.8 Hz), 4.39 (1H, ddd, J = 17.6, 5.2, 1.9 Hz), 2.37 (3H, s); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 152.7, 150.8, 144.7, 143.7, 135.6, 134.8, 131.5, 130.4, 129.6, 128.9, 128.5, 128.1, 126.8, 125.7, 125.2, 120.9, 117.4, 113.8, 74.8, 44.6, 21.4; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3070, 2926, 1719; MS (pNSI): 473.1 (100%, (M + H)⁺),

522.2 (30%); HRMS (pNSI): calcd for $C_{25}H_{21}N_4O_4S [M + H]^+$: J = 3.6, 7.1 Hz), 4.84 (1H, dd, J = 3.6, 7.3 Hz), 4.18 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-4.05 (2H, m), 3.16-1.12 (1H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-1.05 (2H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-1.05 (2H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-1.05 (2H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-1.05 (2H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-1.05 (2H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-1.05 (2H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-1.05 (2H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-1.05 (2H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-1.05 (2H, m), 3.10 (1H, t, J = 7.3 Hz), 4.12-1.05 (2H, m), 4.

2c – ethyl-3-((3a*S**,4*R**,10b*S**)-2-methyl-1,3-dioxo-10-tosyl-1,2,3,3a,4,10,10a,10b-octahydropyrrolo[3,4-*a*]carbazol-4-yl) propanoate

Dimethylaluminum chloride (1.0 M in hexane, 9.38 ml, 9.38 mmol) was added dropwise to a solution of N-methylmaleimide (0.521 g, 4.69 mmol) in dry DCM (15 mL) at -78 °C. The mixture left to stir for 30 min. A solution of ethyl-(Z)-5-(1tosyl-1H-indol-3-yl) pent-4-enoate (4.69 mmol, 1.863 g) in dry DCM (15 mL) was added dropwise at -78 °C. The reaction mixture was then warmed to reflux for 48 hours and quenched with saturated NaHCO3(aq.) (20 mL) and extracted with DCM $(2 \times 100 \text{ mL})$. The combined organic layers were washed with brine, dried over MgSO4 and filtered. The solvent was removed under reduced pressure to give the crude yellow solid. The product was purified by column chromatography (petrol (40/60)ethyl acetate 2:1) to yield ethyl 3-((3aS*,4R*,10bS*)-2-methyl-1,3-dioxo-10-tosyl-1,2,3,3a,4,10,10a,10b-octahydropyrrolo[3,4-a]carbazol-4-yl)propanoate in (2.038 g, 4.01 mmol, 85%) a bright yellow solid.

Mp: 187–188 °C; $R_{\rm f}$: 0.3 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.79 (2H, d, J = 7.3 Hz), 7.62 (1H, d, J = 7.0 Hz), 7.25–7.21 (4H, m), 6.95 (1H, t, J = 7.0 Hz), 6.09 (1H, dd, J = 3.7, 6.7 Hz), 4.85 (1H, dd, J = 3.7, 6.9 Hz), 4.15 (1H, t, J = 6.9 Hz), 4.07 (2H, m), 3.15–3.12 (1H, m), 3.05–3.02 (1H, m), 2.83 (3H, s), 2.43–2.36 (2H, m), 2.35 (3H, s), 1.91–1.75 (2H, m), 1.19 (3H, t, J = 7.3 Hz); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 178.6, 174.0, 172.79, 144.6, 144.0, 136.6, 134.0, 130.5, 130.0, 127.5, 126.6, 123.9, 121.0, 116.3, 115.4, 60.6, 59.9, 44.22, 42.98, 37.2, 33.1, 28.3, 25.3, 21.70, 14.3; IR (neat): $\nu_{\rm max}/\rm cm^{-1}$: 1776, 1698; HRMS (pNSI): calcd C₂₇H₂₉N₂O₆S [M + H]⁺: 509.1741; observed: 509.1731.

2d – ethyl-3-((3a*S**,4*R**,10b*S**)-1,3-dioxo-10-tosyl-1,2,3,3a,4,10,10a,10b-octahydropyrrolo[3,4-*a*]carbazol-4-yl) propanoate

Dimethyl aluminum chloride (1.0 M in hexane, 2.86 mL, 2.86 mmol) was added dropwise to a solution of *N*-maleimide (0.14 g, 1.43 mmol) in dry DCM (5 mL) at -78 °C. The mixture left to stir for 30 min. A solution of ethyl-(*Z*)-5-(1-tosyl-1*H*-indol-3-yl)-pent-4-enoate (0.57 g, 1.43 mmol) in dry DCM (10 mL) was added. The reaction mixture was slowly heated to reflux for 48 h, quenched with saturated NaHCO_{3(aq.)} (5 mL). The organic layer was extracted with DCM (1 × 100 mL), washed with brine, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure to give the crude yellow solid product which was purified by column chromatography (petrol (40/60)–ethyl acetate 2 : 1 gradient to 1 : 1 petrol–ethyl acetate) to yield ethyl 3-((3aS*,4R*,10bS*)-1,3-dioxo-10-tosyl-1,2,3,3a,4,10,10a,10b-octa-hydropyrrolo[3,4-*a*]carbazol-4-yl)propanoate in (0.452 g, 0.91 mmol, 64%) as a white solid.

Mp: 218–220 °C; R_f : 0.14 (Pet(40/60)–EA 1 : 1); ¹H NMR (400 MHz, CDCl₃): δ_H 7.78 (2H, d, J = 6.9 Hz), 7.64 (1H, d, J = 6.8 Hz), 7.27–7.22 (4H, m), 6.98 (1H, t, J = 7.8 Hz), 6.16 (1H, dd,

$$\begin{split} J &= 3.6, 7.1 \text{ Hz}), 4.84 \text{ (1H, dd}, J &= 3.6, 7.3 \text{ Hz}), 4.18 \text{ (1H, t, } J &= 7.3 \\ \text{Hz}), 4.12-4.05 \text{ (2H, m)}, 3.16-1.12 \text{ (1H, m)}, 3.10 \text{ (1H, t, } J &= 7.3 \\ \text{Hz}), 2.40 \text{ (2H, t, } J &= 7.3 \text{ Hz}), 2.35 \text{ (3H, s)}, 1.89-1.76 \text{ (2H, m)}, \\ 1.20 \text{ (3H, t, } J &= 7.5 \text{ Hz}). ^{13}\text{C} \text{ NMR} \text{ (101 MHz, CDCl}_3): \delta_{\text{C}} 178.3, \\ 173.6, 172.7, 144.5, 144.1, 136.6, 133.8, 130.5, 129.8, 127.5, \\ 126.6, 123.8, 120.0, 116.4, 115.5, 60.8, 59.6, 45.2, 44.0, 36.9, 33.0, \\ 27.8, 21.5, 14.1; \text{ IR (neat): } \nu_{\text{max}}/\text{cm}^{-1}: 3657, 2981, 1776, 1703; \text{ MS} \\ \text{(pNSI): 512.18 (100\%, [M + \text{NH}_4]^+), 495.15 (55\%, [M + \text{H}]^+), \\ 340.14 \text{ (31\%, [M - Ts]]; HRMS (pNSI): calcd C}_{26}\text{H}_{27}\text{N}_2\text{O}_6\text{S} \text{ [M + H]}^+; \\ 495.1584; \text{ observed: 495.1585.} \end{split}$$

2e – ethyl 3-((3a*S**,4*R**,10b*S**)-1,3-dioxo-2-phenyl-10-tosyl-1,2,3,3a,4,10,10a,10b-octahydropyrrolo[3,4-*a*]carbazol-4-yl) propanoate

Dimethyl aluminum chloride (1.0 M in THF, 2.39 mL, 2.39 mmol) was added dropwise to a solution of *N*-phenylmaleimide (0.207 g, 1.19 mmol) in dry DCM (5 mL) at -78 °C. The mixture left to stir for 30 min. A solution of ethyl (*Z*)-5-(1-tosyl-1*H*-indol-3-yl) pent-4-enoate (0.475 g, 1.19 mmol) in dry DCM (10 mL) was added. The reaction mixture was heated to reflux for 48 h, quenched with saturated NaHCO_{3(aq.)} (10 mL) and extracted with DCM (100 mL). The organic layer was washed with brine, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure to give the crude yellow solid product which was purified by column chromatography (petrol (40/60)–ethyl acetate 2 : 1) to yield ethyl 3-((3aS*,4R*,10bS*)-1,3-dioxo-2-phenyl-10-tosyl-1,2,3,3a,4,10,10a, 10b-octahydropyrrolo[3,4-*a*]carbazol-4-yl)propanoate in (0.5095 g, 0.84 mmol, 71%) as a white solid.

Mp: 201–203 °C; $R_{\rm f}$: 0.2 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.81 (2H, d, J = 7.3 Hz), 7.60 (1H, d, J = 7.3 Hz), 7.34–7.21 (7H, m), 7.06 (2H, d, J = 7.3 Hz), 6.97 (1H, t, J = 7.3 Hz), 6.20 (1H, dd, J = 3.4, 7.1 Hz), 4.59 (1H, dd, J = 3.4, 7.1 Hz), 4.18 (1H, t, J = 7.3 Hz), 4.13–4.05 (2H, m), 3.26–3.20 (2H, m), 2.45–2.40 (2H, m), 2.35 (3H, s), 1.89–1.85 (2H, m), 1.20 (3H, t, J = 6.9 Hz); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 177.5, 172.9, 172.7, 144.6, 144.3, 137.0, 134.1, 131.7, 130.7, 130.0, 129.0, 128.5, 127.6, 126.7, 126.3, 124.0, 120.9, 116.2, 115.5, 60.8, 60.0, 44.3, 43.1, 37.7, 33.2, 28.3, 21.6, 14.2; IR (neat): $\nu_{\rm max}/\rm{cm}^{-1}$: 1776, 1703; MS (pNSI): 588.21 (100%, [M + NH₄]⁺), 1158.39 (33%, [2M + NH₄]⁺); HRMS (pNSI): calcd C₃₂H₃₁N₂O₆S [M + H]⁺: 571.18; observed: 571.1891.

3a – (3a*S**,5*S**,10b*S**)-5-(hydroxy(phenyl)amino)-2-methyl-10tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred round bottomed flask was added 1-tosyl-3-vinyl-1*H*indole (100 mg, 0.34 mmol), DCM (5 mL) and 1-methyl-1*H*pyrrole-2,5-dione (38 mg, 0.34 mmol). The resulting solution was heated at reflux for 48 hours. The reaction was allowed to cool to room temperature, nitrosobenzene (40 mg, 0.34 mmol) was added, and the solution was stirred at room temperature for 18 hours. The solvent was removed under reduced pressure to leave the crude product as a pale yellow solid which was purified by column chromatography (petrol (40/60)–ethyl acetate 4 : 1, column diameter = 1 cm, silica = 16 cm) to give (3aS*,5S*,10bS*)-5-(hydroxy(phenyl)amino)-2-methyl-10-tosyl4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione as a yellow powder (71%, 128 mg, 0.24 mmol).

Mp: 196.8–199.5 °C; $R_{\rm f}$: 0.64 (Pet(40/60)–EA, 1 : 1); ¹H NMR (500 MHz, CD₂Cl₂): $\delta_{\rm H}$ 7.94 (1H, d, J = 8.4 Hz), 7.69 (2H, d, J = 8.2 Hz), 7.60 (1H, d, J = 7.9 Hz), 7.32–7.25 (3H, m), 7.23 (2H, d, J = 8.2 Hz), 7.18–7.13 (3H, m), 7.02 (1H, t, J = 7.3 Hz), 5.06 (1H, d, J = 8.0 Hz), 4.75 (1H, app. t, J = 5.9 Hz), 4.72 (1H, s), 3.64 (1H, app q, J = 7.2 Hz), 2.95 (3H, s), 2.43 (1H, app dt, J = 13.6, 6.4 Hz), 2.35 (3H, s), 2.06 (1H, ddd, J = 13.6, 7.2, 4.9); ¹³C NMR (101 MHz, CD₂Cl₂): $\delta_{\rm C}$ 178.1, 173.6, 150.7, 145.3, 137.5, 134.9, 131.4, 129.7, 128.9, 128.9, 126.8, 125.2, 124.2, 122.6, 121.7, 120.2, 117.2, 115.4, 58.0, 40.5, 39.5, 25.0, 23.3, 21.4; IR (neat): $\nu_{\rm max}$ /cm⁻¹ 3661, 2990, 2886, 1690; MS (pNSI): 407.1 (66%, (M – (C₆H₅NOH))⁺), 516.2 (49%, (M + H)⁺), 533.2 (100%, (M + NH₄)⁺), 1031.3 (57%, (2M + H)⁺), 1053.3 (13%, (2M + Na)⁺); HRMS (pNSI): calcd for C₂₈H₂₆N₃O₅S [M + H]⁺: 516.1588; observed: 516.1584.

Note: ¹H NMR run at 35 °C, broad signals observed at room temperature.

3b - (3a*S**,5*S**,10b*S**)-5-(hydroxy(*o*-tolyl)amino)-2-methyl-10tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred round bottomed flask was added 1-tosyl-3-vinyl-1*H*indole (100 mg, 0.34 mmol), DCM (5 mL) and 1-methyl-1*H*pyrrole-2,5-dione (38 mg, 0.34 mmol). The resulting solution was heated at reflux for 48 hours. The reaction was allowed to cool to room temperature, 1-methyl-2-nitrosobenzene (42 mg, 0.17 mmol) was added and the solution was stirred at room temperature for 18 hours. The solvent was removed under reduced pressure to leave the crude product as a pale yellow solid. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 4 : 1, column diameter = 1 cm, silica = 14 cm) to give $(3aS^*,5S^*,10bS^*)$ -5-(hydroxy(*o*-tolyl) amino)-2-methyl-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione (71%, 128 mg, 0.24 mmol) as a yellow powder.

Mp: 193.0–196.7 °C; $R_{\rm f}$: 0.59 (Pet(40/60)–EA 1 : 1); ¹H NMR (400 MHz, CD₂Cl₂): $\delta_{\rm H}$ 7.89 (1H, d, J = 8.3 Hz), 7.65 (2H, d, J = 8.4 Hz), 7.40 (1H, d, J = 7.9 Hz), 7.28 (1H, d, J = 7.7 Hz), 7.21–7.18 (3H, m), 7.13–6.99 (4H, m), 5.04 (1H, d, J = 8.1 Hz), 4.87 (1H, s), 4.27 (1H, app t, J = 5.4 Hz), 3.73 (1H, app td, J = 8.0, 6.1 Hz), 2.91 (3H, s), 2.58 (1H, app dt, J = 12.9, 6.2 Hz), 2.32 (3H, s), 2.25 (3H, s), 1.95 (1H, ddd, J = 12.9, 7.8, 4.5 Hz); ¹³C NMR (101 MHz, CD₂Cl₂): $\delta_{\rm C}$ 178.2, 173.6, 149.3, 145.3, 137.3, 134.9, 131.6, 130.9, 129.7, 129.7, 129.2, 126.8, 126.2, 125.0, 124.9, 124.1, 121.4, 120.5, 115.3, 57.3, 40.6, 39.4, 25.0, 24.6, 21.4, 18.3; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3662, 2990, 2886, 1701; MS (pNSI): 407.1 (98%, (M – ((*o*-CH₃) – C₆H₄NOH))⁺), 530.2 (52%, (M + H)⁺), 547.2 (65%, (M + NH₄)⁺), 1059.3 (100%, (2M + H)⁺); HRMS (pNSI): calcd for C₂₉H₂₈N₃O₅S [M + H]⁺: 530.1744; observed: 530.1743.

3c - (3a*S**,5*S**,10b*S**)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-2-methyl-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*] carbazole-1,3(2*H*,3a*H*)-dione

To a stirred round bottomed flask was added 1-tosyl-3-vinyl-1*H*-indole (100 mg, 0.34 mmol), DCM (5 mL) and 1-methyl-1*H*-

pyrrole-2,5-dione (38 mg, 0.34 mmol) and the resulting solution was heated at reflux for 48 hours. The reaction was cooled to 0 °C before PTAD (60 mg, 0.34 mmol) was added. The reaction was stirred at 0 °C for 4 hours. The solvent was removed under reduced pressure to leave the crude product as a pale red powder. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 4 : 1, column diameter = 1 cm, silica = 14 cm) to give $(3aS^*,5S^*,10bS^*)$ -5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-2-methyl-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione (76%, 150 mg, 0.26 mmol) as a white powder.

Mp: 183.4–187.7 °C; $R_{\rm f}$: 0.05 (Pet(40/60)–EA 1 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.84 (2H, d, J = 8.4 Hz), 7.67 (1H, d, J = 8.2 Hz), 7.52 (1H, d, J = 7.6 Hz), 7.46–7.31 (5H, m), 7.29–7.19 (2H, m), 7.17 (2H, d, J = 8.3 Hz), 5.55 (1H, app t, J = 4.7 Hz), 5.08 (1H, d, J = 7.7 Hz), 3.66 (1H, ddd, J = 10.5, 7.7, 5.8 Hz), 2.96 (3H, s), 2.49 (1H, app dt, J = 14.8, 5.3 Hz), 2.28 (3H, s), 2.14 (1H, ddd, J = 14.8, 10.5, 5.5 Hz); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 177.4, 173.4, 153.6, 152.8, 145.5, 137.0, 135.3, 132.3, 130.8, 130.0, 129.3, 128.5, 127.5, 126.9, 125.7, 125.6, 124.3, 119.4, 115.4, 114.9, 47.8, 40.3, 39.0, 28.4, 25.4, 21.7; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3665, 2984, 2884, 1699; MS (pNSI): 601.2 (100%, (M + NH₄)⁺), 1184.3 (13%, (2M + NH₄)⁺); HRMS (pNSI): calcd for C₃₀H₂₉N₆O₆S [M + NH₄]⁺: 601.1864; observed: 601.1861.

3d – (3a*S**,5*S**,10b*S**)-5-((*S**)-hydroxy(perfluorophenyl) methyl)-2-methyl-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*] carbazole-1,3(2*H*,3a*H*)-dione

To a stirred round bottomed flask was added 1-tosyl-3-vinyl-1Hindole (100 mg, 0.34 mmol) DCM (5 mL) and 1-methyl-1Hpyrrole-2,5-dione (38 mg, 0.34 mmol) and the resulting solution was heated at reflux for 48 hours. The reaction was cooled to -78 °C and 2,3,4,5,6-pentafluorobenzaldehyde (0.04 mL, 0.34 mmol) was added followed by DMAC (1 M in hexane, 0.34 mL, 0.34 mmol). The reaction was stirred at -78 °C for 15 minutes before being allowed to warm to room temperature. The reaction was stirred at room temperature for 18 hours. The reaction was poured into saturated sodium bicarbonate solution (10 mL) and extracted with DCM (2 \times 10 mL). The combined organic layers were dried with MgSO₄, filtered and the solvent was removed under reduced pressure to give the crude product as a pale brown solid. The product was purified by column chromatography (petrol (40/60)-ethyl acetate 3:1, column diameter = 2 cm, silica = 15 cm) to give a separable 5:1mixture of (3aS*,5S*,10bS*)-5-((S*)-hydroxy(perfluorophenyl) methyl)-2-methyl-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-a]carbazole-1,3(2H,3aH)-dione and $(3aS^*, 5S^*, 10bS^*)$ -5- $((R^*)$ hydroxy(perfluorophenyl)methyl)-2-methyl-10-tosyl-4,5,10,10btetrahydropyrrolo[3,4-a]carbazole-1,3(2H,3aH)-dione (72%, 149 mg, 0.25 mmol).

