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ABSTRACT

Acid-catalysed dehydration of the polyhydroxyalkyl chain of 6,6-dimethyl-2-
(D-gluco-pentitol-1-y1)-4,5,6,7-tetrahydroindol-4-one and of 6,6-dimethyl-2-(D-manno-
pentitol-1-y1)-4,5,6,7-tetrahydroindol-4-one gave 2-a-D-arabinofuranosyl-6,6-dime-
thyl-4,5,6,7-tetrahydroindol-4-one (3). In a similar way, 2-B-D-lyxopyranosyl-6,6-
dimethyl-4,5,6,7-tetrahydroindol-4-one (8) and 2-f-D-lyxopyranosyl-4,5,6,7-tetra-
hydroindol-4-one (9) were obtained by dehydration of 6,6-dimethyl-2-(D-galacto-
pentitol-1-y1)-4,5,6,7-tetrahydroindol-4-one and 2-(D-galacto-pentitol-1-yl1)-4,5,6,7-
tetrahydroindol-4-one, respectively. The structures of the new C-nucleosides described
(3, 8, and 9) were elucidated by chemical and physical methods.

INTRODUCTION

Acid-catalysed dehydration of polyhydroxyl chains joined to aromatic hetero-
cycles is a general reaction that has been widely studied! ~ 6. In certain cases, it yields
anhydro derivatives with inverted configuration. Thus, 2-(D-arabino-tetritol-1-yl)-
furans give, preferentially, anhydro derivatives having the p-ribo configuration” ~°.
The proposed mechanism for this reaction’ involves a resonance-stabilized C-1’
carbo-cation, which undergoes intramolecular attack by HO-4’, giving the anhydro
derivatives with D-arabino and D-ribo configurations. The reversible character of
these reactions explains the preferential formation of the thermodynamically more-
stable compound having the D-ribo configuration.

On the basis of these precedents and the easy dehydration'® of pentahydroxy-
pentyl-heterocycles, we have now studied the trifluoroacetic acid-catalysed dehydra-
tion of the pentahydroxypentyl-4,5,6,7-tetrahydroindol-4-ones that we described

*Presented, in part, at the 75th Anniversary Meeting of the Real Sociedad Espaiiola de Fisica y
Quimica, Madrid, October 1978.
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previously!?, in order to obtain new C-nucleosides. We consider these new compounds
to be of interest, because of their structural similarity with other natural and synthetlc
C-nucleosides that are biologically activeZ.

RESULTS AND DISCUSSION

Trifluoroacetic acid-catalysed dehydration of 6,6-dimethyl-2-(p-gluco-pentitol-
1-y1)-4,5,6,7-tetrahydroindol-4-one (1) and 6,6-dimethyl-2-(D-manno-pentitol-1-yl)-
4,5,6,7-tetrahydroindol-4-one (2) yields 2-¢-D-arabinofuranosyl-6,6-dimethyl-4,5,6,7-
tetrahydroindol-4-one (3). The reactions were carried out in aqueous sojution at
room temperature. Compound 3 reduced 1 mol of sodium metaperiodate, indicative
of two contiguous hydroxyl groups; this result is consistent with the proposed
furanoid structure. In order to demonstrate that the dehydration took place between
C-1’ and C-4’, compound 3 was selectively tosylated at HO-5', to yield the derivative
4, which was identical with the product obtained by dehydration of 6,6-dimethyl-2-
(5-O-tosyl-b-gluco-pentitol-1-y1)-4,5,6,7-tetrahydroindol-4-one (5).
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The glycosyl ring-structure of 3 was also demonstrated by its p.m.r. spectrum
in (CD;),SO (Table I), which showed two doublets and one triplet consistent with
two secondary hydroxyl groups (on C-2’ and C-3') and one primary hydroxyl group
(on C-5°). The signal for H-1" was identified on the basis of the long-range coupling
with H-3, as evidenced by double resonance. The smali Jy.,. value (~1 Hz) is
consistent with a zrans arrangement!3-14 of H-1',2’, in agreement with the a-anomeric
configuration assigned to compound 3. The u.v. and i.r. spectra for 3 (sce Experimen-
tal) also support the proposed structure, on the basis of analogy'®

The isolation of the same product (3) from the pentahydroxypentyl-4,5,6,7-
tetrahydroindol-4-ones having the p-glco (1) or D-manno (2) configurations in the
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polyhydroxyl! chain supports the proposed mechanism for the dehydration of poly-
hydroxyalkyl-heterocycles” through an intermediate C-1’ carbocation.