Major diastereomer: Mp: 120.4–121.7 °C; $R_{\rm f}$: 0.24 (Pet(40/60)– EA 3 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H} \delta$ 7.85 (3H, app d, J = 8.4 Hz), 7.31–7.22 (4H, m), 7.22–7.14 (1H, m), 5.13 (1H, d, J = 8.1 Hz), 4.99 (1H, d, J = 7.5 Hz), 3.71–3.52 (2H, m), 3.01 (3H, s), 2.38 (3H, s), 2.20–2.10 (1H, m), 1.67 (1H, app td, J = 13.8, 5.3 Hz); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 177.7, 173.3, 145.3, 137.4, 135.4, 129.8, 129.7, 129.6, 127.2, 125.3, 123.9, 120.1, 119.9, 115.2, 70.2, 41.5, 39.1, 36.9, 28.7, 25.2, 21.7; IR (neat): ν_{max}/cm^{-1} 3371, 2981, 2889, 1690; MS (pNSI): 605.1 (40%, (M + H)⁺), 622.1 (88%, (M + NH₄)⁺), 627.1 (100%, (M + Na)⁺), 643.1 (17%), 709.1 (15%); HRMS (pNSI): calcd for C₂₉H₂₁F₅N₂NaO₅S [M + Na]⁺: 627.0984; observed: 627.0968. *Note:* ¹³C NMR missing peaks due to C-F coupling.

3e – 6-(hydroxy(phenyl)amino)-2-phenyl-11-tosyl-5,6-dihydro-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*]indole-1,3(2*H*,11*H*)dione

To a stirred round bottomed flask was added 1-tosyl-3-vinyl-1*H*indole (100 mg, 0.34 mmol) and DCM (5 mL) and the solution was cooled to -78 °C. To this solution PTAD (70 mg, 0.34 mmol) was added and the reaction was stirred at -78 °C for 3.5 hours. The reaction was warmed to room temperature, nitrosobenzene (44 mg, 0.34 mmol) was added and the reaction was stirred for 18 hours. The solvent was removed under reduced pressure to leave the crude product as a pale yellow oil. The product was purified by column chromatography (column diameter = 1 cm, silica = 16 cm, eluent = petrol (40/60)-ether-DCM 2 : 1 : 1) to give 6-(hydroxy(phenyl)amino)-2-phenyl-11-tosyl-5,6-dihydro-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*]indole-1,3(2*H*,11*H*)dione (72%, 54 mg, 0.09 mmol) as a white powder.

Mp: 176.1–180.0 °C; $R_{\rm f}$: 0.48 (Pet(40/60)–Et₂O 2 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.03 (1H, d, J = 8.3 Hz), 7.62 (2H, d, J = 8.1 Hz), 7.56 (2H, d, J = 7.6 Hz), 7.46 (2H, app t, J = 7.7 Hz), 7.42–7.36 (1H, m), 7.23–7.07 (7H, m), 7.05–6.99 (2H, m), 6.59 (1H, d, J = 7.4 Hz), 5.81 (1H, br s), 5.18 (1H, d, J = 13.5 Hz), 4.59 (1H, s), 3.23 (1H, d, J = 13.5 Hz), 2.30 (3H, s); ¹³C NMR (101 MHz, DMSO-d₆): $\delta_{\rm C}$ 152.7, 152.2, 150.5, 146.0, 134.9, 132.9, 132.5, 131.8, 130.4, 129.8, 129.3, 129.2, 128.5, 127.3, 127.3, 125.5, 125.4, 122.5, 119.8, 117.6, 116.6, 108.6, 55.9, 44.6, 21.6; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 2981, 2884, 1714; MS (pAPCI): 138.1 (100%), 157.0 (95%), 213.1 (50%), 248.1 (86%), 279.1 (62%), 317.1 (33%), 333.1 (29%), 471.1 (31%), 564.2 (11%), 580.2 (10%, (M + H)⁺); HRMS (pAPCI): calcd for C₃₁H₂₆N₅O₅S [M + H]⁺: 580.1649; observed: 580.1640.

3f – 6-(hydroxy(*o*-tolyl)amino)-2-phenyl-11-tosyl-5,6-dihydro-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*]indole-1,3(2*H*,11*H*)dione

To a stirred round bottomed flask was added 1-tosyl-3-vinyl-1*H*indole (100 mg, 0.34 mmol) and DCM (5 mL) and the solution cooled to -78 °C. To this solution PTAD (70 mg, 0.34 mmol) was added and the reaction was stirred at -78 °C for 3.5 hours. The reaction was warmed to room temperature and 1-methyl-2nitrosobenzene (42 mg, 0.34 mmol) was added and the reaction was stirred for 18 hours. The solvent was removed under reduced pressure to leave the crude product as a pale yellow oil. The product was purified by column chromatography (column diameter = 1 cm, silica = 14 cm, eluent = petrol (40/60)-ether-DCM 2:1:1) to give 6-(hydroxy(*o*-tolyl)amino)-2-phenyl-111tosyl-5,6-dihydro-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*]indole-1,3(2*H*,11*H*)-dione as a white powder (78%, 60 mg, 0.10 mmol).

Mp: 149.7–153.1 °C; $R_{\rm f}$: 0.32 (Pet(40/60)–Et₂O–DCM 2 : 1 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.99 (1H, d, J = 8.3 Hz), 7.61–7.58 (5H, m), 7.43–7.40 (1H, m), 7.47 (2H, app t, J = 7.7 Hz), 7.40–7.37 (1H, m), 7.18 (2H, app t, J = 7.8 Hz), 7.11 (2H, d, J = 8.2 Hz), 6.97 (2H, app q, J = 7.2 Hz), 6.85 (1H, d, J = 7.5 Hz), 6.50 (1H, d, J = 7.8 Hz), 5.93 (1H, s), 5.24 (1H, d, J = 13.5 Hz), 4.44 (1H, s), 3.11 (1H, d, J = 13.5 Hz), 2.29 (3H, s), 1.91 (3H, s); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 153.3, 150.3, 148.7, 145.4, 135.1, 133.7, 132.0, 131.7, 131.3, 130.6, 129.6, 129.3, 128.7, 127.9, 127.2, 127.0, 126.8, 125.9, 124.9, 124.8, 122.6, 118.0, 116.8, 107.0, 59.1, 44.5, 21.7, 17.8; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3068, 2981, 1713; MS (pAPCI): 138.1 (100%), 157.0 (82%), 262.1 (55%), 279.1 (76%), 317.1 (50%), 391.3 (37%), 471.1 (21%), 594.2 (10%, (M + H)⁺); HRMS (pAPCI): calcd for C₃₂H₂₈N₅O₅S [M + H]⁺: 594.1806; observed: 594.1801.

$\label{eq:started} \begin{array}{l} 3g-ethyl \ 3-((3aS^*,4S^*,5S^*,10bS^*)-5-(hydroxy(\textit{o-tolyl})amino)-2-methyl-1,3-dioxo-10-tosyl-1,2,3,3a,4,5,10,10b-octahydropyrrolo[3,4-\textit{a}]carbazol-4-yl) propanoate \end{array}$

A solution of 2-nitrosotoluene (0.035 g, 0.29 mmol) and ethyl 3-(($3aS^*,4R^*,10bS^*$)-2-methyl-1,3-dioxo-10-tosyl-1,2,3,3a,4,10,10a, 10b-octahydropyrrolo[3,4-*a*]carbazol-4-yl)propanoate (0.150 g, 0.29 mmol) in dry DCM (10 mL) was stirred at room temperature for 24 hours. The solvent was removed under reduced pressure to give the crude green solid product which was purified by column chromatography (petrol (40/60)-ethyl acetate 2 : 1) to give ethyl 3-(($3aS^*,4S^*,5S^*,10bS^*$)-5-(hydroxy(*o*-tolyl) amino)-2-methyl-1,3-dioxo-10-tosyl-1,2,3,3a,4,5,10,10b-octahydropyrrolo[3,4-*a*]carbazol-4-yl)propanoate (0.109 g, 0.17 mmol, 59%) as a bright yellow solid.

Mp: 190-192 °C; Rf: 0.26 (Pet(40/60)-EA 2:1); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3): \delta_H 7.95 (1H, d, J = 7.2 \text{ Hz}), 7.61 (2H, d, J = 7.2 \text{ Hz})$ Hz), 7.18 (2H, d, J = 7.2 Hz), 7.10 (1H, d, J = 7.2 Hz), 7.05 (1H, t, J = 7.2 Hz), 6.81 (1H, t, J = 7.2 Hz), 6.65 (1H, t, J = 7.5 Hz), 6.19 (1H, t, *J* = 7.5 Hz), 5.88 (1H, d, *J* = 7.2 Hz), 5.46 (1H, d, *J* = 7.2 Hz), 4.99 (1H, br s), 4.95 (1H, d, J = 7.2 Hz), 4.30 (1H, d, J = 4.6 Hz), 4.11 (2H, q, J = 7.0 Hz), 3.80–3.75 (1H, m), 3.01 (3H, s), 2.70-2.54 (4H, m), 2.41 (3H, s), 2.33 (3H, s), 1.92-1.85 (1H, m), 1.24 (3H, t, J = 7.0 Hz). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 178.2, 173.3, 149.9, 144.6, 139.9, 137.1, 134.1, 131.9, 130.6, 130.3, 129.4, 128.7, 127.0, 125.7, 124.8, 124.4, 123.6, 122.1, 118.9, 118.0, 115.7, 60.6, 57.8, 45.1, 42.4, 40.0, 32.5, 25.2, 23.3, 21.6, 18.5, 14.3; IR (neat): $\nu_{\text{max}}/\text{cm}^{-1}$: 3655, 2980, 1702; MS (pNSI): 507.15 (100%, [M - (Tol-N-OH)]), 652.20 (55%, $[M + Na]^+$); HRMS (pNSI): calcd $C_{34}H_{35}N_3O_7S [M + Na]^+$: 652.2088; observed: 652.2082.

3h – ethyl 3-((3a*S**,4*S**,5*S**,10b*S**)-5-(hydroxy(*o*-tolyl)amino)-1,3-dioxo-2-phenyl-10-tosyl-1,2,3,3a,4,5,10,10boctahydropyrrolo[3,4-*a*]carbazol-4-yl)propanoate

A solution of 2-nitrosotoluene (0.016 g, 0.13 mmol) and ethyl $3-((3aS^*,4R^*,10bS^*)-1,3-dioxo-2-phenyl-10-tosyl-1,2,3,3a,4,10, 10a,10b-octahydropyrrolo[3,4-$ *a* $]carbazol-4-yl)propanoate (0.08 g, 0.13 mmol) in dry DCM (10 mL) was stirred at room temperature for 24 hours. The solvent was removed under reduced pressure to give the crude yellow product which was purified by column chromatography (petrol (40/60)–ethyl acetate 2 : 1) to give ethyl <math>3-((3aS^*,4S^*,5S^*,10bS^*)-5-(hydroxy(o-tolyl)amino)-1,3-dioxo-2-$

phenyl-10-tosyl-1,2,3,3a,4,5,10,10b-octahydropyrrolo[3,4-*a*]carbazol-4-yl)propanoate in (0.415 g, 0.059 mmol, 58%) as a bright yellow solid.

Mp: 182–184 °C; $R_{\rm f}$: 0.34 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.94 (1H, d, J = 6.7 Hz), 7.64 (2H, d, J = 6.7 Hz), 7.45–7.37 (5H, m), 7.20–7.00 (4H, m), 6.84 (1H, t, J = 6.9 Hz), 6.66 (1H, t, J = 6.9 Hz), 6.24 (1H, t, J = 6.2 Hz), 5.95 (1H, d, J = 6.9 Hz), 5.66 (1H, d, J = 6.4 Hz), 5.20 (1H, d, J = 7.4 Hz), 4.99 (1H, br s), 4.39 (1H, d, J = 4.0 Hz), 4.08 (2H, q, J = 7.2 Hz), 4.03–3.98 (1H, m), 2.72–2.61 (4H, m), 2.42 (3H, s), 2.33 (3H, s), 2.14–2.08 (1H, m). 1.20 (3H, t, J = 7.2 Hz); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 177.0, 173.3, 172.2, 150.1, 144.6, 137.1, 134.2, 131.0, 131.8, 130.5, 130.3, 129.4, 129.0, 128.6, 128.5, 127.0, 126.5, 125.8, 124.8, 124.5123.5, 122.2, 119.1, 118.1, 115.6, 60.0, 57.7, 45.3, 42.6, 40.0, 32.4, 23.1, 21.6, 18.5, 14.5; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$: 3858, 3826, 1709, 1595; MS (pNSI): 569.17 (100%, [M – N(OH)(o-Tol)]]), 692.24 (30%, [M + H]⁺); HRMS (pNSI): calcd C₃₉H₃₆N₃O₇S [M – H]⁺: 690.2268; observed: 690.2266.

3i – ethyl 3-((3a*S**,4*S**,5*S**,10b*S**)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-2-methyl-1,3-dioxo-10-tosyl-

1,2,3,3a,4,5,10,10b-octahydropyrrolo[3,4-*a*]carbazol-4-yl) propanoate

A solution of 4-phenyl-3*H*-1,2,4-triazole-3,5(4*H*)-dione (0.052 g, 0.29 mmol) and ethyl 3-(($3aS^*,4R^*,10bS^*$)-2-methyl-1,3-dioxo-10-tosyl-1,2,3,3a,4,10,10a,10b-octahydropyrrolo[3,4-*a*]carbazol-4-yl)propanoate (0.150 g, 0.29 mmol) in dry DCM (10 mL) was stirred at 0 °C for 6 hours. The solvent was removed under reduced pressure to give the crude product which was purified by column chromatography (petrol (40/60)–ethyl acetate 1 : 1) to give ethyl 3-(($3aS^*,4S^*,5S^*,10bS^*$)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-2-methyl-1,3-dioxo-10-tosyl-1,2,3,3a,4,5,10,10b-octahydropyrrolo[3,4-*a*]carbazol-4-yl)propanoate in (56%, 0.110 g, 0.161 mmol) as a white solid.

Mp: 264–265 °C; $R_{\rm f}$: 0.30 (Pet(40/60)–EA 1 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.86 (1H, br s), 7.78 (2H, d, J = 7.0 Hz), 7.71 (1H, d, J = 7.9 Hz), 7.47 (1H, d, J = 7.9 Hz), 7.44–7.40 (1H, m), 7.36–7.30 (3H, m), 7.23–7.17 (2H, m), 7.02 (2H, d, J = 7.0 Hz), 5.66 (1H, d, J = 6.2 Hz), 5.04 (1H, d, J = 6.5 Hz), 4.08 (2H, q, J = 6.2 Hz), 3.44 (1H, dd, J = 6.5, 11.9 Hz), 3.02 (3H, s), 2.68–2.51 (3H, m), 2.15 (3H, s), 2.14–2.09 (1H, m), 1.90–1.82 (1H, m), 1.20 (3H, t, J = 6.2 Hz); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 176.6, 173.4, 173.2, 153.6, 152.6, 145.2, 136.8, 135.5, 132.1, 130.7, 129.7, 129.3, 128.6, 127.2, 126.8, 125.6, 124.2, 119.0, 114.8, 114.4, 60.8, 44.3, 42.0, 39.3, 30.9, 25.4, 23.0, 21.5, 14.2; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$: 3659, 1775, 1691; MS (pNSI): 701.23 (100%, [M + NH₄]⁺), 1384.44 (17%, [2M + NH₄]⁺); HRMS (pNSI): calcd C₃₅H₃₄N₅O₈S [M + H]⁺: 684.2123; observed: 684.2115.

3j – ethyl 3-((3a*S**,4*S**,5*S**,10b*S**)-5-(3,5-dioxo-4-phenyl-1,2,4triazolidin-1-yl)-1,3-dioxo-10-tosyl-1,2,3,3a,4,5,10,10boctahydropyrrolo[3,4-*a*]carbazol-4-yl)propanoate

A solution of 4-phenyl-3*H*-1,2,4-triazole-3,5(4*H*)-dione (0.037 g, 0.21 mmol) and ethyl $3-((3aS^*,4R^*,10bS^*)-1,3-dioxo-10-tosyl-1,2,3,3a,4,10,10a,10b-octahydropyrrolo[3,4-$ *a*]carbazol-4-yl)-

propanoate (0.105 g, 0.21 mmol) in dry DCM (10 mL) was stirred at 0 °C for 6 h. The solvent was removed to give the crude white solid product which was purified by trituration from DCM to yield ethyl $3-((3aS^*,4S^*,5S^*,10bS^*)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-1,3-dioxo-10-tosyl-1,2,3,3a,4,5,10,10b-octahydropyrrolo[3,4-$ *a*]carbazol-4-yl)propanoate in (57%, 0.08 g, 0.119 mmol) as a white solid.

Mp: 269–271 °C; ¹H NMR (300 MHz, d₆-DMSO): $\delta_{\rm H}$ 11.44 (1H, br s), 10.68 (1H, br s), 7.87–7.76 (3H, m), 7.51–7.39 (4H, m), 7.29–7.25 (6H, m), 5.69 (1H, d, J = 6.1 Hz), 5.28 (1H, d, J = 6.8 Hz), 4.05 (2H, q, J = 6.8 Hz), 3.45 (1H, dd, J = 6.8, 11.3 Hz), 3.58–3.52 (1H, m), 2.67–2.65 (1H, m), 2.25 (3H, s), 2.49–2.44 (2H, m), 1.80–1.70 (1H, m), 1.18 (3H, t, J = 6.8 Hz); ¹³C NMR (101 MHz, d₆-DMSO): 178.6, 175.0, 172.99, 154.4, 153.1, 145.5, 136.6, 134.9, 133.1, 131.7, 130.4, 129.4, 128.6, 127.6, 127.1, 126.3, 125.6, 124.5, 119.3, 115.9, 114.9, 60.3, 45.2, 43.0, 38.0, 30.7, 23.6, 21.4, 14.5; IR (neat): $\nu_{\rm max}/$ cm⁻¹: 3659, 1775, 1692; MS (pNSI): 687.22 (100%, [M + NH₄]⁺), 1356.41 (27%, [2M + NH₄]⁺), 692.17 (12%, [M + Na]⁺); HRMS (pNSI): calcd C₃₄H₃₅N₆O₈S [M + H]⁺: 687.2232; observed: 687.2229.

3k - (3aS*,5S*,10bS*)-5-(hydroxy(phenyl)amino)-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)dione

To a stirred round bottomed flask was added 1-tosyl-3-vinyl-1*H*indole (100 mg, 0.34 mmol), DCM (5 mL) and 1*H*-pyrrole-2,5dione (33 mg, 0.34 mmol) and the resulting solution was heated at reflux for 48 hours. The reaction was cooled to room temperature and nitrosobenzene (36 mg, 0.34 mmol) was added. The reaction was stirred at room temperature for 4 hours before the solvent was removed under reduced pressure to leave the crude product as a white solid. The product was purified by trituration from DCM to give $(3aS^*,5S^*,10bS^*)$ -5-(hydroxy-(phenyl)amino)-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione (89%, 151 mg, 0.30 mmol) as a white powder.

Mp: 203.7–206.9 °C; $R_{\rm f}$: 0.15 (Pet(40/60)–EA 2 : 1); ¹H NMR (300 MHz, DMSO-d₆): $\delta_{\rm H}$ 11.26 (1H, s), 8.45 (1H, s), 7.88 (1H, d, J = 8.3 Hz). 7.76 (2H, d, J = 8.2 Hz), 7.42 (1H, d, J = 7.8 Hz), 7.33 (2H, d, J = 8.2 Hz), 7.29–7.04 (5H, m), 6.89 (1H, t, J = 7.2 Hz), 5.17 (1H, d, J = 7.8 Hz), 4.88 (1H, app t, J = 4.4 Hz), 3.65 (1H, app td, J = 8.8, 5.9 Hz), 2.32 (3H, s), 2.36–2.27 (1H, m), 1.81 (1H, ddd, J = 14.0, 9.4, 5.0 Hz); ¹³C NMR (101 MHz, DMSO-d₆): $\delta_{\rm C}$ 179.4, 174.7, 152.0, 144.7, 136.4, 135.0, 131.5, 129.8, 128.9, 128.4, 126.6, 124.4, 123.4, 121.2, 120.7, 120.6, 117.0, 114.4, 56.8, 41.5, 40.6, 25.2, 20.9; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3452, 2981, 1715; MS (pNSI): 393.1, (100%, (M – (C₆H₅NOH)⁺)), 502.1 (14%, (M + H)⁺), 519.2 (96%, (M + NH₄)⁺), 524.1 (17%, (M + Na)⁺), 1003.3 (40%, (2M + H)⁺), 1025.3 (15%, (2M + Na)⁺); HRMS (pNSI): calcd for C₂₇H₂₄N₃O₅S [M + H]⁺: 502.1431; observed: 502.1428.

3l – (3a*S**,5*S**,10b*S**)-5-(hydroxy(*o*-tolyl)amino)-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)dione

To a stirred round bottomed flask was added 1-tosyl-3-vinyl-1*H*-indole (100 mg, 0.34 mmol), DCM (5 mL) and 1*H*-pyrrole-2,5-dione (33 mg, 0.34 mmol) was added and the resulting

solution was heated at reflux for 48 hours. The reaction was cooled to room temperature and 1-methyl-2-nitrosobenzene (41 mg, 0.34 mmol) was added. The reaction was stirred at room temperature for 4 hours before the solvent was removed under reduced pressure to leave the crude product as a pale yellow solid. The product was purified by column chromatography (petrol (40/60)-ether-DCM 2 : 1 : 1, column diameter = 2 cm, silica = 14 cm) to give $(3aS^*, 5S^*, 10bS^*)$ -5-(hydroxy(*o*-tolyl) amino)-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione (82%, 143 mg, 0.28 mmol) as a yellow powder.

Mp: 171.1–174.0 °C; $R_{\rm f}$: 0.13 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CDCl₃): δ 7.90 (1H, d, J = 8.4 Hz), 7.73 (2H, d, J = 8.2 Hz), 7.77 (1H, s), 7.35 (2H, dd, J = 15.7, 7.9 Hz), 7.20 (3H, app d, J = 8.2 Hz), 7.09 (2H, d, J = 7.5 Hz), 7.07–7.00 (2H, m), 5.17 (1H, d, J = 8.1 Hz), 4.75 (1H, s), 4.39 (1H, app t, J = 5.1 Hz), 3.80 (1H, app q, J = 8.3, 5.7 Hz), 2.64 (1H, app dt, J = 13.1, 5.5 Hz), 2.34 (3H, s), 2.26 (3H, s), 1.96 (1H, ddd, J = 15.9, 7.9, 3.7 Hz); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 178.3, 173.4, 149.3, 144.7, 137.4, 135.8, 131.3, 130.9, 129.8, 129.6, 129.5, 129.0, 127.0, 126.3, 125.1, 124.7, 123.7, 121.5, 120.1, 115.3, 57.3, 42.0, 40.8, 26.0, 21.4, 18.3; IR (neat): $\nu_{\rm max}$ /cm⁻¹ 3294, 2981, 1713; MS (pAPCI): 293.1 (16%), 332.1 (13%), 342.1 (16%), 393.1 (100%, (M – (o-Tol) N(OH))⁺), 489.1 (54%, (M – H₂O)⁺), 516.2 (26%, (M + H)⁺); HRMS (pAPCI): calcd for C₂₈H₂₆N₃O₅S [M + H]⁺: 516.1588; observed: 516.1576.

$\label{eq:starsest} \begin{array}{l} 3m - (3aS^*, 5S^*, 10bS^*) - 5 - ((S^*) - hydroxy(perfluorophenyl) \\ methyl) - 10 - tosyl - 4, 5, 10, 10b - tetrahydropyrrolo[3, 4-a] carbazole \\ 1, 3(2H, 3aH) - dione \end{array}$

To a stirred round bottomed flask was added 1-tosyl-3-vinyl-1Hindole (100 mg, 0.34 mmol), DCM (5 mL) and 1H-pyrrole-2,5dione (33 mg, 0.34 mmol). The resulting solution was heated at reflux for 48 hours. The reaction was cooled to 0 °C and pentafluorobenzaldehyde (67 mg, 0.34 mmol) and DMAC (1 M in hexane, 0.34 mL, 0.34 mmol) were added. The solution was stirred at 0 °C for 1 hour and then warmed to room temperature for 18 hours. The reaction was poured into sodium bicarbonate (15 mL) and extracted with DCM. The combined organic layers were dried with MgSO4, filtered and the solvent was removed under reduced pressure to give the crude product as an off white solid. The product was purified by column chromatography (diameter = 1.5 cm, silica = 15 cm, eluent = petrol (40/60)-EA 2:1) to give $(3aS^*, 5S^*, 10bS^*)$ -5-((S*)-hydroxy(perfluorophenyl) methyl)-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-a]carbazole-1,3(2H,3aH)-dione (71%, 0.1427 g, 0.24 mmol) as an off white solid.

Mp: 181.3–185.1 °C; $R_{\rm f}$: 0.22 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.03 (1H, br s), 7.81 (3H, app d, J = 7.9 Hz), 7.28 (1H, d, J = 8.0 Hz), 7.25–7.22 (3H, m), 7.16 (1H, app t, J = 7.6 Hz), 5.08 (1H, d, J = 8.3 Hz), 5.05 (1H, d, J = 7.4 Hz), 3.61– 3.66 (1H, m), 3.49–3.57 (1H, m), 2.34 (3H, s), 2.09 (1H, dd, J = 14.0, 4.5 Hz), 1.74 (1H, app td, J = 13.9, 5.3 Hz); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 177.4, 173.0, 145.3, 137.4, 135.5, 129.8, 129.7, 129.1, 127.1, 125.5, 123.9, 120.2, 120.0, 115.3, 70.2, 42.5, 40.3, 36.8, 28.5, 21.7; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3240, 2981, 1717; MS (pAPCI): 157.0 (79%), 221.1 (61%), 393.1 (15%, (M – $(C_6F_5COH)^+)$), 443.1 (51%), 573.1 (8%, (M – $H_2O)^+$), 591.1 (100%, (M + H)⁺); HRMS (pAPCI): calcd for $C_{28}H_{20}F_5N_2O_5S$ [M + H]⁺: 591.1008; observed: 591.1001. *Note:* ¹³C NMR missing peaks due to C–F coupling.

3n – (3a*S**,5*S**,10b*S**)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred round bottomed flask was added 1-tosyl-3-vinyl-1*H*indole (100 mg, 0.34 mmol), DCM (5 mL) and 1*H*-pyrrole-2,5dione (33 mg, 0.34 mmol). The resulting solution was heated at reflux for 48 hours. The reaction was cooled to 0 °C and PTAD was added. The solution was stirred at 0 °C for 4 hours and the solvent was removed under reduced pressure to give the crude product as pale red. The product was purified by column chromatography (diameter = 1.5 cm, silica = 17 cm, eluent = petrol (40/60)-EA 1 : 1) to give (3a*S**,5*S**,10b*S**)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-10-tosyl-4,5,10,10b-tetrahydropyrrolo-[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione (23%, 0.044 g, 0.08 mmol) as an off white solid.

Mp: 206.4–209.7 °C; $R_{\rm f}$: 0.10 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, DMSO-d₆): $\delta_{\rm C}$ 11.37 (1H, s), 10.77 (1H, s), 7.82 (2H, d, J = 8.3 Hz), 7.72 (1H, d, J = 7.9 Hz), 7.48–7.43 (2H, m), 7.42–7.35 (4H, m), 7.28 (2H, d, J = 8.5 Hz), 7.25–7.18 (2H, m), 5.46 (1H, app t, J = 4.9 Hz), 5.19 (1H, d, J = 7.7 Hz), 3.77–3.65 (1H, m), 2.41 (1H, app dt, J = 9.8, 5.1 Hz), 2.26 (3H, s), 2.24–2.16 (1H, m); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm H}$ 178.8, 173.6, 153.6, 152.4, 145.4, 136.9, 135.3, 132.2, 130.9, 129.9, 129.2, 128.4, 127.5, 126.9, 125.7, 125.6, 124.2, 119.3, 115.1, 114.8, 47.3, 41.5, 40.2, 28.8, 21.7; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3194, 2981, 2980, 1699; MS (pNSI): 587.2 (100% (M + NH₄)⁺), 592.1 (30% (M + Na)⁺); HRMS (pNSI): calcd for C₂₉H₂₇N₆O₆S [M + NH₄]⁺: 587.1707; observed: 587.1706.

30 – (3a*S**,5*S**,10b*S**)-5-(hydroxy(*o*-tolyl)amino)-7-methoxy-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred round bottomed flask was added 6-methoxy-1-tosyl-3-vinyl-1H-indole (111 mg, 0.34 mmol), DCM (5 mL) and 1*H*pyrrole-2,5-dione (33 mg, 0.34 mmol). The resulting solution was heated at reflux for 48 hours. The reaction was cooled to room temperature and 1-methyl-2-nitrosobenzene (41 mg, 0.34 mmol) was added. The reaction was stirred at room temperature for 24 hours before the solvent was removed under reduced pressure to leave the crude product as a pale yellow solid. The product was purified by column chromatography (petrol (40/60)-ethyl acetate 2:1) to give ($3aS^*,5S^*,10bS^*$)-5-(hydroxy(*o*-tolyl)amino)-7-methoxy-10-tosyl-4,5,10,10b-tetrahydro pyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione (76%, 141 mg, 0.26 mmol) as a light brown solid.

Mp: 185 °C decomposed; $R_{\rm f}$: 0.26 (Pet(40/60)–EA 4 : 3); ¹H NMR (400 MHz, DMSO-d₆): $\delta_{\rm H}$ 11.19 (1H, s), 8.34 (1H, s), 7.69 (1H, d, J = 9.1 Hz), 7.61 (2H, d, J = 8.2 Hz), 7.27 (2H, d, J = 8.2 Hz), 7.08–6.97 (2H, m), 6.95–6.85 (2H, m), 6.72 (1H, dd, J = 9.1, 2.4 Hz), 6.40 (1H, s), 5.07 (1H, d, J = 7.9 Hz), 4.20 (1H, app t, J = 4.4 Hz), 3.76 (1H, app q, J = 8.4 Hz), 3.47 (3H, s), 2.53–2.47 (1H,

m), 2.28 (s, 3H), 2.08 (s, 3H), 1.75 (1H, ddd, J = 13.6, 9.8, 4.4 Hz); ¹³C NMR (101 MHz, DMSO-d₆): $\delta_{\rm C}$ 180.5, 175.4, 156.3, 151.7, 145.3, 134.7, 133.1, 131.1, 131.0, 130.8, 130.3, 129.7, 127.1, 126.4, 124.6, 122.1, 121.2, 115.9, 113.8, 103.3, 57.1, 55.3, 42.2, 26.9, 21.5, 21.3, 18.5; IR (neat): $\nu_{\rm (max)}/{\rm cm}^{-1}$ 3388, 3071, 2552, 1727; MS (pNSI): 355.1 (50%), 371.1 (100%), 423.1 (57%), 445.1 (30%), 546.2 (5%, (M + H)⁺), 568.2 (16%, (M + Na)⁺), 584.1 (21%); HRMS (pNSI): calcd for C₂₉H₂₈N₃O₆S₁ [M + H]⁺: 546.1693; observed: 546.1690.

3p – (3a*S**,5*S**,10b*S**)-5-((*S**)-hydroxy(perfluorophenyl) methyl)-7-methoxy-2-methyl-10-tosyl-4,5,10,10btetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred round bottomed flask was added 5-methoxy-1-tosyl-3-vinyl-1H-indole (112 mg, 0.34 mmol), DCM (5 mL) and 1methyl-1H-pyrrole-2,5-dione (38 mg, 0.34 mmol). The reaction was heated at reflux for 48 hours. The reaction was cooled to -78 °C and pentafluorobenzaldehyde (0.04 mL, 0.34 mmol) and DMAC (1 M in hexane, 0.34 mL, 0.34 mmol) were added. The solution was stirred at -78 °C for 15 minutes and then at room temperature for 18 hours. The solvent was removed under reduced pressure to give the crude product as an off white solid. The product was purified by column chromatography (column diameter = 2 cm, silica = 15 cm, eluent = petrol (40/60)-EA 3:1) to give a 8:1 mixture of (3aS*,5S*,10bS*)-5-((S*)-hydroxy-(perfluorophenyl)methyl)-7-methoxy-2-methyl-10-tosyl-4,5,10, 10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2H,3aH)-dione and (3aS*,5S*,10bS*)-5-((R*)-hydroxy(perfluorophenyl)methyl)-7methoxy-2-methyl-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-a]carbazole-1,3(2H,3aH)-dione (70%, 0.151 mg, 0.24 mmol) as a white powder.

Major diastereomer: Mp: 136.7–139.0 °C; $R_{\rm f}$: 0.40 (Pet(40/60)– EA 2 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.76 (2H, d, J = 8.3 Hz), 7.69 (1H, d, J = 9.1 Hz), 7.22 (2H, d, J = 8.3 Hz), 6.83 (1H, dd, J = 9.1, 2.5 Hz), 6.72 (1H, d, J = 2.5 Hz), 5.08 (1H, d, J = 8.3 Hz), 4.87 (1H, d, J = 7.4 Hz), 3.71 (3H, s), 3.58–3.47 (2H, m), 2.94 (3H, s), 2.34 (3H, s), 2.11–2.04 (1H, m), 1.60 (1H, td, J = 13.9, 5.3 Hz); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 177.7, 173.2, 156.8, 145.2, 135.2, 132.0, 130.9, 130.3, 129.8, 127.0, 120.6, 116.2, 114.0, 102.6, 70.2, 55.6, 41.5, 39.0, 36.9, 28.6, 25.3, 21.7; IR (neat): $\nu_{\rm max}$ /cm⁻¹ 2981, 2884, 1709; MS (pAPCI): 157.0 (80%), 221.1 (92%), 281.1 (49%) 475.1 (94%), 635.1 (100%, (M + H)⁺); HRMS (pAPCI): calcd for C₃₀H₂₄F₅N₂O₆S [M + H]⁺: 635.1270; observed: 635.1266. *Note:* ¹³C NMR missing peaks due to C–F coupling.

3q – (3a*S**,5*S**,10b*S**)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-7-methoxy-10-tosyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*] carbazole-1,3(2*H*,3a*H*)-dione

To a stirred round bottomed flask was added 5-methoxy-1-tosyl-3-vinyl-1*H*-indole (112 mg, 0.34 mmol), DCM (5 mL) and 1*H*pyrrole-2,5-dione (33 mg, 0.34 mmol). The reaction was heated at reflux for 48 hours. The reaction was cooled to 0 $^{\circ}$ C and PTAD (60 mg, 0.34 mmol) was added. The reaction was stirred at 0 $^{\circ}$ C for 4 hours before the solvent was removed under reduced pressure to give the crude product as a pale red solid. The product was purified by column chromatography (column diameter = 2 cm, silica = 16 cm, eluent = petrol (40/60)-EA 1:1) to give $(3aS^*,5S^*,10bS^*)$ -5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-7-methoxy-10-tosyl-4,5,10,10b-tetrahydropyrrolo-[3,4-a]carbazole-1,3(2*H*,3a*H*)-dione (75%, 0.152 mg, 0.25 mmol) as a pale yellow powder.

Mp: 189.9–193.3 °C; $R_{\rm f}$: 0.07 (Pet(40/60)–EA 1 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 9.31 (1H, br), 7.67 (2H, d, J = 7.5 Hz), 7.55 (1H, d, J = 8.8 Hz), 7.38–7.23 (5H, m), 7.00 (2H, d, J = 7.8 Hz), 6.90 (1H, s), 6.80 (1H, d, J = 8.9 Hz), 5.53 (1H, br s), 5.18 (1H, d, J= 6.7 Hz), 3.74–3.69 (1H, m), 3.64 (3H, s), 2.48–2.55 (1H, m), 2.17 (3H, s), 2.12–2.02 (2H, m); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 179.0, 173.9, 156.9, 153.7, 152.7, 145.2, 135.1, 132.7, 131.5, 131.0, 129.8, 129.2, 128.4, 128.0, 127.2, 125.6, 115.9, 115.5, 114.3, 101.9, 55.7, 47.6, 41.6, 40.1, 28.8, 21.6; IR (neat): $\nu_{\rm max}/$ cm⁻¹ 2972, 2885, 1781, 1709; MS (pNSI): 617.2 (69%, (M + NH₄)⁺), 622.1 (100%, (M + Na)⁺), 644.1 (48%); HRMS (pNSI): calcd for C₃₀H₂₉N₆O₇S [M + NH₄]⁺: 617.1813; observed: 617.1817.

3r – 6-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-2-phenyl-11tosyl-5,6-dihydro-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*] indole-1,3(2*H*,11*H*)-dione

To a stirred round bottomed flask was added 1-tosyl-3-vinyl-1*H*indole (100 mg, 0.34 mmol) and DCM (5 mL). The resulting solution was cooled to -78 °C and then PTAD (70 mg, 0.34 mmol) was added. The reaction was stirred at -78 °C for 3.5 hours. The reaction was warmed to 0 °C and a further equivalent of PTAD (60 mg, 0.34 mmol) was added. The reaction was stirred 0 °C for 4 hours, resulting in the formation of a white precipitate. The reaction mixture was filtered and 6-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-2-phenyl-11-tosyl-5,6-dihydro-[1,2,4]triazolo[1',2':1,2] pyridazino[3,4-*b*]indole-1,3(2*H*,11*H*)-dione (65%, 134 mg, 0.207 mmol) was recovered as a white powder.

Mp: 227.8–230.6 °C; ¹H NMR (400 MHz, DMSO-d₆): $\delta_{\rm H}$ 10.76 (1H, s, NH), 7.91 (1H, d, J = 7.8 Hz), 7.61 (2H, d, J = 8.3 Hz), 7.48–7.24 (15H, m), 5.52 (1H, s), 4.76 (1H, d, J = 13.8 Hz), 3.86 (1H, d, J = 13.8 Hz), 2.24 (3H, s); ¹³C NMR (101 MHz, DMSO-d₆): $\delta_{\rm C}$ 154.3, 153.5, 150.6, 149.5, 146.0, 135.1, 133.3, 133.0, 131.7, 131.5, 130.4, 129.6, 129.5, 129.4, 128.8, 128.1, 127.6, 127.5, 126.9, 125.9, 125.4, 119.3, 116.8, 104.1, 48.8, 43.3, 21.6; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 2971, 2883, 1714; MS (pNSI): 263.0 (36%), 345.0 (51%), 371.1 (42%), 665.2 (89%, (M + NH₄)⁺), 670.1 (100%, (M + Na)⁺); HRMS (pNSI): calcd for C₃₃H₂₅N₇NaO₆S [M + Na]⁺: 670.1479; observed: 670.1475.

3s – 6-(hydroxy(phenyl)amino)-2-phenyl-11-tosyl-5,6-dihydro-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*]indole-1,3(2*H*,11*H*)dione

To a stirred round bottomed flask was added 1-tosyl-3-vinyl-1*H*-indole (100 mg, 0.34 mmol) and DCM (5 mL) and the solution was cooled to -78 °C. To this solution PTAD (70 mg, 0.34 mmol) was added and the reaction was stirred at -78 °C for 3.5 hours. The reaction was warmed to room temperature nitrosobenzene (44 mg, 0.34 mmol) was added and the reaction was removed under reduced pressure to leave the crude product as a pale

yellow oil. The product was purified by column chromatography (column diameter = 1 cm, silica = 16 cm, eluent = petrol (40/60)-ether-DCM 2 : 1 : 1) to give 6-(hydroxy(phenyl) amino)-2-phenyl-11-tosyl-5,6-dihydro-[1,2,4]triazolo[1',2':1,2] pyridazino[3,4-*b*]indole-1,3(2*H*,11*H*)-dione (72%, 141 mg, 0.24 mmol) as a white powder.