In a similar way, 2-$-p-lyxopyranosyl-6,6-dimethyl-4,5,6,7-tetrahydroindol-4-
one (8) and 2-$-p-lyxopyranosyl-4,5,6,7-tetrahydroindol-4-one (9) were obtained by
trifluoroacetic acid-catalysed dehydration of 6,6-dimethyl-2-(p-galacto-pentitol-1-yl)-
4,5,6,7-tetrahydroindol-4-one (6) and 2-(D-galacto-pentitol-1-y1)-4,5,6,7-tetrahydro-
indol-4-one (7), respectively.
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Compound 8 consumed two mol of metaperiodate, indicative of three adjacent
hydroxyl groups, in agreement with a pyranoid structure. The p.m.r. spectrum,
recorded in (CD;),SO (Table I), showed three doublets for secondary hydroxyl
groups, and constitutes additional proof of the pyranoid structure. The p.m.r.
spectrum of the tri-O-acetyl derivative (10) of 8 (Table I) showed a small J;. ,. value
(~1 Hz), consistent with a cfs arrangement for H-1’,2’ and the f-anomeric configura-
tion; the o anomer should have a larger coupling constant (J;. ;. ~10 Hz), since
this anomer must be almost entirely in the 'C, conformation!®.

Compound 9 consumed two mol of metaperiodate, which is consistent with
the proposed pyranoid structure. The p.m.r. spectrum of the triacetate (11) of 9
shows (Table I) characteristics similar to those of the spectrum for compound 10;
the B-pyranoid structure is therefore proposed for compounds 9 and 11.

The reason why the dehydration of the compounds having the D-galacto
configuration in the polyhydroxyl side-chain yields anhydro derivatives having
pyranoid structures might be because the transition state (12) leading to a furanoid
ring would be destabilized by steric repulsions’’ between the bulky hydroxymethyl
group and HO-2’ and HO-3’, all on the same side of the ring.

HOCHz H

12
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EXPERIMENTAL

General methods. — Solutions were evaporated in vacuo at temperatures below
40°. Melting points were determined with a Gallenkamp apparatus, and are uncor-
rected. Optical rotations were measured at 20 +2° with a Perkin—Elmer 141 polari-
meter (10-cm cell). Infrared spectra were recorded, for potassium bromide discs,
with a Beckman IR-33 grating spectrophotometer. U.v. spectra were recorded with a
Unicam SP-8000 instrument. P.m.r. spectra (90 MHz) were recorded at 35.5° with a
Perkin—Elmer R-32 spectrometer (locked on the signal of internal tetramethylsilane)
and coupling constants were measured directly from spectra recorded at 300-Hz
sweep-width; the spectral assignments were confirmed by double-resonance experi-
ments. T.l.c. was performed on silica gel (Merck GF,s,) with ethyl acetate-ethanol
(3:1), and detection with u.v. light, iodine vapour, or Ehrlich’s reagent for pyrroles.

Consumption of periodate was determined by the method described by Garcia
Gonzalez et al.*®, based on the Fleury and Lange!® procedure.

2-a-D-Arabinofuranosyl-6,6-dimethyl-4,5,6,7-tetrahydroindol-4-one (3). — (a)
6,6-Dimethyl-2-(D-gluco-pentitol-1-y1)-4,5,6,7-tetrahydroindol-4-one'! (1; 0.6 g, 1.92
mmol) in water (2 ml) was treated with trifluoroacetic acid (0.25 ml). There was
immediate separation of crystalline 3 (0.23 g, 41%), m.p. 207-209° (from water),
[a]lp +38.6° [alsss +41.2° [a]sse +48.6°% [alsze +94.6°, [a]ses +172.4°
(c 0.5, chloroform); AE°H 246 and 287 nm (¢ 4,900 and 4,200); V... 3360-3250
(NH, OH), 1620 (C=0), 1570 and 1470 cm™!; p.m.r. data: see Table I.

Anal. Calc. for C,sH,;NOs: C, 61.01; H, 7.11; N, 4.74. Found: C, 60.91;
H, 7.23; N, 4.90. Periodate consumption: 1.06 mol.

(b) Compound 3 (0.11 g, 41°,) was also prepared from 6,6-dimethyl-2-(D-
manno-pentitol-1-y1)-4,5,6,7-tetrahydroindol-4-one!! (2; 0.33 g, 1.05 mmol) in a
similar way. )

6,6-Dimethyl-2-(5-O-tosyl-D-gluco-pentitol-1-yl)-4,5,6,7 - tetrahydroindol - 4 - one
(5). — A cooled solution of 1 (0.3 g, 0.96 mmol) in the minimum quantity of dry
pyridine was treated with a cooled solution of toluene-p-sulphonyl chloride (0.2 g,
1.05 mmol) in the minimum quantity of the same solvent. The mixture was kept in a
refrigerator for 4 days, and then evaporated under diminished pressure. Benzene
and acetone were distilled repeatedly from the residue, to remove traces of pyridine.
The resulting syrup was treated with ice—water, to yield 5 (230 mg, 51%), m.p.
124-126° (from acetone-water, 1:3), [a]p +10.0°, [a]573 +10.6°, [a]ss6 +11.8°,
[alase +22.4°, [a]ls6s +31.6° (c 0.5, chloroform); AE9H 245 and 287 nm (¢ 14,600
and 11,600); v_,,, 3500-3230 (NH, OH), 1610 (C=0), 1590 and 1480 (C=C pyrrole)
cm™ i

Anal. Calc. for C,,H,,NOgS: C, 56.53; H, 6.21; N, 3.00; S, 6.85. Found:
C, 56.52; H, 6.44; N, 2.85; S, 6.92.