Mp: 176.1–180.0 °C; $R_{\rm f}$: 0.48 (Pet(40/60)–Et₂O 2 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.03 (1H, d, J = 8.3 Hz), 7.62 (2H, d, J = 8.1 Hz), 7.56 (2H, d, J = 7.6 Hz), 7.46 (2H, app t, J = 7.7 Hz), 7.42–7.36 (1H, m), 7.23–7.07 (7H, m), 7.05–6.99 (2H, m), 6.59 (1H, d, J = 7.4 Hz), 5.81 (1H, br s), 5.18 (1H, d, J = 13.5 Hz), 4.59 (1H, s), 3.23 (1H, d, J = 13.5 Hz), 2.30 (3H, s); ¹³C NMR (101 MHz, DMSO-d₆): $\delta_{\rm C}$ 152.7, 152.2, 150.5, 146.0, 134.9, 132.9, 132.5, 131.8, 130.4, 129.8, 129.3, 129.2, 128.5, 127.3, 127.3, 125.5, 125.4, 122.5, 119.8, 117.6, 116.6, 108.6, 55.9, 44.6, 21.6; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 2981, 2884, 1714; MS (pAPCI): 138.1 (100%), 157.0 (95%), 213.1 (50%), 248.1 (86%), 279.1 (62%), 317.1 (33%), 333.1 (29%), 471.1 (31%), 564.2 (11%), 580.2 (10%, (M + H)⁺); HRMS (pAPCI): calcd for C₃₁H₂₆N₅O₅S [M + H]⁺: 580.1649; observed: 580.1640.

3t – (3a*S**,5*S**,10b*S**)-5-(hydroxy(*o*-tolyl)amino)-*N*,*N*,2trimethyl-1,3-dioxo-1,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*] carbazole-10(2*H*)-sulfonamide

To a stirred bottomed flask was added *N*,*N*-dimethyl-3-vinyl-1*H*indole-1-sulfonamide (85 mg, 0.34 mmol), DCM (5 mL) and 1methyl-1*H*-pyrrole-2,5-dione (38 mg, 0.34 mmol). The solution was heated at reflux for 48 hours. The reaction was cooled to room temperature and 1-methyl-2-nitrosobenzene (41 mg, 0.34 mmol) was added. The reaction was stirred for 3 hours at room temperature before the solvent was removed under reduced pressure to give the crude product. The crude product was purified by column chromatography (column diameter = 2 cm, silica = 16 cm, eluent = petrol (40/60)-ethyl acetate 2 : 1) to give ($3aS^*$, $5S^*$,10b S^*)-5-(hydroxy(*o*-tolyl)amino)-*N*,*N*,2-trimethyl-1,3dioxo-1,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(2*H*)sulfonamide (74%, 0.122 g, 0.25 mmol) as an off white solid.

Mp: 169.3–171.9 °C; $R_{\rm f}$: 0.32 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.84 (1H, d, J = 8.4 Hz), 7.60 (1H, d, J = 7.9 Hz), 7.50 (1H, d, J = 8.0 Hz), 7.28 (1H, app t, J = 7.8 Hz), 7.21–7.16 (2H, m), 7.13 (1H, d, J = 8.1 Hz), 7.07–7.03 (1H, m), 4.98–4.96 (2H, m), 4.35–4.31 (1H, m), 3.69 (1H, app t, J = 7.7 Hz), 2.93 (9H, s), 2.60 (1H, app dt, J = 13.1, 6.2 Hz), 2.33 (3H, s), 1.97 (1H, ddd, J = 13.1, 7.7, 4.6 Hz); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 178.4, 173.8, 149.2, 137.4, 131.9, 131.1, 129.6, 128.4, 126.6, 125.3, 124.7, 123.7, 121.5, 120.4, 118.8, 115.0, 57.5, 40.5, 39.4, 38.4, 25.2, 24.7, 18.7; IR (neat): $\nu_{\rm max}$ cm⁻¹ 3426, 2981, 1712; MS (pAPCI): 221.1 (9%), 251.1 (13%), 360.1 (100%, (M – (o-Tol)N(OH))⁺), 465.2 (15%, (M – H₂O)⁺), 483.2 (15%, (M + H)⁺); HRMS (pAPCI): calcd for C₂₄H₂₇N₄O₅S₁ [M + H]⁺: 483.1697; observed: 483.1685.

$\label{eq:states} \begin{array}{l} 3u - (3aS^*, 5S^*, 10bS^*) - 5 - ((2,6-dibromophenyl) (hydroxy) \\ amino) - N, N-dimethyl - 1,3-dioxo-2-phenyl - 1,3,3a,4,5,10b- \\ hexahydropyrrolo [3,4-a] carbazole - 10(2H) - sulfonamide \end{array}$

To a stirred round bottomed flask was added *N*,*N*-dimethyl-3vinyl-1*H*-indole-1-sulfonamide (85 mg, 0.34 mmol), DCM (5 mL) and 1-phenyl-1*H*-pyrrole-2,5-dione (59 mg, 0.34 mmol) and the resulting solution was heated at reflux for 48 hours. The reaction was cooled to room temperature and 2,6-dibromonitrosobenzene (90 mg, 0.34 mmol) was added. The reaction was stirred at room temperature for 18 hours and the solvent was removed under reduced pressure to give the crude product as a pale yellow solid. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 3 : 1, column diameter = 2 cm, silica = 17 cm) to give ($3aS^*, 5S^*, 10bS^*$)-5-((2,6-dibromophenyl) (hydroxy)amino)-*N*,*N*-dimethyl-1,3-dioxo-2-phenyl-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-sulfonamide (69%, 162 mg, 0.23 mmol) as a pale orange powder.

Mp: 241–242 °C; R_f : 0.43 (Pet(40/60)–Et₂O 4 : 1); ¹H NMR (400 MHz, CDCl₃): δ 7.53 (2H, d, J = 7.8 Hz), 7.46–7.30 (7H, m), 7.15 (1H, app t, J = 7.4 Hz), 7.02 (1H, app t, J = 7.5 Hz), 6.71 (1H, app td, J = 8.0, 2.1 Hz), 6.05 (1H, s), 5.49–5.47 (1H, m), 5.17–5.12 (1H, m), 4.35–4.27 (1H, m), 3.18–3.11 (1H, m), 2.92 (6H, s), 1.80 (1H, app t, J = 13.1 Hz); ¹³C NMR (101 MHz, CD₂Cl₂): $\delta_{\rm C}$ 177.9, 172.5, 144.6, 136.1, 134.3, 132.7, 132.1, 132.0, 129.5, 129.1, 128.6, 128.2, 126.6, 124.0, 122.8, 119.2, 115.1, 113.6, 77.6, 54.7, 42.7, 39.0, 38.0, 30.0; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3431, 2927, 1780, 1715; MS (pNSI): 422.1 (25%, (M – N(OH)C₆H₃Br₂)⁺), 689.0 (76% (M + H)⁺), 711.0 (54%, (M + Na)⁺), HRMS (pNSI): calcd C₂₈H₂₅-Br₂N₄O₅S [M + H]⁺: 688.9888; observed: 688.9886.

3v – (3a*S**,5*S**,10b*S**)-5-((*S**)-hydroxy(perfluorophenyl) methyl)-*N*,*N*-dimethyl-1,3-dioxo-1,3,3a,4,5,10bhexahydropyrrolo[3,4-*a*]carbazole-10(2*H*)-sulfonamide

To a stirred round bottomed flask was added N,N-dimethyl-3vinyl-1H-indole-1-sulfonamide (85 mg, 0.34 mmol), DCM (5 mL) and 1-methyl-1H-pyrrole-2,5-dione (38 mg, 0.34 mmol). The reaction was heated at reflux for 48 hours. The reaction was cooled to -78 °C and pentafluorobenzaldehyde (66 mg, 0.34 mmol) and DMAC (1 M in hexane, 0.34 mL, 0.34 mmol) were added and the reaction was stirred for 1 hour. The reaction was poured into a solution of sodium bicarbonate (10 mL) and extracted with DCM (3×10 mL). The combined organic extracts were dried with MgSO₄, filtered and the solvent was removed under reduced pressure to leave the crude product as a pale pink solid. The product was purified by column chromatography (diameter = 2 cm, silica = 17 cm, eluent = petrol (40/60)-2:1) to give $(3aS^*, 5S^*, 10bS^*)$ -5-((S*)-hydroxy(per-EA fluorophenyl)methyl)-N,N-dimethyl-1,3-dioxo-1,3,3a,4,5,10b-(77%. hexahydropyrrolo[3,4-a]carbazole-10(2H)-sulfonamide 0.145 g, 0.26 mmol) as a pale pink solid.

Mp: 255.8–257.2 °C; $R_{\rm f}$: 0.30 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.77 (1H, d, J = 8.3 Hz), 7.39 (1H, d, J = 7.8 Hz), 7.33–7.28 (1H, m), 7.21 (1H, app t, J = 7.8 Hz), 5.14 (1H, d, J = 8.0 Hz), 4.80 (1H, d, J = 7.3 Hz), 3.67–3.62 (1H, m), 3.48 (1H, ddd, J = 12.8, 7.2, 5.0 Hz), 2.98 (6H, s), 2.93 (3H, s), 2.49 (1H, br s), 2.06 (1H, app dd, J = 14.9, 4.1 Hz), 1.59 (1H, app dt, J = 13.8, 6.9 Hz); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 177.8, 173.4, 137.2, 130.0, 129.3, 125.0, 123.5, 120.0, 118.2, 114.6, 70.3, 41.5, 39.2, 38.2, 36.7, 28.6, 25.2; IR (neat): $v_{\rm max}/{\rm cm}^{-1}$ 3415, 2972, 2884, 1713; MS (pNSI): 371.1 (22%), 558.1 (81% (M + H)⁺), 580.1 (100%, (M + Na)⁺), HRMS (pNSI): calcd C₂₄H₂₀F₅N₃O₅S [M + H]⁺: 558.1117; observed: 558.1118.

Note: ¹³C NMR missing peaks due to C–F coupling.

3w – 6-(hydroxy(*o*-tolyl)amino)-*N*,*N*-dimethyl-1,3-dioxo-2phenyl-2,3,5,6-tetrahydro-[1,2,4]triazolo[1',2':1,2]pyridazino [3,4-*b*]indole-11(1*H*)-sulfonamide

To a stirred round bottomed flask was added *N*,*N*-dimethyl-3-vinyl-1*H*-indole-1-sulfonamide (85 mg, 0.34 mmol), DCM (5 mL) and cooled to -78 °C. To this solution PTAD (60 mg, 0.34 mmol) was added and the reaction stirred at -78 °C for 1 hour. 1-Methyl-2-nitrosobenzene (41 mg, 0.34 mmol) was added and the reaction was stirred 4 hours before the solvent was removed under reduced pressure to give the crude product. The crude product was purified by column chromatography (column diameter = 2 cm, silica = 16 cm, eluent = petrol (40/60)–ethyl acetate 2 : 1) to give 6-(hydroxy(*o*-tolyl)amino)-*N*,*N*-dimethyl-1,3-dioxo-2-phenyl-2,3,5,6-tetrahydro-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*]indole-11(1*H*)-sulfonamide (76%, 0.141 g) as an off white solid.

Mp: 168.5–172.8 °C; $R_{\rm f}$: 0.25 (Pet(40/60)–EA 2 : 1); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.87 (1H, d, J = 8.3 Hz), 7.73 (1H, d, J = 8.1 Hz), 7.60 (2H, d, J = 7.4 Hz), 7.51 (2H, t, J = 7.6 Hz), 7.46–7.38 (1H, m), 7.30–7.18 (2H, m), 7.04 (2H, t, J = 7.5 Hz), 6.90 (1H, d, J = 7.6 Hz), 6.71 (1H, d, J = 7.8 Hz), 5.76 (1H, s), 5.37 (1H, d, J = 14.1 Hz), 4.66 (1H, s), 3.46 (1H, d, J = 14.1 Hz), 2.90 (6H, s), 1.94 (3H, s); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 153.5, 150.5, 148.7, 135.1, 132.1, 131.9, 131.2, 130.6, 129.4, 128.7, 127.1, 126.9, 126.8, 125.9, 124.4, 124.2, 122.7, 118.1, 115.9, 104.7, 59.4, 44.7, 38.7, 17.9; IR (neat): $v_{\rm max}/{\rm cm}^{-1}$ 3322, 2971, 1707; MS (pNSI): 339.1 (33%), 424.1 (94%, (M – MeC₆H₄NOH)⁺), 547.2 (72%, (M + H)⁺), 569.2 (100%, (M + Na)⁺); HRMS (pNSI): calcd C₂₇H₂₇N₆O₅S [M + H]⁺: 547.1758; observed: 547.1761.

$\label{eq:stars} \begin{array}{l} 3x-(3aS^*,5S^*,10bS^*)\text{-}5\text{-}(hydroxy(\textit{o-tolyl})amino)\text{-}N,N\text{-}dimethyl-1,3\text{-}dioxo\text{-}1,3,3a,4,5,10b\text{-}hexahydropyrrolo}[3,4\text{-}a]\text{carbazole-10}(2H)\text{-}sulfonamide \end{array}$

To a round bottomed flask was added *N*,*N*-dimethyl-3-vinyl-1*H*indole-1-sulfonamide (85 mg, 0.34 mmol), DCM (5 mL) and 1*H*pyrrole-2,5-dione (33 mg, 0.34 mmol). The reaction was heated at reflux for 48 hours and then cooled to room temperature. 1-Methyl-2-nitrosobenzene (41 mg, 0.34 mmol) was added and the reaction is stirred for 4.5 hours. The solvent was removed to give the crude product as pale yellow solid. The crude product was purified by trituration from DCM to give $(3aS^*,5S^*,10bS^*)$ -5-(hydroxy(o-tolyl)amino)-N,N-dimethyl-1,3-dioxo-1,3,3a,4,5,10bhexahydropyrrolo[3,4-*a*]carbazole-10(2*H*)-sulfonamide (77%,123 mg, 0.26 mmol) as a white solid.

Mp: 199.9–201.0 °C; $R_{\rm f}$: 0.64 (Pet(40/60)–EA 3 : 1); ¹H NMR (300 MHz, DMSO-d₆): $\delta_{\rm H}$ 11.15 (1H, s), 8.38 (1H, s), 7.88 (1H, d, J= 8.4 Hz), 7.36 (1H, d, J = 7.9 Hz), 7.31–7.20 (2H, m), 7.13 (3H, app dt, J = 14.3, 7.3 Hz), 7.01 (1H, d, J = 7.3 Hz), 4.98 (1H, d, J = 7.8 Hz), 4.38 (1H, app t, J = 4.8 Hz), 3.73 (1H, app q, J = 7.8 Hz), 2.70 (6H, s), 2.45–2.37 (1H, m), 2.36 (3H, s), 1.77–1.65, 1.77 (1H, m); ¹³C NMR (101 MHz, DMSO-d₆): $\delta_{\rm C}$ 180.4, 175.5, 151.6, 137.2, 133.2, 131.1, 129.3, 129.1, 126.6, 124.4, 124.3, 123.4, 121.8, 121.1, 118.6, 115.3, 56.5, 42.2, 41.1, 38.7, 26.6, 18.9; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3426, 2981, 1712; MS (pAPCI): 237.1 (60%), 346.1 (100%, (M – MeC₆H₄NOH)⁺), 451.1 (25%, (M – H₂O)⁺), 469.2 (22%, $(M + H)^+$); HRMS (pAPCI): calcd $C_{23}H_{25}N_4O_5S [M + H]^+$: 469.1540; observed: 469.1537.

3y – benzyl (3a*S**,5*S**,10b*S**)-5-(hydroxy(phenyl)amino)-2methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*] carbazole-10(1*H*)-carboxylate

To a stirred Schlenk flask was added benzyl 3-vinyl-1*H*-indole-1carboxylate (94 mg, 0.34 mmol), DCM (5 mL) and 1-methyl-1*H*pyrrole-2,5-dione (33 mg, 0.34 mmol). The resulting solution was heated at reflux for 24 hours. The reaction was allowed to cool to room temperature and to the stirred solution nitrosobenzene (36 mg, 0.34 mmol) was added and the solution was stirred for 18 hours. The solvent was removed under reduced pressure to leave the crude product as a pale yellow solid. The product was purified by column chromatography (petrol (40/ 60)-ethyl acetate 3 : 1, column diameter = 2 cm, silica = 14 cm) to give benzyl ($3aS^*,5S^*,10bS^*$)-5-(hydroxy(phenyl)amino)-2methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (74%, 124 mg, 0.25 mmol) as a yellow powder.

Mp: 105.7–109.2 °C; R_{f} : 0.34 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CD₂Cl₂): $\delta_{\rm H}$ 8.10 (1H, br d, J = 8.1 Hz), 7.70 (1H, br d, J= 7.3 Hz), 7.49 (2H, br d, J = 6.6 Hz), 7.39 (3H, br app q, J = 6.9, 6.4 Hz), 7.35–7.25 (3H, br m), 7.22–7.13 (3H, br m), 7.01 (1H, br app t, J = 6.7 Hz), 5.55 (1H, d, J = 11.8 Hz), 5.41 (1H, d, J = 11.8 Hz), 4.88 (1H, br d, J = 6.8 Hz), 4.87 (1H, br s), 4.80–4.77 (1H, br m), 3.54–3.41 (1H, br m), 2.85 (3H, s), 2.40–2.25 (1H, br m), 2.08–1.93 (1H, br m); ¹³C NMR (101 MHz, CD₂Cl₂): $\delta_{\rm C}$ 178.4, 174.6, 151.6, 151.0, 137.0, 135.0, 130.0, 129.0, 128.9, 128.8, 128.8, 127.6, 125.0, 123.3, 122.3, 120.0, 118.3, 117.1, 115.1, 69.5, 57.7, 40.2, 39.2, 24.9, 22.6; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3433, 2953, 1699; MS (pNSI): 387.1 (97%, (M – N(OH)Ph)⁺), 494.2 (100%, (M – H)⁺), 518.2 (30%, (M + Na)⁺), 991.4 (15%, (2M + H)⁺), 1013.3 (10%, (2M + Na)⁺); HRMS (pNSI): calcd C₂₉H₂₅N₃O₅Na [M + Na]⁺: 518.1686; observed: 518.1676.

3z – benzyl (3a*S**,5*S**,10b*S**)-5-(hydroxy(*o*-tolyl)amino)-2methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*] carbazole-10(1*H*)-carboxylate

To a stirred Schlenk flask was added benzyl 3-vinyl-1*H*indole-1-carboxylate (94 mg, 0.34 mmol), DCM (5 mL) and 1methyl-1*H*-pyrrole-2,5-dione (33 mg, 0.34 mmol). The resulting solution was heated at reflux for 24 hours. The reaction was allowed to cool to room temperature and to the stirred solution 1-methyl-2-nitrosobenzene (41 mg, 0.34 mmol) was added and the solution was stirred for 18 hours. The solvent was removed under reduced pressure to leave the crude product as a pale yellow solid. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 3 : 1, column diameter = 2 cm, silica = 16 cm) to give benzyl ($3aS^*,5S^*,10bS^*$)-5-(hydroxy(*o*-tolyl)amino)-2-methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylateas (78%, 135 mg, 0.26 mmol) as a yellow powder.

Mp: 128.4–131.5 °C; $R_{\rm f}$: 0.45 (Pet(40/60)–EA 3 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.11 (1H, d, J = 8.3 Hz), 7.59 (1H, d, J = 7.8 Hz), 7.55 (1H, d, J = 8.1 Hz), 7.50–7.48 (2H, m), 7.45–7.38 (3H, m), 7.29–7.23 (1H, m), 7.20 (1H, app t, J = 7.6 Hz), 7.14 (1H, d, J = 7.6 Hz), 7.10 (1H, d, J = 7.8 Hz), 7.05 (1H, d, J = 7.3 Hz), 5.56 (1H, d, J = 11.8 Hz), 5.46 (1H, d, J = 11.8 Hz), 5.02 (1H, s), 4.93 (1H, d, J = 7.6 Hz), 4.38 (1H, t, J = 5.2 Hz), 3.63 (1H, app q, J = 6.9 Hz), 2.91 (3H, s), 2.59 (1H, app dt, J = 12.3, 6.0 Hz), 2.29 (3H, s), 1.92 (1H, ddd, J = 12.5, 7.5, 4.6 Hz); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 178.5, 174.6, 151.7, 149.2, 136.8, 134.8, 131.1, 129.9, 129.0, 129.0, 128.9, 127.7, 126.6, 125.3, 125.0, 123.3, 121.5, 120.1, 118.1, 115.3, 69.6, 57.4, 40.4, 39.1, 25.2, 24.1, 18.6; IR (neat): $\nu_{\rm max}/$ cm⁻¹ 3450, 2954, 1699; MS (pNSI): 343.1 (40%), 387.1 (82%, (M – (N(OH)(o-Tol))))⁺), 508.2 (100%, (M – (H₂) + H)⁺), 532.2 (59%, (M + Na)⁺); HRMS (pNSI): calcd C₃₀H₂₇N₃O₅Na [M + Na]⁺: 532.1843; observed: 532.1834.

3aa – (3a*S**,5*S**,10b*S**)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-2-methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4*a*]carbazole-10(1*H*)-carboxylate

To a stirred Schlenk flask was added benzyl 3-vinyl-1H-indole-1-carboxylate (189 mg, 0.68 mmol), 1-methyl-1H-pyrrole-2,5dione (76 mg, 0.68 mmol) and DCM (10 mL). The reaction mixture was heated at reflux for 24 hours. The reaction was cooled to 0 °C and then 4-phenyl-1,2,4-triazolidine-3,5-dione (120 mg, 0.68 mmol) was added. The reaction was stirred at 0 $^\circ C$ for 1 hour then at room temperature for 18 hours. The solvent was removed under reduced pressure to leave the crude product as an orange powder. The product was purified by column chromatography (petrol (40/60)-ethyl acetate 1 : 1, column diameter = 2 cm, silica = 20 cm) to give (3aS*,5S*,10bS*)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-2-methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-a]carbazole-10(1H)-carboxylate (54%, 207 mg, 0.37 mmol) as an off-white powder and (3aS*,5S*,10bS*)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-2-methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-a]carbazole-10(1H)-carboxylate (27%, 76 mg, 0.19 mmol) as a white powder.

Mp: 202.3–203.9 °C; $R_{\rm f}$: 0.15 (Pet(40/60)–EA 1 : 1); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.38 (1H, s), 8.07 (1H, d, J = 8.4 Hz), 7.51 (1H, app dt, J = 7.6, 0.9 Hz), 7.49–7.37 (4H, m), 7.39–7.33 (6H, m), 7.30 (1H, ddd, J = 8.6, 7.3, 1.3 Hz), 7.21 (1H, app td, J = 7.5, 1.0 Hz), 5.53 (1H, app t, J = 5.2 Hz), 5.44 (1H, d, J = 11.8 Hz), 5.38 (1H, d, J = 11.8 Hz), 4.89 (1H, d, J = 8.0 Hz), 3.50 (1H, ddd, J = 9.6, 8.0, 5.5 Hz), 2.87 (3H, s), 2.41 (1H, app dt, J = 14.2, 5.5 Hz), 2.14 (1H, ddd, J = 14.2, 9.5, 5.5 Hz); ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 177.4, 173.6, 153.6, 152.2, 151.3, 136.9, 134.5, 130.9, 130.8, 129.3, 129.1, 128.9, 128.4, 126.1, 125.8, 125.3, 123.8, 118.8, 115.7, 113.8, 69.8, 47.5, 40.0, 38.4, 27.5, 25.2; IR (neat): $\nu_{\rm max}$ cm⁻¹ 3462, 2969, 1699; MS (pNSI): 199.2 (16%), 387.1 (19%, (M – PTAD)⁺), 564.2 (59%, (M + H)⁺), 581.2 (100%, (M + NH₄)⁺), 643.2 (15%), 1144.4 (39%, (2M + NH₄)⁺); HRMS (pNSI): calcd C₃₁H₂₆N₅O₆ [M + H]⁺: 564.1878; observed: 564.1873.

3bb – benzyl (3a*S**,5*S**,10b*S**)-5-(hydroxy(phenyl)amino)-1,3dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate

To a stirred Schlenk flask was added benzyl 3-vinyl-1*H*-indole-1-carboxylate (189 mg, 0.68 mmol), 1*H*-pyrrole-2,5-dione (66 mg,

0.68 mmol) and DCM (10 mL). The resulting solution was heated at reflux for 24 hours. The reaction was allowed to cool to room temperature and to the stirred solution nitrosobenzene (73 mg, 0.68 mmol) was added and the solution was stirred for 18 hours. The solvent was removed under reduced pressure to leave the crude product as a yellow powder. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 2 : 1, column diameter = 2 cm, silica = 20 cm) to give benzyl($3aS^*,5S^*,10bS^*$)-5-(hydroxy(phenyl)amino)-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (70%, 230 mg, 0.48 mmol) as a yellow powder.

Mp: 177.1–177.8 °C; $R_{\rm f}$: 0.38 (Pet(40/60)–EA 2 : 1); ¹H NMR (500 MHz, CD₂Cl₂): $\delta_{\rm H}$ 8.20 (1H, s), 8.11 (1H, d, J = 8.3 Hz), 7.66 (1H, d, J = 7.8 Hz), 7.50 (2H, dd, J = 7.9, 1.6 Hz), 7.43–7.36 (3H, m), 7.33 (2H, app t, J = 7.8 Hz), 7.28 (1H, app t, J = 7.8 Hz), 7.22 (2H, d, J = 8.0 Hz), 7.16 (1H, app t, J = 7.5 Hz), 7.02 (1H, app t, J= 7.3 Hz), 5.55 (1H, d, J = 11.9 Hz), 5.40 (1H, d, J = 11.9 Hz), 5.19 (1H, s), 4.96 (1H, br d, J = 8.1 Hz), 4.82 (1H, app t, J = 5.7 Hz), 3.56 (1H, br app q, J = 7.4 Hz), 2.35 (1H, br app dd, J = 13.4, 6.7 Hz), 2.00–1.92 (1H, br m); ¹³C NMR (101 MHz, CD₂Cl₂): $\delta_{\rm C}$ 178.5, 174.5, 151.6, 150.7, 136.9, 134.9, 129.7, 129.0, 128.9, 128.9, 128.8, 127.6, 125.1, 123.3, 122.6, 119.8, 118.0, 117.3, 115.2, 69.5, 57.7, 41.4, 40.6, 23.0; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ = 3418, 3329, 2970, 1705; MS (pNSI): 199.2 (87%), 373.1 (68%, (M – (N(OH)Ph))⁺), 480.2 (100%, (M – (H₂) + H)⁺); HRMS (pNSI): calcd C₂₈H₂₃N₃O₅Na [M + Na]⁺: 504.1530; observed: 504.1522.

3cc – benzyl (3a*S**,5*S**,10b*S**)-5-(hydroxy(*o*-tolyl)amino)-1,3dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate

To a stirred Schlenk flask was added benzyl 3-vinyl-1*H*-indole-1carboxylate (94 mg, 0.34 mmol), DCM (5 mL) and 1*H*-pyrrole-2,5-dione (33 mg, 0.34 mmol). The resulting solution was heated at reflux for 24 hours. The reaction was allowed to cool to room temperature and to the stirred solution 1-methyl-2nitrosobenzene (41 mg, 0.34 mmol) was added and the solution was stirred for 4 hours. The solvent was removed under reduced pressure to leave the crude product as a pale yellow solid. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 3 : 2, column diameter = 2 cm, silica = 16 cm) to give benzyl-($3aS^*,5S^*,10bS^*$)-5-(hydroxy(*o*tolyl)amino)-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (83%, 140 mg, 0.28 mmol) as a yellow powder.

Mp: 181.4–183.9 °C; $R_{\rm f}$: 0.48 (Pet(40/60)–EA 3 : 2); ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ 11.26 (1H, s), 8.41 (1H, s), 7.93 (1H, d, J= 8.3 Hz), 7.51 (2H, d, J = 7.0 Hz), 7.45–7.33 (4H, m), 7.18–7.08 (3H, m), 7.03–6.91 (3H, m), 5.56 (1H, d, J = 12.1 Hz), 5.32 (1H, d, J= 12.1 Hz), 4.96 (1H, d, J = 8.0 Hz), 4.34 (1H, app t, J = 3.7 Hz), 3.73 (1H, app q, J = 8.7 Hz), 2.50–2.44 (1H, m), 2.17 (3H, s), 1.74– 1.64 (1H, m); ¹³C NMR (101 MHz, DMSO- d_6): $\delta_{\rm C}$ 180.6, 176.5, 151.6, 136.2, 135.7, 131.1, 130.8, 130.0, 129.2, 129.1, 129.1, 128.2, 126.6, 124.7, 124.5, 122.9, 122.2, 120.6, 117.5, 114.4, 69.2, 57.1, 41.8, 40.2, 26.7, 18.6; IR (neat): $v_{\rm max}/{\rm cm}^{-1}$ 3495, 3325, 2953, 1711; MS (pNSI): 373.1 (51%, (M – (N(OH)(o-Tol)))⁺), 494.2 $(16\%, (M - (H_2) + H)^+)$, 518.2 (21%, $(M + Na)^+$); HRMS (pNSI): calcd $C_{29}H_{25}N_3O_5Na [M + Na]^+$: 518.1686; observed: 518.1681.

3dd - benzyl ($3aS^*, 5S^*, 10bS^*$)-5-(3, 5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo [3, 4-*a*]carbazole-10(1*H*)-carboxylate

To a stirred Schlenk flask was added benzyl 3-vinyl-1*H*-indole-1carboxylate (189 mg, 0.68 mmol), DCM (10 mL) and 1*H*-pyrrole-2,5-dione (66 mg, 0.68 mmol). The resulting solution was heated at reflux for 24 hours. The reaction was cooled to 0 °C and 4-phenyl-1,2,4-triazolidine-3,5-dione (120 mg, 0.68 mmol) was added. The solution was stirred at 0 °C for 1 hour. The solvent was removed under reduced pressure to leave the crude product as an off white solid. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 1 : 1, column diameter = 2 cm, silica = 13 cm) to give benzyl ($3aS^*,5S^*,10bS^*$)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (58%, 216 mg, 0.39 mmol) as a pale pink powder.

Mp: 174.6–177.1 °C; $R_{\rm f}$: 0.06 (Pet(40/60)–EA 1 : 1); ¹H NMR (400 MHz, CD₂Cl₂): $\delta_{\rm H}$ 8.78 (1H, s), 8.05 (1H, d, J = 8.3 Hz), 7.54 (1H, d, J = 7.7 Hz), 7.44–7.38 (6H, m), 7.38–7.30 (4H, m), 7.30–7.24 (1H, m), 7.20 (1H, app t, J = 7.5 Hz), 5.51 (1H, app t, J = 5.3 Hz), 5.45 (1H, d, J = 11.9 Hz), 5.31 (1H, d, J = 11.9 Hz), 4.98 (1H, d, J = 7.9 Hz), 3.46 (1H, app q, J = 8.1 Hz), 2.36–2.30 (1H, m), 2.18 (1H, ddd, J = 13.9, 8.6, 5.3 Hz); ¹³C NMR (101 MHz, CD₂Cl₂): $\delta_{\rm C}$ 178.1, 173.8, 153.7, 152.4, 151.4, 136.8, 134.7, 131.1, 130.6, 129.1, 128.9, 128.8, 128.4, 126.2, 125.7, 125.6, 123.7, 119.0, 115.5, 114.2, 69.7, 47.7, 41.0, 39.5, 26.8; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ = 3169, 2975, 1699; MS (pNSI): 279.1 (38%), 373.1 (13%, (M – PTAD)⁺), 550.2 (21%, (M + H)⁺), 567.2 (100% (M + NH₄)⁺), 1116.4 (39%, (2M + NH₄)⁺), 1666.5 (6%, (3M + NH₄)⁺); HRMS (pNSI): calcd C₃₀H₂₄N₅O₆ [M + H]⁺: 550.1721; observed: 550.1719.

3ee – benzyl (*R**)-6-(hydroxy(phenyl)amino)-1,3-dioxo-2phenyl-2,3,5,6-tetrahydro-1*H*,11*H*-[1,2,4]triazolo[1',2':1,2] pyridazino[3,4-*b*]indole-11-carboxylate

To a stirred Schlenk flask was added benzyl 3-vinyl-1*H*-indole-1carboxylate (189 mg, 0.68 mmol) and DCM (10 mL). The solution was cooled to -78 °C and 4-phenyl-1,2,4-triazolidine-3,5dione (120 mg, 0.68 mmol) was added. The reaction was stirred at -78 °C for 5 hours. The reaction was warmed to room temperature, nitrosobenzene (73 mg, 0.68 mmol) was added and the reaction was stirred for 3 hours. The solvent was removed under reduced pressure to leave the crude product as a pale yellow oil. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 2 : 1, column diameter = 1 cm, silica = 16 cm) to give benzyl (R^*)-6-(hydroxy(phenyl)amino)-1,3dioxo-2-phenyl-2,3,5,6-tetrahydro-1H,11H-[1,2,4]triazolo[1',2':1,2] pyridazino[3,4-b]indole-11-carboxylate (72%, 274 mg, 0.49 mmol) as a white powder.

Mp: 101.2–103.1 °C; R_f : 0.53 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CD₂Cl₂): δ_H 8.09 (1H, d, J = 8.2 Hz), 7.51–7.38 (8H, m), 7.38–7.24 (5H, m), 7.23–7.07 (4H, m), 6.87 (1H, d, J = 7.9 Hz), 6.36 (1H, s), 5.52 (1H, d, J = 12.1 Hz), 5.39 (1H, d, J = 12.1 Hz), 5.22 (1H, dd, J = 14.0, 1.7 Hz), 4.97–4.89 (1H, m), 3.66 (1H, dd, J = 14.0, 3.4 Hz); ¹³C NMR (101 MHz, CD₂Cl₂): $\delta_{\rm C}$ 147.2, 147.0, 146.6, 145.6, 131.0, 130.1, 127.3, 126.2, 125.4, 125.2, 124.9, 124.9, 124.9, 124.8, 124.8, 122.4, 122.3, 120.7, 120.5119.7, 115.8, 114.5, 110.5, 97.2, 66.2, 55.1, 39.6; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1} = 3337$, 3063, 1716; MS (pAPCI): 395.1 (100%), 451.1 (59%, (M - (N(OH)Ph))⁺), 542.2 (5%, (M - (H₂O) + H)⁺), 558.2 (1%, (M - H)⁺), 560.2 (1%, (M + H)⁺); HRMS (pAPCI): calcd C₃₂H₂₆N₅O₅ [M + H]⁺: 560.1928; observed: 560.1913.

3ff – benzyl (*R**)-6-(hydroxy(*o*-tolyl)amino)-1,3-dioxo-2-phenyl-2,3,5,6-tetrahydro-1*H*,11*H*-[1,2,4]triazolo[1',2':1,2]pyridazino [3,4-*b*]indole-11-carboxylate

To a stirred Schlenk flask was added benzyl 3-vinyl-1*H*indole-1-carboxylate (94 mg, 0.34 mmol) and DCM (10 ml). The reaction mixture was cooled to -78 °C and 4-phenyl-1,2,4-triazolidine-3,5-dione (60 mg, 0.34 mmol) was added. The reaction mixture was stirred at -78 °C for 5 hours, 1methyl-2-nitrosobenzene was added (41 mg, 0.34 mmol) and the reaction stirred at room temperature for 18 hours. The solvent was removed under reduced pressure to leave the crude product as a yellow powder. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 3 : 1, column diameter = 2 cm, silica = 20 cm) to give benzyl (*R**)-6-(hydroxy(*o*-tolyl)amino)-1,3-dioxo-2-phenyl-2,3,5,6-tetrahydro-1*H*,11*H*-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*]indole-11-car boxylate (68%, 132 mg, 0.23 mmol) as an off white powder.

Mp: 163.8–165.1 °C; R_f : 0.49 (Pet(40/60)–EA 3 : 1); ¹H NMR (400 MHz, CD₂Cl₂): δ_H 8.01 (1H, d, J = 8.3 Hz), 7.65 (1H, dd, J = 8.1, 1.3 Hz), 7.54–7.38 (7H, m), 7.35 (3H, dd, J = 5.0, 2.1 Hz), 7.19 (2H, app dtd, J = 8.5, 7.2, 6.7, 1.4 Hz), 6.99 (2H, app tdd, J = 7.5, 3.4, 1.2 Hz), 6.90 (1H, dd, J = 7.7, 1.4 Hz), 6.75 (1H, d, J = 7.8 Hz), 5.87 (1H, s, OH), 5.48 (1H, d, J = 11.9 Hz), 5.34 (1H, d, J = 11.9 Hz), 5.19 (1H, dd, J = 14.1, 2.3 Hz), 4.63 (1H, app t, J = 2.3 Hz), 3.52 (1H, dd, J = 14.1, 2.3 Hz), 1.94 (3H, s); ¹³C NMR (101 MHz, CDCl₃): δ_C 151.9, 150.3, 150.0, 148.8, 134.6, 133.6, 131.6, 131.1, 130.6, 130.0, 129.4, 128.9, 128.9, 128.8, 127.0, 126.6, 126.0, 125.7, 124.4, 123.6, 122.7, 117.9, 114.6, 101.7, 70.1, 58.6, 43.5, 17.7; IR (neat): ν_{max}/cm^{-1} = 3291, 2981, 1782, 1737, 1699; MS (pNSI): 199.2 (100%), 407.2 (79%), 451.1 (81%, (M – (N(OH)(*o*-Tol))))⁺), 572.2 (25%, (M – H)⁺), 596.2 (65%, (M + Na)⁺); HRMS (pNSI): calcd C₃₃H₂₇N₅O₅Na [M + Na]⁺: 596.1904; observed: 596.1898.

3gg – benzyl (3a*S**,5*S**,10b*S**)-5-(hydroxy(phenyl)amino)-7methoxy-2-methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo [3,4-*a*]carbazole-10(1*H*)-carboxylate

To a stirred Schlenk flask was added benzyl 5-methoxy-3-vinyl-1*H*-indole-1-carboxylate (209 mg, 0.68 mmol), DCM (10 mL) and 1-methyl-1*H*-pyrrole-2,5-dione (76 mg, 0.68 mmol). The resulting solution was heated at reflux for 18 hours. The reaction was cooled to room temperature and nitrosobenzene (72 mg, 0.68 mmol) was added and the reaction was stirred for 1.5 hours. The solvent was removed under reduced pressure to leave the crude product as a pale orange oil. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 2 : 1, column diameter = 1 cm, silica = 16 cm) to give benzyl $(3aS^*, 5S^*, 10bS^*)$ -5-(hydroxy(phenyl)amino)-7-methoxy-2-methyl-1, 3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (73%, 218 mg, 0.44 mmol) as an orange powder.

Mp: 106.8–110.2 °C; $R_{\rm f}$: 0.65 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CD₂Cl₂): $\delta_{\rm H}$ 7.97 (1H, br d, J = 8.3 Hz), 7.49–7.47 (2H, m), 7.41–7.37 (3H, m), 7.33–7.30 (2H, m), 7.21–7.19 (2H, m), 7.05–7.00 (2H, m), 6.85 (1H, br d, J = 8.4 Hz), 5.53 (1H, d, J = 11.9 Hz), 5.39 (1H, d, J = 11.9 Hz), 5.02 (1H, br s), 4.91–4.87 (1H, m), 4.75 (1H, br s), 3.68 (3H, s), 3.50 (1H, br s), 2.86 (3H, s), 2.36 (1H, br s), 2.01 (1H, br s); ¹³C NMR (101 MHz, CD₂Cl₂): $\delta_{\rm C}$ 178.3, 174.5, 156.3, 151.5, 151.1, 135.0, 131.5, 130.7, 129.0, 128.9, 128.8, 128.8, 128.4, 122.4, 117.7, 117.2, 115.9, 113.4, 102.4, 69.4, 57.9, 55.6, 40.3, 39.2, 24.9, 23.4; IR (neat): $\nu_{\rm max}$ cm⁻¹ = 3408, 2969, 2890, 1699; MS (pNSI): 417.1 (100%, (M – (N(OH)Ph))⁺), 524.2 (68%, (M – (H₂) + H)⁺), 548.2 (16%, (M + Na)⁺), 1073.4 (4%, (2M + Na)⁺); HRMS (pNSI): calcd C₃₀H₂₇N₃O₆Na [M + Na]⁺: 548.1792; observed: 548.1785.