6,6-Dimethyl-2-(5-O-tosyl-o-D-arabinofuranosyl)-4,5,6,7 -tetrahydroindol - 4 - one
(4). — (a) A solution of compound 5 (120 mg, 0.25 mmol) in methanol (5 mi) and
several drops of water was treated with trifluoroacetic acid (0.05 ml). After 4 h,
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t.L.c. (3:1 ethyl acetate-ethanol) showed the absence of 5. The mixture was then
poured onto ice~water, to yield 4 (93 mg, 809,), m.p. 133-135° (from acetone-water,
1:3), []p +59.0°, [a]s7s +61.6°% [¢]ss6 +70.0°, [a]sze +122.0°, [o]365 +206.2°
(c 0.5, pyridine); AE'9H 242 and 285 nm (& 14,700 and 12,500); v_,, 3380-3280 (NH,
OH), 1615 (C=0), 1570 and 1475 (C=C pyrrole) cm~1.

Anal. Calc. for C,,H,,NO4S: C, 58.80; H, 6.01; N, 3.12; S, 7.13. Found:
C, 58.52; H, 6.26; N, 2.84; S, 7.38.

(b) Tosylation of compound 3, as described for 5, gave 4 (75%).

2-B-p-Lyxopyranosyl-6,6-dimethyl-4,5,6,7-tetrahydroindol-4-one (8). — A
solution of 6,6-dimethyl-2-(D-galacto-pentitol-1-y1)-4,5,6,7-tetrahydroindol-4-one'*
(6; 0.4 g, 1.28 mmol) in the minimum quantity of water was treated with trifluoro-
acetic acid (0.17 ml). There was immediate separation of crystalline 8 (0.28 g, 73 %),
m.p. 267-269° (from water), [a]p +6.0° (¢ 0.5, water); AF'OH 246 and 287 nm
(£ 4,600 and 4,100); v,.. 3390-3245 (NH, OH), 1620 (C=0), 1580 and 1480 (C=C
pyrrole) cm™!; p.m.r. data: see Table I.

Anal. Cale. for C,;;H,,NOs: C, 61.01; H, 7.11; N, 4.74. Found: C, 60.76;
H, 7.26; N, 4.83. Periodate consumption: 2.00 mol.

6,6 -Dimethyl-2-(2,3,4-tri-O-acetyl-f-D-lyxopyranosyl)-4,5,6,7 -tetrahydroindol -
4-one (10). — Compound 8 (0.1 g, 0.34 mmol) was treated with a mixture of acetic
anhydride and pyridine (1:2, 1.5 ml). The solution was left for 24 h at low tempera-
ture (~0°) and then poured onto ice~water (15 mtl), to yield 10 (0.13 g, 93 %), m.p.
291-293° (from ethanol-water, 2:1), [a]p —30.7° (¢ 0.5, chloroform); v, 3240
(NH), 1760 (C=0O ester), 1645 (C=0 ketone), 1590 and 1495 (C=C pyrrole) cm™!;
p.m.r. data: see Table I.

Anal. Calc. for C,;H,,NOg: C, 59.86; H, 6.42; N, 3.33. Found: C, 59.97;
H, 6.56; N, 3.52.

2-B-p-Lyxopyranosyl-4,5,6,7-tetrahydroindol-4-one (9). — A solution of 2-
(D-galacto-pentitol-1-y1)-4,5,6,7-tetrahydroindol-4-one!? (7; 0.5 g, 1.75 mmol) in the
minimum quantity of water was treated with several drops of trifluoroacetic acid.
After 2 h, tl.c. (3:1 ethyl acetate—ethanol) showed the absence of 7. The reaction
mixture was neutralized with Amberlite IR-45(HO ™) resin and evaporated to a syrup
that crystallized from methanol, to give 9, m.p. 238-240°, [a]p, +8.4°, [«]s,s +8.8°,
[2]sae +11.2°, [o]sse +30.8° [a]s65 +82.0° (c 0.5, chloroform); AEOH 246 and
284 nm (e 5,100 and 4,200); v_,. 3430-3280 (NH, OH), 1615 (C=0), 1575 and
1475 (C=C pyrrole) cm™'. Periodate consumption: 2.03 mol.

2-(2,3,4-Tri-O-acetyl-p-p-lyxopyranosyl)-4,5,6,7-tetrahydroindol-4-one (11). —
Acetylation of compound 9, as indicated for 10, gave 11 (38%), m.p. 241-243°
(from methanol-water, 3:1), [alp —57.0°, [a]s7s —59.2°, [a]s4¢ —66.4° [ot]az6
—111.0°%, [a]ses —189.6° (¢ 0.5, chloroform); v.., 3290 (NH), 1740 and 1725
(C=0 ester), 1630 (C=O0 ketone), 1570 and 1470 (C=C pyrrole) cm™!; p.m.r.
data: see Table 1.

Anal. Calc. for C;gH,3NOg: C, 58.01; H, 5.85; N, 3.56. Found: C, 57.77;
H, 6.01; N, 3.32.
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