3hh – benzyl (3a*S**,5*S**,10b*S**)-5-(hydroxy(*o*-tolyl)amino)-7methoxy-2-methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo [3,4-*a*]carbazole-10(1*H*)-carboxylate

To a stirred Schlenk flask was added benzyl 5-methoxy-3-vinyl-1*H*-indole-1-carboxylate (209 mg, 0.68 mmol), DCM (10 mL) and 1-methyl-1*H*-pyrrole-2,5-dione (76 mg, 0.68 mmol). The resulting solution was heated at reflux for 18 hours. The reaction was cooled to room temperature and 1-methyl-2-nitrosobenzene (82 mg, 0.68 mmol) was added. The solution was stirred at room temperature for 3 hours. The solvent was removed under reduced pressure to leave the crude product as a pale yellow solid. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 2 : 1, column diameter = 2 cm, silica = 15 cm) to give benzyl ($3aS^*, 5S^*, 10bS^*$)-5-(hydroxy(*o*tolyl)amino)-7-methoxy-2-methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (74%, 279 mg, 0.50 mmol) as a pale yellow powder.

Mp: 107.6–110.1 °C; R_f : 0.29 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CD₂Cl₂): δ_H 7.93 (1H, d, J = 9.1 Hz), 7.54 (1H, dd, J = 8.1, 1.3 Hz), 7.49–7.45 (2H, m), 7.43–7.35 (3H, m), 7.19 (1H, ddd, J = 7.6, 6.9, 1.9 Hz), 7.10–7.01 (2H, m), 6.88 (1H, d, J = 2.6 Hz), 6.80 (1H, dd, J = 9.1, 2.6 Hz), 5.52 (1H, d, J = 11.9 Hz), 5.37 (1H, d, J = 11.9 Hz), 5.18 (1H, s), 4.87 (1H, d, J = 8.1 Hz), 4.33–4.29 (1H, m), 3.65 (3H, s), 3.67–3.61 (1H, m), 2.86 (3H, s), 2.61 (1H, app dt, J = 13.4, 5.9 Hz), 2.22 (3H, s), 1.86 (1H, ddd, J = 13.4, 8.5, 4.3 Hz); ¹³C NMR (101 MHz, CD₂Cl₂): δ_C 178.4, 174.4, 156.1, 151.6, 149.8, 135.0, 134.9, 131.2, 130.8, 130.6, 130.4, 128.8, 128.8, 128.5, 126.4, 125.3, 121.7, 117.5, 115.7, 113.6, 102.0, 69.3, 57.8, 55.4, 40.5, 38.9, 25.0, 24.9, 18.2; IR (neat): $\nu_{max}/cm^{-1} = 3370, 2965, 2887, 1699;$ MS (pNSI): 207.1 (39%), 417.1 (34%, (M – (N(OH)(o-Tol))))⁺), 438.2 (100%, (M – (H₂) + H)⁺)); HRMS (pNSI): calcd C₃₁H₂₈N₃O₆ [M – (H₂) + H]⁺: 538.1976; observed: 538.1973.

3ii – benzyl (3a*S**,5*S**,10b*S**)-5-(hydroxy(phenyl)amino)-7methoxy-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*] carbazole-10(1*H*)-carboxylate

To a stirred Schlenk flask was added benzyl 5-methoxy-3-vinyl-1*H*-indole-1-carboxylate (209 mg, 0.68 mmol), DCM (10 mL) and 1*H*-pyrrole-2,5-dione (66 mg, 0.68 mmol). The resulting solution was heated at reflux for 18 hours. The reaction was cooled to room temperature and nitrosobenzene (72 mg, 0.68 mmol) was added and the reaction was stirred for 2.5 hours. The solvent was removed under reduced pressure to leave the crude product as a pale orange oil. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 2 : 1, column diameter = 1 cm, silica = 16 cm) to give benzyl ($3aS^*, 5S^*, 10bS^*$)-5-(hydroxy(phenyl)amino)-7-methoxy-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (79%, 317 mg, 0.54 mmol) as a pale orange powder.

Mp: 134.2–136.9 °C; R_f : 0.34 (Pet(40/60)–EA 3 : 2); ¹H NMR (400 MHz, CD₂Cl₂): δ_H 8.42 (1H, br s), 7.94 (1H, d, J = 9.0 Hz), 7.47–7.44 (2H, m), 7.40–7.34 (3H, m), 7.30–7.27 (2H, m), 7.19–7.17 (2H, m), 7.01–6.98 (1H, m), 6.93 (1H, br s), 6.81 (1H, d, J = 9.0 Hz), 5.49 (1H, d, J = 11.9 Hz), 5.39 (1H, br s), 5.34 (1H, d, J = 11.9 Hz), 4.92 (1H, br d, J = 6.2 Hz), 4.74 (1H, br s), 3.64 (3H, s), 3.57–3.51 (1H, br m), 2.39–2.35 (1H, br m), 1.91–1.89 (1H, br m); ¹³C NMR (101 MHz, CD₂Cl₂): δ_C 178.6, 174.4, 156.2, 151.5, 151.0, 135.0, 131.4, 130.3, 129.0, 128.9, 128.8, 128.8, 128.4, 122.6, 117.5, 117.4, 116.0, 113.5, 102.3, 69.4, 57.9, 55.6, 41.5, 40.5, 24.0; IR (neat): $\nu_{max}/cm^{-1} = 3233, 2952, 1708$; MS (pNSI): 403.1 (37%, (M – (N(OH)Ph))⁺), 510.2 (100%, (M – (H₂) + H)⁺), 532.1 (26%, (M – (H₂) + Na)⁺); HRMS (pNSI): calcd C₂₉H₂₄N₃O₆ [M – (H₂) + H]⁺: 510.1654; observed: 510.1660.

3jj – benzyl (3a*S**,5*S**,10b*S**)-5-(hydroxy(*o*-tolyl)amino)-7methoxy-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*] carbazole-10(1*H*)-carboxylate

To a stirred Schlenk flask was added benzyl 5-methoxy-3-vinyl-1*H*-indole-1-carboxylate (209 mg, 0.68 mmol), DCM (10 mL) and 1*H*-pyrrole-2,5-dione (66 mg, 0.68 mmol). The resulting solution was heated at reflux for 18 hours. The reaction was cooled to room temperature and 1-methyl-2-nitrosobenzene (82 mg, 0.68 mmol) was added. The solution was stirred at room temperature for 3.5 hours. The solvent was removed under reduced pressure to leave the crude product as a pale yellow solid. The product was purified by column chromatography (petrol (40/60)–ethyl acetate 2 : 1, column diameter = 2 cm, silica = 14 cm) to give benzyl ($3aS^*$, $5S^*$,10b S^*)-5-(hydroxy(*o*-tolyl)amino)-7-methoxy-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxy-late (76%, 255 mg, 0.52 mmol) as a pale yellow powder.

Mp: 193.0–195.6 °C; R_f : 0.20 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CD₂Cl₂): δ_H 7.92 (1H, d, J = 9.7 Hz), 7.81 (1H, s), 7.53 (1H, d, J = 7.8 Hz), 7.46 (2H, dd, J = 7.8, 1.6 Hz), 7.42–7.33 (3H, m), 7.21–7.15 (1H, m), 7.09–7.00 (2H, m), 6.84–6.75 (2H, m), 5.50 (1H, d, J = 11.9 Hz), 5.35 (1H, d, J = 11.9 Hz), 5.16 (1H, s), 4.96 (1H, d, J = 7.6 Hz), 4.37 (1H, app t, J = 4.9 Hz), 3.71 (1H, app td, J = 8.7, 5.6 Hz), 3.64 (3H, s), 2.64 (1H, app dt, J = 13.6, 5.6 Hz), 2.21 (3H, s), 1.88 (1H, ddd, J = 13.6, 9.3, 4.3 Hz); ¹³C NMR (101 MHz, DMSO- d_6): δ_C 180.6, 176.4, 155.6, 151.8, 151.7, 135.8, 131.6, 130.8, 130.7, 130.2, 129.1, 129.0, 126.7, 124.8, 122.3, 117.2, 115.2, 113.5, 102.7, 69.1, 57.3, 55.5, 41.9, 40.3, 27.2, 18.5; IR (neat): $v_{max}/cm^{-1} = 3457$, 3367, 2981, 2886, 1712; MS (pNSI): 403.1 (100%, (M – (N(OH)(o-Tol)))⁺), 524.1 (75%, (M – (H₂) + H)⁺), 548.2 (16%, (M + Na)⁺),

1073.4 (5%, (2M + Na)⁺); HRMS (pNSI): calcd $C_{30}H_{27}N_3O_6Na [M + Na]^+$: 548.1792; observed: 548.1785.

3kk – benzyl (*R**)-6-(hydroxy(phenyl)amino)-8-methoxy-1,3dioxo-2-phenyl-2,3,5,6-tetrahydro-1*H*,11*H*-[1,2,4]triazolo [1',2':1,2]pyridazino[3,4-*b*]indole-11-carboxylate

To a stirred Schlenk flask was added benzyl 5-methoxy-3-vinyl-1*H*-indole-1-carboxylate (209 mg, 0.68 mmol) and DCM (10 mL). The solution was cooled to -78 °C and 4-phenyl-1,2,4triazolidine-3,5-dione (120 mg, 0.68 mmol) was added. The reaction was stirred at -78 °C for 1.5 hours. The reaction was warmed to room temperature, nitrosobenzene (73 mg, 0.68 mmol) was added and the reaction was stirred for 20 hours. The solvent was removed under reduced pressure to leave the crude product as a pale yellow oil. The product was purified by column chromatography (petrol (40/60)-ethyl acetate 2 : 1, column diameter = 1 cm, silica = 16 cm) to give benzyl (*R**)-6-(hydroxy(phenyl)amino)-8-methoxy-1,3-dioxo-2-phenyl-2,3,5,6tetrahydro-1*H*,11*H*-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*]indole-11-carboxylate (78%, 312 mg, 0.53 mmol) as a white powder.

Mp: 110.4–113.2 °C; $R_{\rm f}$: 0.20 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CD₂Cl₂): $\delta_{\rm H}$ 7.88 (1H, d, J = 9.1 Hz), 7.42–7.38 (5H, m), 7.36–7.32 (3H, m), 7.29–7.26 (2H, m), 7.24–7.20 (2H, m), 7.13 (2H, d, J = 8.1 Hz), 7.05 (1H, app t, J = 7.3 Hz). 6.76 (1H, dd, J = 9.1, 2.6 Hz), 6.24 (1H, s), 6.10 (1H, d, J = 2.5 Hz), 5.43 (1H, d, J = 12.0 Hz), 5.32–5.29 (1H, m), 5.25–5.18 (1H, m), 4.84–4.80 (1H, m), 3.64 (1H, dd, J = 14.0, 3.3 Hz), 3.55 (3H, s); ¹³C NMR (101 MHz, CD₂Cl₂): $\delta_{\rm C}$ 156.5, 151.1, 150.3, 149.4, 134.8, 131.2, 130.3, 129.2, 129.0, 129.0, 128.70, 128.7, 128.7, 128.6, 128.2, 126.9, 126.2, 124.6, 119.7, 115.3, 113.2, 101.0, 100.5, 69.9, 59.1, 55.5, 44.0; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1} = 3336$, 2935, 1716; MS (pNSI): 481.1 (17%, (M – (N(OH)Ph))⁺), 588.2 (100%, (M – (H₂) + H)⁺), 612.2 (15%, (M + Na)⁺); HRMS (pNSI): calcd C₃₃H₂₇N₅O₆Na [M + Na]⁺: 612.1854; observed: 612.1838.

3ll – benzyl (*R**)-6-(hydroxy(*o*-tolyl)amino)-8-methoxy-1,3dioxo-2-phenyl-2,3,5,6-tetrahydro-1*H*,11*H*-[1,2,4]triazolo [1',2':1,2]pyridazino[3,4-*b*]indole-11-carboxylate

To a stirred Schlenk flask was added benzyl 5-methoxy-3-vinyl-1H-indole-1-carboxylate (209 mg, 0.68 mmol) and DCM (10 mL). The solution was cooled to -78 °C and 4-phenyl-1,2,4triazolidine-3,5-dione (120 mg, 0.68 mmol) was added. The reaction was stirred at -78 °C for 1.5 hours. The reaction was warmed to room temperature, 1-methyl-2-nitrosobenzene (73 mg, 0.68 mmol) was added and the reaction was stirred for 24 hours. The solvent was removed under reduced pressure to leave the crude product as a pale orange oil. The product was purified by column chromatography (petrol (40/60)-ethyl acetate 2 : 1, column diameter = 2 cm, silica = 17 cm) to give (R*)-6-(hydroxy(o-tolyl)amino)-8-methoxy-1,3-dioxo-2benzyl phenyl-2,3,5,6-tetrahydro-1H,11H-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-b]indole-11-carboxylate (82%, 338 mg, 0.56 mmol) as an off white powder.

Mp: 181.1–183.0 °C; $R_{\rm f}$: 0.55 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ 8.70 (1H, s), 7.84 (1H, d, J = 9.0 Hz),

7.55–7.48 (2H, m), 7.46–7.41 (3H, m), 7.41–7.33 (4H, m), 7.33–7.29 (2H, m), 7.13–7.03 (2H, m), 6.97 (1H, app td, J = 7.4, 1.3 Hz), 6.83 (1H, dd, J = 9.1, 2.6 Hz). 6.38 (1H, s), 5.43 (1H, d, J = 12.1 Hz), 5.33 (1H, d, J = 12.1 Hz), 4.80 (1H, dd, J = 13.7, 1.8 Hz), 4.71 (1H, dd, J = 3.3, 1.8 Hz), 3.68–3.61 (1H, dd, J = 13.7, 3.3 Hz), 3.58 (s, 3H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CD₂Cl₂): $\delta_{\rm C}$ 156.3, 151.6, 150.8, 150.3, 149.8, 135.3, 131.6, 130.9, 130.3, 130.0, 129.7, 129.2, 129.1, 129.1, 128.9, 128.0, 127.4, 127.1, 126.8, 125.2, 121.8, 115.3, 113.2, 103.1, 101.9, 69.9, 55.9, 55.6, 43.9, 18.2; IR (neat): $\nu_{\rm max}$ cm⁻¹ = 3212, 2939, 1720; MS (pNSI): 481.2 (100%, (M – N(OH)(o-Tol))⁺), 602.2 (34%, (M – (H₂) + H)⁺), 626.2 (100%, (M + Na)⁺); HRMS (pNSI): calcd C₃₄H₂₉N₅O₆Na [M + Na]⁺: 626.2010; observed: 626.2006.

4a – (3a*S**,5*S**,10b*S**)-5-methoxy-2-methyl-4,5,10,10btetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred Schlenk flask was added benzyl $(3aS^*,5S^*,10bS^*)$ -5-(hydroxy(*o*-tolyl)amino)-2-methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (120 mg, 0.24 mmol), platinum(v) oxide (53 mg, 0.24 mmol) and methanol (5 mL). The resulting suspension was placed under an atmosphere of H₂ and stirred at room temperature for 18 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as an orange solid, The crude product was purified by column chromatography (petrol (40/60)–ethyl acetate 1:1, column diameter = 2 cm, silica = 13 cm) to give (3aS*,5S*,10bS*)-5methoxy-2-methyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione (60%, 41 mg, 0.14 mmol) as a pale yellow powder.

Mp: 139.4–142.7 °C; $R_{\rm f}$: 0.25 (Pet(40/60)–EA 1 : 1); ¹H NMR (400 MHz, CD₂Cl₂): $\delta_{\rm H}$ 8.91 (1H, s), 7.56 (1H, d, J = 7.8 Hz), 7.34 (1H, d, J = 7.7 Hz), 7.14 (1H, app t, J = 7.5 Hz), 7.09 (1H, app t, J = 7.4 Hz), 4.73 (1H, app t, J = 2.7 Hz), 4.14 (1H, d, J = 8.8 Hz), 3.31–3.25 (1H, m), 3.22 (3H, s), 2.94 (1H, app t, J = 2.4 Hz), 2.90 (3H, s), 1.88 (1H, ddd, J = 14.2, 6.9, 2.2 Hz); ¹³C NMR (101 MHz, CD₂Cl₂): $\delta_{\rm C}$ 178.9, 176.1, 136.4, 128.8, 126.6, 122.3, 120.1, 118.2, 111.9, 111.3, 69.4, 56.1, 39.5, 37.3, 27.4, 25.1; IR (neat): $v_{\rm max}$ /cm⁻¹ 3398, 2931, 2870, 1689; MS (pNSI): 285.0 (29%), 355.1 (100%), 371.1 (57%), 560.0 (21%); HRMS (pNSI): calcd C₁₅H₁₃N₂O₂ [M – OMe]⁺: 253.0972; observed: 253.0974.

4b - (3a*S**,5*S**,10b*S**)-5-ethoxy-2-methyl-4,5,10,10btetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred Schlenk flask was added benzyl $(3aS^*,5S^*,10bS^*)$ -5-(hydroxy(*o*-tolyl)amino)-2-methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (100 mg, 0.20 mmol), platinum(w) oxide (45 mg, 0.20 mmol) and ethanol (5 mL). The resulting suspension was placed under an atmosphere of H₂ and stirred at room temperature for 18 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as an yellow solid, The crude product was purified by column chromatography (petrol (40/60)–ethyl acetate 2 : 1, column diameter = 2 cm, silica = 15 cm) to give $(3aS^*,5S^*,10bS^*)$ -5ethoxy-2-methyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(*2H*,3a*H*)-dione (24%, 20 mg, 0.04 mmol) as a brown powder.

Mp: 100.6–102.8 °C; R_f : 0.16 (Pet(40/60)–EA 2 : 1); ¹H NMR (400 MHz, CD₂Cl₂): δ_H 8.78 (1H, s), 7.54 (1H, d, J = 7.7 Hz), 7.35 (1H, d, J = 7.7 Hz), 7.17–7.12 (1H, m), 7.09 (1H, app t, J = 7.0 Hz), 4.83 (1H, app t, J = 2.8 Hz), 4.16 (1H, d, J = 8.8 Hz), 3.55 (1H, app td, J = 6.9, 1.8 Hz), 3.32–3.26 (2H, m), 2.93–2.91 (1H, m), 2.90 (3H, s), 1.88 (1H, ddd, J = 14.3, 7.1, 2.7 Hz), 0.97 (1H, t, J = 7.0 Hz); ¹³C NMR (101 MHz, CD₂Cl₂): δ_C 178.9, 176.0, 136.3, 128.8, 126.5, 122.3, 120.1, 118.1, 112.5, 111.3, 67.4, 63.5, 39.5, 37.3, 27.9, 25.0, 15.2; IR (neat): ν_{max} /cm⁻¹ 3300, 2969, 1690; MS (pAPCI): 108.1 (24%), 298.1 (6%, (M)⁺), 299.1 (5%, (M + H)⁺); HRMS (pAPCI): calcd C₁₇H₁₉N₂O₃ [M + H]⁺: 299.1390; observed: 299.1387.

4c - (3aS*,5S*,10bS*)-5-(hydroxy(phenyl)amino)-2-methyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)dione

To a stirred Schlenk flask was added benzyl $(3aS^*, 5S^*, 10bS^*)$ -5-(hydroxy(phenyl)amino)-2-methyl-1,3-dioxo-2,3,3a,4,5,10bhexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (120 mg, 0.25 mmol), platinum(iv) oxide (57 mg, 0.25 mmol) and THF (5 mL). The resulting suspension was placed under an atmosphere of H₂ and stirred at room temperature for 5 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as a yellow solid, The crude product was purified by trituration from DCM to give $(3aS^*, 5S^*, 10bS^*)$ -5-(hydroxy(phenyl)amino)-2methyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)dione (75%, 68 mg, 0.19 mmol) as a pale yellow powder.

Mp: 157.2–161.9 °C; $R_{\rm f}$: 0.17 (Pet(40/60)–EA 1 : 1); ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ 11.06 (1H, s), 8.20 (1H, s), 7.35 (1H, d, J = 8.0 Hz), 7.26 (1H, d, J = 8.0 Hz), 7.24–7.19 (2H, m), 7.17–7.08 (2H, m), 6.98 (1H, app ddd, J = 8.2, 7.0, 1.2 Hz), 6.91–6.81 (1H, m), 6.81 (1H, app ddd, J = 8.0, 6.9, 1.0 Hz), 4.88 (1H app t, J = 4.9 Hz), 4.27 (1H, d, J = 8.8 Hz), 3.64 (1H, app td, J = 8.8, 6.1 Hz), 2.81 (3H, s), 2.33 (1H, app dt, J = 13.7, 6.1 Hz), 1.84 (1H, ddd, J = 13.7, 8.8, 4.9 Hz); ¹³C NMR (101 MHz, DMSO- d_6): $\delta_{\rm C}$ 179.8, 176.3, 153.3, 137.0, 130.0, 129.0, 126.3, 121.5, 121.2, 119.9, 119.0, 117.2, 111.7, 110.0, 57.4, 39.6, 39.3, 25.8, 25.1; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3374, 3306, 2919, 1683; MS (pAPCI): 108.0 (28%), 251.1 (100%), 253.1 (68%, (M – (N(OH)Ph) + H)⁺), 344.1 (13%, (M – (OH) + H)⁺), 361.1 (3%, (M + H)⁺); HRMS (pAPCI): calcd C₂₁H₂₀N₃O₃ [M + H]⁺: 362.1499; observed: 362.1501.

Note: H^1 NMR ran at 40 °C.

4d – $(3aS^*, 5S^*, 10bS^*)$ -5-(hydroxy(*o*-tolyl)amino)-2-methyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred Schlenk flask was added benzyl $(3aS^*,5S^*,10bS^*)$ -5-(hydroxy(*o*-tolyl)amino)-2-methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (100 mg, 0.20 mmol), platinum(*w*) oxide (45 mg, 0.20 mmol) and THF (5 mL). The resulting suspension was placed under an atmosphere of H₂ and stirred at room temperature for 7 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as a yellow solid. The crude product was purified by column chromatography (petrol (40/60)–ethyl acetate 1 : 1, column diameter = 2 cm, silica = 16 cm) to give $(3aS^*,5S^*,10bS^*)$ -5-(hydroxy(*o*-tolyl) amino)-2-methyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione (87%, 65 mg, 0.17 mmol) as a pale orange powder.

Mp: 179.3–181.0 °C; $R_{\rm f}$: 0.60 (Pet(40/60)–EA 1 : 1); ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ 11.08 (1H, s), 8.28 (1H, s), 7.50 (1H, d, J= 8.0 Hz), 7.29 (1H, d, J = 8.1 Hz), 7.14–7.10 (1H, m), 6.91–6.87 (4H, m), 6.67 (1H, app t, J = 7.4 Hz), 4.29 (1H, d, J = 8.2 Hz), 4.27 (1H, app t, J = 3.9 Hz), 3.83–3.74 (1H, m), 2.81 (3H, s), 2.65–2.56 (1H, m), 1.98 (3H, s), 1.67 (1H, ddd, J = 13.6, 10.5, 3.9 Hz); ¹³C NMR (101 MHz, DMSO- d_6): $\delta_{\rm C}$ 180.0, 176.3, 152.2, 136.7, 130.7, 130.5, 130.3, 126.5, 126.5, 124.5, 122.4, 121.2, 119.3, 118.9, 111.7, 109.7, 58.3, 40.0, 38.6, 27.3, 25.1, 18.3; IR (neat): $\nu_{\rm max}$ /cm⁻¹ 3379, 2955, 2873, 1691; MS (pAPCI): 108.1 (98%), 251.1 (100%), 253.1 (61%, (M – (N(OH)(o-Tol))) + H)⁺), 271.1 (6%, (M – (N(OH)(o-Tol))) + OH₂)⁺), 358.2 (13%, (M – OH)⁺); HRMS (pAPCI): calcd C₂₂H₂₂N₃O₃ [M + H]⁺: 376.1656; observed: 376.1658.

4e – (3a*S**,5*S**,10b*S**)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-2-methyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3*aH*)-dione

To a stirred Schlenk flask was added benzyl $(3aS^*, 5S^*, 10bS^*)$ -5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-2-methyl-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-a]carbazole-10(1*H*)-carboxylate (110 mg, 0.20 mmol), platinum(rv) oxide (46 mg, 0.20 mmol) and THF (5 mL). The resulting suspension was placed under an atmosphere of H₂ and stirred at room temperature for 5 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as a yellow solid. The product was purified by trituration from DCM to give $(3aS^*, 5S^*, 10bS^*)$ -5-(3, 5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-2-methyl-4,5,10,10b-tetrahydropyrrolo-[3,4-a]carbazole-1,3(2*H*,3*aH*)-dione (91%, 79 mg, 0.18 mmol) as an off-white solid.

Mp: 262.4–264.0 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H 11.43 (1H, s), 10.67 (1H, br s), 7.52–7.42 (4H, m), 7.39–7.37 (2H, m), 7.21 (1H, d, J = 7.9 Hz), 7.06 (1H, app t, J = 7.6 Hz), 6.94 (1H, app t, J = 7.5 Hz), 5.39 (1H, app t, J = 6.1 Hz), 4.33 (1H, d, J = 8.0 Hz), 3.72 (1H, app q, J = 6.8 Hz), 2.81 (3H, s), 2.35–2.31 (2H, m); ¹³C NMR (101 MHz, DMSO- d_6): δ_C 178.9, 175.8, 152.7, 152.7, 137.2, 132.3, 130.7, 129.5, 128.5, 126.7, 125.3, 122.2, 119.9, 118.4, 112.3, 107.3, 48.1, 39.5, 38.3, 27.7, 25.3; IR (neat): v_{max}/cm^{-1} 3229, 1693; MS (pAPCI): 178.1 (35%), 253.1 (100%, (M – (PTAD) + H)⁺); HRMS (ASAP) calcd C₁₅H₁₃N₂O₂ [M – PTAD + H]⁺: 253.0972; observed: 253.0969.

4f - (3a*S**,5*S**,10b*S**)-5-(hydroxy(phenyl)amino)-4,5,10,10btetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred Schlenk flask was added benzyl $(3aS^*,5S^*,10bS^*)$ -5-(hydroxy(phenyl)amino)-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (90 mg, 0.18 mmol), platinum(IV) oxide (41 mg, 0.18 mmol) and THF (5 mL). The resulting suspension was placed under an atmosphere of H_2 and stirred at room temperature for 10 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as an yellow solid, The crude product was purified by column chromatography (petrol (40/60)-ethyl acetate 1:1, column diameter = 2 cm, silica = 14 cm) to give ($3aS^*, 5S^*, 10bS^*$)-5-(hydroxy(phenyl) amino)-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-

1,3(2*H*,3a*H*)-dione (41%, 26 mg, 0.07 mmol) as a yellow powder. Mp: 150.0–153.1 °C; *R*_f: 0.33 (Pet(40/60)–EA 1 : 1); ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ 11.22 (1H, s), 11.09 (1H, s), 8.24 (1H, s), 7.33 (1H, d, *J* = 8.1 Hz), 7.27–7.23 (1H, m), 7.20 (2H, app d, *J* = 7.3 Hz), 7.12 (2H, d, *J* = 7.7 Hz), 7.00–6.95 (1H, m), 6.85 (1H, app t, *J* = 7.2 Hz), 6.80 (1H app t, *J* = 7.3 Hz), 4.89 (1H, app t, *J* = 4.9 Hz), 4.25 (1H, d, *J* = 8.1 Hz), 3.63–3.52 (1H, m), 2.27 (1H, app dt, *J* = 13.6, 5.6 Hz), 1.80 (1H, ddd, *J* = 13.6, 9.2, 4.8 Hz); ¹³C NMR (101 MHz, DMSO-*d*₆): $\delta_{\rm C}$ 181.2, 177.6, 153.3, 137.0, 130.3, 129.0, 126.3, 121.4, 121.1, 119.9, 118.9, 117.2, 111.7, 109.9, 57.4, 40.9, 40.6, 25.7; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3302, 2924, 1706; MS (pAPCI): 108.1 (18%), 237.1 (100), 239.1 (46%, (M – (N(OH)Ph) + H)⁺); HRMS (pAPCI): calcd $C_{14}H_{11}N_2O_2$ [M – (N(OH)Ph) + H]⁺: 239.0815; observed: 239.0810.

4g – $(3aS^*, 5S^*, 10bS^*)$ -5-(hydroxy(*o*-tolyl)amino)-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred Schlenk flask was added benzyl $(3aS^*,5S^*,10bS^*)$ -5-(hydroxy(*o*-tolyl)amino)-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (120 mg, 0.24 mmol), platinum(v) oxide (54 mg, 0.24 mmol) and THF (5 mL). The resulting suspension was placed under an atmosphere of H₂ and stirred at room temperature for 6 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as a yellow solid, The crude product was purified by column chromatography (petrol (40/60)–ethyl acetate 2:3, column diameter = 2 cm, silica = 17 cm) to give (3aS^*,5S^*,10bS^*)-5-(hydroxy(*o*-tolyl) amino)-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)dione- (70%, 61 mg, 0.17 mmol) as an off white solid.

Mp: 149.9–153.2 °C; $R_{\rm f}$: 0.52 (Pet(40/60)–EA 2 : 3); ¹H NMR (400 MHz, CD₂Cl₂): $\delta_{\rm H}$ 8.81 (1H, s), 8.21 (1H, s), 7.56 (1H, d, J = 8.0 Hz), 7.30 (1H, d, J = 7.9 Hz), 7.18 (2H, d, J = 6.9 Hz), 7.06 (1H, app t, J = 7.6 Hz), 7.03–6.99 (2H, m), 6.91–6.85 (1H, m), 5.36 (1H, s), 4.51 (1H, app t, J = 4.5 Hz), 4.19 (1H, d, J = 8.6 Hz), 3.80 (1H, app td, J = 9.3, 6.4 Hz), 2.74 (1H, app dt, J = 13.6, 5.5 Hz), 2.15 (3H, s), 1.83 (1H, ddd, J = 13.6, 10.1, 4.1 Hz); ¹³C NMR (101 MHz, DMSO- d_6): $\delta_{\rm C}$ 181.5, 177.6, 152.2, 136.7, 130.6, 130.5, 130.5, 126.5, 126.5, 124.5, 122.4, 121.1, 119.3, 118.9, 111.6, 109.5, 58.3, 55.5, 40.9, 27.3, 18.3; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3372, 3298, 1683; MS (nNSI) = 186.0 (100%), 237.1 (97%, (M – (N(OH)(o-Tol)) – H)⁻), 358.1 (35%, (M – H₂)⁻), 394.1 (23%); HRMS (nNSI): calcd C₂₁H₁₈N₃O₃ [M – H]⁻: 360.1354; observed: 360.1348.

4h - (3a*S**,5*S**,10b*S**)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred Schlenk flask was added benzyl (3a*S**,5*S**,10b*S**)-5-(3,5-dioxo-4-phenyl-1,2,4-triazolidin-1-yl)-1,3-dioxo-2,3,3a,4,5, 10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (110 mg, 0.20 mmol), platinum(w) oxide (46 mg, 0.20 mmol) and THF (5 mL). The resulting suspension was placed under an atmosphere of H₂ and stirred at room temperature for 5 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as a white solid. The crude product was purified by trituration from DCM to give (3a*S**,5*S**,10b*S**)-5-(3,5-dioxo-4-phenyl-1,2,4-tri-azolidin-1-yl)-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione (64%, 53 mg, 0.13 mmol) as a white powder.

Mp: 212.6–213.9 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H 11.39 (1H, s), 11.36 (1H, s), 10.66 (1H, s), 7.51–7.44 (4H, m), 7.41–7.37 (2H, m), 7.23 (1H, d, J = 7.8 Hz), 7.07 (1H, app t, J = 7.5 Hz), 6.96 (1H, app t, J = 7.5 Hz), 5.42 (1H, app t, J = 6.0 Hz), 4.29 (1H, d, J = 8.0 Hz), 3.69 (1H, app q, J = 6.8 Hz), 2.37–2.21 (2H, m); ¹³C NMR (101 MHz, DMSO- d_6): δ_C 180.3, 177.1, 152.7, 152.6, 137.2, 132.3, 131.0, 129.5, 128.5, 126.7, 125.3, 122.2, 119.9, 118.4, 112.3, 107.1, 55.5, 48.1, 40.9, 27.5; IR (neat): ν_{max} cm⁻¹ = 3310, 3155, 3077, 1719, 1674; MS (pAPCI): 239.1 (100%, (M – (PTAD) + H)⁺), 414.1 (2%, (M – H)⁺); HRMS (pAPCI): calcd C₂₂H₁₆N₅O₄ [M – H]⁺: 414.1197; observed: 414.1185.

4i – (*R**)-6-(hydroxy(phenyl)amino)-2-phenyl-6,11-dihydro-1*H*,5*H*-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*]indole-1,3(2*H*)-dione

To a stirred Schlenk flask was added benzyl (R^*)-6-(hydroxy-(phenyl)amino)-1,3-dioxo-2-phenyl-2,3,5,6-tetrahydro-1*H*,11*H*-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*]indole-11-carboxylate (110 mg, 0.20 mmol), platinum(w) oxide (46 mg, 0.20 mmol) and THF (5 mL). The resulting suspension was placed under an atmosphere of H₂ and stirred at room temperature for 5 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as a yellow solid. The product was purified by trituration from DCM to give (R^*)-6-(hydroxy(phenyl)amino)-2-phenyl-6,11-dihydro-1*H*,5*H*-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*]indole-1,3(2*H*)-dione (65%, 55 mg, 0.13 mmol) as an off-white solid.

Mp: 174.3–175.2 °C; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ 11.63 (1H, s), 8.61 (1H, s), 7.54–7.38 (6H, m), 7.18 (2H, app t, *J* = 7.8 Hz), 7.10 (2H, app d, *J* = 7.8 Hz), 7.00–6.96 (2H, m), 6.91–6.83 (2H, m), 5.18–5.15 (1H, m), 4.48 (1H, dd, *J* = 13.0, 2.0 Hz), 3.77 (1H, dd, *J* = 13.0, 4.2 Hz); ¹³C NMR (101 MHz, DMSO-*d*₆): $\delta_{\rm C}$ 152.6, 149.6, 146.6, 134.2, 131.7, 129.8, 129.6, 128.9, 128.9, 127.0, 125.8, 122.3, 121.1, 120.2, 118.5, 118.3, 112.3, 92.4, 57.4, 43.4; IR (neat): *v*_{max}/ cm⁻¹ 3431, 3054, 1698; MS (pAPCI): 317.1 (100%, (M – (N(OH) Ph) + H)⁺), 407.1 (5%, (M – H₂O)⁺); HRMS (pAPCI) calcd C₂₄H₁₉N₅O₃ [M – H]⁺: 424.1404; observed: 424.1398.

4j – (*R**)-6-(hydroxy(*o*-tolyl)amino)-2-phenyl-6,11-dihydro-1*H*,5*H*-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*]indole-1,3(2*H*)-dione

To a stirred Schlenk flask was added benzyl (R^*)-6-(hydroxy(o-tolyl)amino)-1,3-dioxo-2-phenyl-2,3,5,6-tetrahydro-1H,11H-[1,2,4]-triazolo[1',2':1,2]pyridazino[3,4-b]indole-11-carboxylate (140 mg, 0.24 mmol), platinum(v) oxide (55 mg, 0.24 mmol) and THF (5 mL). The resulting suspension was placed under an

atmosphere of H₂ and stirred at room temperature for 5 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as a white solid. The crude product was purified by trituration from DCM to give (R^*)-6-(hydroxy(o-tolyl)amino)-2-phenyl-6,11-dihydro-1H,5H-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-b]indole-1,3(2H)-dione (44%, 46 mg, 0.11 mmol) as a white powder.

Mp: 188.1–189.6 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H 11.65 (1H, s), 8.58 (1H, s), 7.59–7.51 (5H, m), 7.47–7.42 (1H, m), 7.36 (1H, d, J = 8.0 Hz), 7.17–7.13 (1H, m), 6.96–6.91 (3H, m), 6.79–6.69 (2H, m), 4.69 (1H, d, J = 12.8 Hz), 4.58 (1H, br s), 3.62 (1H, dd, J = 12.8, 3.3 Hz), 2.06 (3H, s); ¹³C NMR (101 MHz, DMSO- d_6): δ_C 151.4, 150.4, 146.8, 134.0, 131.8, 131.2, 130.6, 129.8, 129.7, 128.9, 127.0, 126.7, 126.0, 125.1, 122.6, 121.0, 120.1, 118.1, 112.2, 92.3, 57.8, 43.5, 18.2; IR (neat): $v_{max}/cm^{-1} = 3426$, 3380, 2950, 1712; MS (pAPCI): 108.1 (100%), 317.1 (37%, (M – (N(OH)(*o*-Tol)) + H)⁺), 422.2 (4%, (M – (H₂O) + H)⁺), 438.2 (6%, (M – H)⁺); HRMS (pAPCI): calcd C₂₅H₂₀N₅O₃ [M – H]⁺: 438.1561; observed: 438.1553.

4k – (3a*S**,5*S**,10b*S**)-5-(hydroxy(phenyl)amino)-7-methoxy-2methyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred Schlenk flask was added benzyl $(3aS^*,5S^*,10bS^*)$ -5-(hydroxy(phenyl)amino)-7-methoxy-2-methyl-1,3-dioxo-2,3,3a, 4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (130 mg, 0.25 mmol), platinum(v) oxide (57 mg, 0.25 mmol) and THF (5 mL). The resulting suspension was placed under an atmosphere of H₂ and stirred at room temperature for 5 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as an orange solid. The crude product was purified by column chromatography (petrol (40/60)–ethyl acetate 3 : 2, column diameter = 2 cm, silica = 14 cm) to give (3aS*,5S*,10bS*)-5-(hydroxy(phenyl)amino)-7-methoxy-2-methyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione (70%, 69 mg, 0.18 mmol) as a pale yellow powder.

Mp: 149.1–151.2 °C; $R_{\rm f}$: 0.19 (Pet(40/60)–EA 3 : 2); ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ 10.95 (1H, s), 8.29 (1H, s), 7.23–7.19 (2H, m), 7.18 (1H, d, J = 2.8 Hz), 7.14–7.10 (2H, m), 6.87–6.83 (1H, m), 6.57 (1H, dd, J = 8.7, 2.5 Hz), 6.51 (1H, d, J = 2.5 Hz), 4.83 (1H, app t, J = 4.8 Hz), 4.24 (1H, d, J = 8.2 Hz), 3.64 (1H, app td, J = 9.1, 6.1 Hz), 3.48 (3H, s), 2.80 (3H, s), 2.35 (1H, ddd, J = 13.7, 6.1, 4.8 Hz), 1.83 (1H, ddd, J = 13.7, 9.1, 4.8 Hz); ¹³C NMR (101 MHz, DMSO- d_6): $\delta_{\rm C}$ 179.9, 176.3, 153.6C¹, 153.4, 132.0, 130.6, 129.0, 126.6, 121.2, 117.4, 112.3, 111.5, 109.5, 101.7, 57.7, 55.5, 39.5, 39.1, 27.1, 25.1; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ = 3394, 2937, 2833, 1690; MS (pAPCI): 283.1 (100%, (M – (N(OH)Ph) + H)⁺), 374.1 (18%, (M – (H₂O) + H)⁺), 390.1 (2%, (M – H)⁺), 392.2 (1%, (M + H)⁺); HRMS (pAPCI): calcd C₂₂H₂₂N₃O₄ [M + H]⁺: 392.1605; observed: 392.1597.

4l – (3a*S**,5*S**,10b*S**)-5-(hydroxy(*o*-tolyl)amino)-7-methoxy-2methyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred Schlenk flask was added benzyl (3a*S**,5*S**,10b*S**)-5-(hydroxy(*o*-tolyl)amino)-7-methoxy-2-methyl-1,3-dioxo-2,3,3a, 4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (108 mg, 0.20 mmol), platinum(IV) oxide (46 mg, 0.20 mmol) and THF (5 mL). The resulting suspension was placed under an atmosphere of H_2 and stirred at room temperature for 5 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as a white solid. The crude product was purified by column chromatography (petrol (40/60)–ethyl acetate 1 : 1, column diameter = 2 cm, silica = 15 cm) to give (3aS*,5S*,10bS*)-5-(hydroxy(*o*-tolyl)amino)-7-methoxy-2-methyl-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*, 3a*H*)-dione (70%, 57 mg, 0.14 mmol) as an off white powder.

Mp: 139.7–142.5 °C; R_f : 0.36 (Pet(40/60)–EA 1 : 1); ¹H NMR (400 MHz, DMSO- d_6): δ_H 10.89 (1H, s), 8.36 (1H, s), 7.52 (1H, d, J= 8.0 Hz), 7.15–7.11 (2H, d, J = 8.7 Hz), 6.93–6.85 (2H, m), 6.49 (1H, dd, J = 8.7, 2.4 Hz), 6.23–6.17 (1H, m), 4.28 (1H, d, J = 8.2 Hz), 4.22 (1H, app t, J = 3.8 Hz), 3.78 (1H, ddd, J = 10.8, 8.2, 6.1 Hz), 3.45 (3H, s), 2.81 (3H, s), 2.70–2.63 (1H, m), 1.89 (3H, s), 1.66 (1H, ddd, J = 14.1, 10.8, 3.8 Hz); ¹³C NMR (101 MHz, DMSO- d_6): δ_C 180.1, 176.3, 153.2, 152.5, 131.6, 131.1, 130.7, 130.4, 126.8, 126.5, 124.7, 122.7, 112.2, 111.4, 109.2, 100.6, 58.8, 55.3, 39.6, 38.4, 28.3, 25.1, 18.1; IR (neat): ν_{max} /cm⁻¹ = 3384, 2954, 2866, 1693; MS (pAPCI): 283.1 (100%, (M – (N(OH)(o-Tol))) + H)⁺), 388.2 (34%, (M – (H₂O) + H)⁺), 404.2 (13%, (M – H)⁺), 406.2 (11%, (M + H)⁺); HRMS (pAPCI): calcd C₂₃H₂₄N₃O₄ [M + H]⁺: 406.1761; observed: 406.1750.

4m – (3a*S**,5*S**,10b*S**)-5-(hydroxy(phenyl)amino)-4,5,10,10btetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred Schlenk flask was added benzyl ($3aS^*,5S^*,10bS^*$)-5-(hydroxy(phenyl)amino)-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (90 mg, 0.18 mmol), platinum(v) oxide (41 mg, 0.18 mmol) and THF (5 mL). The resulting suspension was placed under an atmosphere of H₂ and stirred at room temperature for 10 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as an yellow solid, The crude product was purified by column chromatography (petrol (40/60)-ethyl acetate 1 : 1, column diameter = 2 cm, silica = 14 cm) to give ($3aS^*,5S^*,10bS^*$)-5-(hydroxy(phenyl) amino)-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*, 3*aH*)-dione (41%, 26 mg, 0.07 mmol) as a yellow powder.

Mp: 150.0–153.1 °C; $R_{\rm f}$: 0.33 (Pet(40/60)–EA 1 : 1); ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ 11.22 (1H, s), 11.09 (1H, s), 8.24 (1H, s), 7.33 (1H, d, J = 8.1 Hz), 7.27–7.23 (1H, m), 7.20 (2H, app d, J = 7.3 Hz), 7.12 (2H, d, J = 7.7 Hz), 7.00–6.95 (1H, m), 6.85 (1H, app t, J = 7.2 Hz), 6.80 (1H app t, J = 7.3 Hz), 4.89 (1H, app t, J = 4.9 Hz), 4.25 (1H, d, J = 8.1 Hz), 3.63–3.52 (1H, m), 2.27 (1H, app dt, J = 13.6, 5.6 Hz), 1.80 (1H, ddd, J = 13.6, 9.2, 4.8 Hz); ¹³C NMR (101 MHz, DMSO- d_6): $\delta_{\rm C}$ 181.2, 177.6, 153.3, 137.0, 130.3, 129.0, 126.3, 121.4, 121.1, 119.9, 118.9, 117.2, 111.7, 109.9, 57.4, 40.9, 40.6, 25.7; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3302, 2924, 1706; MS (pAPCI): 108.1 (18%), 237.1 (100), 239.1 (46%, (M – (N(OH)Ph) + H)⁺); HRMS (pAPCI): calcd C₁₄H₁₁N₂O₂ [M – (N(OH)Ph) + H]⁺: 239.0815; observed: 239.0810.

4n – (3a*S**,5*S**,10b*S**)-5-(hydroxy(*o*-tolyl)amino)-4,5,10,10btetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*,3a*H*)-dione

To a stirred Schlenk flask was added benzyl ($3aS^*,5S^*,10bS^*$)-5-(hydroxy(*o*-tolyl)amino)-1,3-dioxo-2,3,3a,4,5,10b-hexahydropyrrolo[3,4-*a*]carbazole-10(1*H*)-carboxylate (120 mg, 0.24 mmol), platinum(w) oxide (54 mg, 0.24 mmol) and THF (5 mL). The resulting suspension was placed under an atmosphere of H₂ and stirred at room temperature for 6 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as a yellow solid, The crude product was purified by column chromatography (petrol (40/60)-ethyl acetate 2:3, column diameter = 2 cm, silica = 17 cm) to give ($3aS^*,5S^*,10bS^*$)-5-(hydroxy(*o*-tolyl) amino)-4,5,10,10b-tetrahydropyrrolo[3,4-*a*]carbazole-1,3(2*H*, 3*aH*)-dione (70%, 61 mg, 0.17 mmol) as an off white solid.

Mp: 149.9–153.2 °C; $R_{\rm f}$: 0.52 (Pet(40/60)–EA 2 : 3); ¹H NMR (400 MHz, CD₂Cl₂): $\delta_{\rm H}$ 8.81 (1H, s), 8.21 (1H, s), 7.56 (1H, d, J = 8.0 Hz), 7.30 (1H, d, J = 7.9 Hz), 7.18 (2H, d, J = 6.9 Hz), 7.06 (1H, app t, J = 7.6 Hz), 7.03–6.99 (2H, m), 6.91–6.85 (1H, m), 5.36 (1H, s), 4.51 (1H, app t, J = 4.5 Hz), 4.19 (1H, d, J = 8.6 Hz), 3.80 (1H, app td, J = 9.3, 6.4 Hz), 2.74 (1H, app dt, J = 13.6, 5.5 Hz), 2.15 (3H, s), 1.83 (1H, ddd, J = 13.6, 10.1, 4.1 Hz); ¹³C NMR (101 MHz, DMSO- d_6): $\delta_{\rm C}$ 181.5, 177.6, 152.2, 136.7, 130.6, 130.5, 130.5, 126.5, 126.5, 124.5, 122.4, 121.1, 119.3, 118.9, 111.6, 109.5, 58.3, 55.5, 40.9, 27.3, 18.3; IR (neat): $\nu_{\rm max}/{\rm cm}^{-1}$ 3372, 3298, 1683; MS (nNSI) = 186.0 (100%), 237.1 (97%, (M – (N(OH)(*o*-Tol)) – H)⁻), 358.1 (35%, (M – H₂)⁻), 394.1 (23%); HRMS (nNSI): calcd C₂₁H₁₈N₃O₃ [M – H]⁻: 360.1354; observed: 360.1348.

40 – (R^*) -6-(hydroxy(phenyl)amino)-8-methoxy-2-phenyl-6,11dihydro-1H,5H-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-b] indole-1,3(2H)-dione

To a stirred Schlenk flask was added benzyl (R^*)-6-(hydroxy (phenyl)amino)-8-methoxy-1,3-dioxo-2-phenyl-2,3,5,6-tetrahydro-1H,11H-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-b]indole-11-carboxylate (118 mg, 0.20 mmol), platinum(w) oxide (46 mg, 0.20 mmol) and THF (5 mL). The resulting suspension was placed under an atmosphere of H₂ and stirred at room temperature for 5 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as a yellow solid. The product was purified by trituration from DCM to give (R^*)-6-(hydroxy(phenyl) amino)-8-methoxy-2-phenyl-6,11-dihydro-1H,5H-[1,2,4]triazolo [1',2':1,2]pyridazino[3,4-b]indole-1,3(2H)-dione (38%, 35 mg, 0.08 mmol) as an off-white solid.

Mp: 173.7–176.4 °C; $R_{\rm f}$: 0.18 (Pet–EA 3 : 1); ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ 11.44 (1H, s) 8.62 (1H, s), 7.54–7.47 (4H, m), 7.44–7.41 (1H, m) 7.25–7.18 (3H, m), 7.12 (2H, d, J = 7.7 Hz), 6.90 (1H, app t, J = 6.8 Hz), 6.56 (1H, d, J = 8.7 Hz), 6.26 (1H, s), 5.12 (1H, br s), 4.51 (1H, d, J = 13.0 Hz), 3.81 (1H, dd, J = 13.0, 3.3 Hz), 3.49 (3H, s); ¹³C NMR (101 MHz, DMSO- d_6): $\delta_{\rm C}$ 154.3, 152.9, 149.7, 146.4, 131.8, 130.1, 129.6, 129.6, 128.9, 128.9, 127.0, 126.3, 122.3, 118.4, 112.9, 110.7, 100.8, 92.3, 57.7, 55.5, 44.3; IR (neat): $\nu_{\rm max}/$ cm⁻¹ 3362, 3000, 1758, 1700; MS (pAPCI): 213.1 (70%), 347.1

 $\begin{array}{l} (100\%, (M-(N(OH)Ph)+H)^{*}); HRMS (pAPCI): calcd \ C_{25}H_{20}N_{5}O_{4} \\ [M-H]^{*}: 454.1510; \ observed: \ 454.1502. \end{array}$

4p – (R^*) -6-(hydroxy(*o*-tolyl)amino)-8-methoxy-2-phenyl-6,11dihydro-1*H*,5*H*-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4-*b*] indole-1,3(2*H*)-dione

To a stirred Schlenk flask was added benzyl (R^*)-6-(hydroxy(o-tolyl)amino)-8-methoxy-1,3-dioxo-2-phenyl-2,3,5,6-tetrahydro-1H,11H-[1,2,4]triazolo[1',2':1,2]pyridazino[3,4 b]indole-11-carbo-xylate (120 mg, 0.20 mmol), platinum(v) oxide (46 mg, 0.20 mmol) and THF (5 mL). The resulting suspension was placed under an atmosphere of H₂ and stirred at room temperature for 5 hours. The suspension was filtered through celite and the solvent was removed under reduced pressure to leave the crude product as a white solid. The crude product was purified by trituration from DCM to (R^*)-6-(hydroxy(o-tolyl)amino)-8-methoxy-2-phenyl-6,11-dihydro-1H,5H-[1,2,4]triazolo[1',2':1,2]-pyridazino[3,4 b]indole-1,3(2H)-dione (64%, 53 mg, 0.13 mmol) as a white powder.

Mp: 171.9–173.8 °C; ¹H NMR (400 MHz, DMSO- d_6): δ_H 11.44 (1H, s), 8.64 (1H, s), 7.59 (1H, d, J = 8.1 Hz), 7.54–7.50 (4H, m), 7.46–7.43 (1H, m), 7.19 (1H, d, J = 8.5 Hz), 7.15 (1H, d, J = 7.5 Hz), 6.97–6.91 (2H, m), 6.50 (1H, dd, J = 8.7, 2.2 Hz), 6.01 (1H, s), 4.73 (1H, d, J = 12.8 Hz), 4.52 (1H, s), 3.67–3.61 (1H, m), 3.47 (3H, s), 1.96 (3H, s); ¹³C NMR (101 MHz, DMSO- d_6): δ_C 154.1, 151.8, 150.5, 146.4, 131.8, 131.6, 130.6, 130.0, 129.7, 128.9, 128.7, 127.0, 126.7, 126.5, 125.3, 122.8, 112.7, 110.7, 100.0, 91.8, 58.3, 55.4, 44.3, 18.0; IR (neat): $v_{max}/cm^{-1} = 3442$, 3394, 2939, 1699; MS (pAPCI): 347.1 (68%, (M – (N(OH)(o-Tol) + H)⁺)), 391.1 (100%), 452.2 (4%, (M – (H₂O) + H)⁺), 468.2 (2%, (M – H)⁺); HRMS (pAPCI): calcd C₂₆H₂₂N₅O₄ [M – H]⁺: 468.1666; observed: 468.1658.

Acknowledgements

The authors thank Newcastle University and EPSRC (EP/ I033959/1) for funding, MA thanks the Ministry of Higher Education of Saudi Arabia for a PhD scholarship, EPSRC for Xray crystallography facilities at Newcastle (EP/F03637X/1), Prof. W. McFarlane and Dr C. Wills (Newcastle) for NMR support, L. Watson and S. Thompson (Newcastle) for preliminary studies. Mass spectrometry data was acquired at the EPSRC UK National Mass Spectrometry Facility at Swansea University.

References

- 1 S. Omura, Y. Iwai, A. Hirano, A. Nakagawa, J. Awaya, H. Tsuchiya, Y. Takahashi and R. Asuma, *J. Antibiot.*, 1977, **30**, 275–282.
- 2 N. Funato, H. Takayanagi, Y. Konda, Y. Toda, Y. Harigaya, Y. Iwai and S. Ōmura, *Tetrahedron Lett.*, 1994, **35**, 1251–1254.
- 3 O. A. B. S. M. Gani and R. A. Engh, *Nat. Prod. Rep.*, 2010, 27, 489–498.
- 4 M. S. Lopez, J. W. Choy, U. Peters, M. L. Sos, D. O. Morgan and K. M. Shokat, *J. Am. Chem. Soc.*, 2013, **135**, 18153–18159.
- 5 E. Conchon, F. Anizon, R. M. Golsteyn, S. Léonce, B. Pfeiffer and M. Prudhomme, *Tetrahedron*, 2006, **62**, 11136–11144.

- 6 A. Voldoire, M. Sancelme, M. Prudhomme, P. Colson,
 C. Houssier, C. Bailly, S. Léonce and S. Lambel, *Bioorg. Med. Chem.*, 2001, 9, 357–365.
- 7 N. Ty, G. Dupeyre, G. G. Chabot, J. Seguin, L. Quentin, A. Chiaroni, F. Tillequin, D. Scherman, S. Michel and X. Cachet, *Eur. J. Med. Chem.*, 2010, **45**, 3726–3739.
- 8 E. Conchon, F. Anizon, B. Aboab, R. M. Golsteyn, S. Léonce, B. Pfeiffer and M. Prudhomme, *Eur. J. Med. Chem.*, 2008, 43, 282–292.
- 9 E. Pereira, A. Youssef, M. El-Ghozzi, D. Avignant, J. Bain, M. Prudhomme, F. Anizon and P. Moreau, *Tetrahedron Lett.*, 2014, 55, 834–837.
- 10 M. Eitel and U. Pindur, J. Org. Chem., 1990, 55, 5368-5374.
- 11 W. E. Noland, W. C. Kuryla and R. F. Lange, *J. Am. Chem. Soc.*, 1959, **81**, 6010–6017.
- 12 W. E. Noland and S. R. Wann, *J. Org. Chem.*, 1979, 44, 4402–4410.
- 13 M. Bleile, T. Wagner and H.-H. Otto, *Helv. Chim. Acta*, 2005, 88, 2879–2891.
- 14 U. Pindur and M.-H. Kim, *Tetrahedron Lett.*, 1988, **29**, 3927–3928.
- 15 M. Medion-Simon and U. Pindur, *Helv. Chim. Acta*, 1991, 74, 430–437.
- 16 U. Pindur and C. Otto, Tetrahedron, 1992, 48, 3515-3526.
- 17 R. Bergamasco, Q. N. Porter and C. Yap, *Aust. J. Chem.*, 1977, **30**, 1531–1544.
- 18 J. D. Lambert and Q. N. Porter, Aust. J. Chem., 1981, 34, 1483– 1490.
- 19 C. Gioia, A. Hauville, L. Bernardi, F. Fini and A. Ricci, *Angew. Chem., Int. Ed.*, 2008, **47**, 9236–9239.
- 20 C. Gioia, L. Bernardi and A. Ricci, *Synthesis*, 2010, **2010**, 161–170.
- 21 B. Tan, G. Hernández-Torres and C. F. Barbas, J. Am. Chem. Soc., 2011, 133, 12354–12357.
- 22 U. Pindur, M. H. Kim, M. Rogge, W. Massa and M. Molinier, *J. Org. Chem.*, 1992, **57**, 910–915.

- 23 L. J. Watson, R. W. Harrington, W. Clegg and M. J. Hall, Org. Biomol. Chem., 2012, 10, 6649–6655.
- 24 L. J. Cotterill, R. W. Harrington, W. Clegg and M. J. Hall, *J. Org. Chem.*, 2010, 75, 4604–4607.
- 25 L. Pfeuffer and U. Pindur, *Helv. Chim. Acta*, 1988, **71**, 467–471.
- 26 K. Suzuki, K. Inomata and Y. Endo, *Org. Lett.*, 2004, **6**, 409–411.
- 27 G. A. Kraus and J. Kim, Org. Lett., 2004, 6, 3115-3117.
- 28 R. B. Ruggeri, M. M. Hansen and C. H. Heathcock, J. Am. Chem. Soc., 1988, **110**, 8734–8736.
- 29 D. Li, Y. Cao, A. Shi and Z. Xi, *Chem.-Asian J.*, 2011, 6, 392-395.
- 30 D. G. Hingane, S. K. Goswami, V. Puranik and R. S. Kusurkar, *Synth. Commun.*, 2011, **42**, 1786–1795.
- 31 B. t. Joseph, M. Facompré, H. Da Costa, S. Routier, J.-Y. Mérour, P. Colson, C. Houssier and C. Bailly, *Bioorg. Med. Chem.*, 2001, 9, 1533–1541.
- 32 B. Saroja and P. C. Srinivasan, Synthesis, 1986, 1986, 748-749.
- 33 X. Zhang, S. I. Khan and C. S. Foote, *J. Org. Chem.*, 1993, **58**, 7839–7847.
- 34 P. R. Schreiner, Chem. Soc. Rev., 2003, 32, 289-296.
- 35 J. Robertson, M. J. Hall, P. M. Stafford and S. P. Green, Org. Biomol. Chem., 2003, 1, 3758–3767.
- 36 L. F. Tietze, Chem. Rev., 1996, 96, 115-136.
- 37 C. J. Lovely, H. Du, Y. He and H. V. Rasika Dias, *Org. Lett.*, 2004, **6**, 735–738.
- 38 N. Uludag and S. Patir, J. Heterocycl. Chem., 2007, 44, 1317– 1322.
- 39 P. Magnus, N. L. Sear, C. S. Kim and N. Vicker, J. Org. Chem., 1992, 57, 70–78.
- 40 R. Yang and F. G. Qiu, *Angew. Chem., Int. Ed.*, 2013, **52**, 6015–6018.