2006 Vol. 8, No. 17 3877-3879

Control of Stereochemistry: A General Synthesis of *cis*- or $trans-\beta, \gamma$ -Disubstituted- γ -butyrolactones Following *Z*-Crotylboration

P. Veeraraghavan Ramachandran,* Debarshi Pratihar, and Debanjan Biswas

Herbert C. Brown Center for Borane Research, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084

chandran@purdue.edu

Received June 26, 2006 (Revised Manuscript Received July 17, 2006)

ABSTRACT

A general and practical procedure for the highly diastereoselective preparation of either the *cis*- or *trans-\beta*, γ -disubstituted- γ -butyrolactones by appropriate choice of Lewis or Bronsted acid catalysts during crotylboration or lactonization is reported. The cis-stereochemistry of the *Z*-crotylboration product can be inverted with strong acids during lactonization. A carbocation mechanism and catalytic cycle has been proposed.

Control of diastereoselectivity is crucial for the efficient synthesis of complex molecules and continues to be a challenge. Crotylboration of aldehydes which typically provides syn-homoallylic alcohols from Z- and anti-products from E-crotylboranes, is a stereoselective C-C bond forming reaction. Stereospecific γ -butyrolactones are building blocks of several natural products and their stereoselective synthesis is significant.

The crotylboration of benzaldehyde (3a) under thermal condition with functionalized Z-crotylboronates 1 and 2, followed by lactonization is a general route to $cis-\gamma$ -butyrolactones (eq 1).^{4,5} The reactivity of similar crotylbo-

ronates has been improved with Lewis acid catalysis.⁶ We have now observed a significant influence of the catalysts on the stereo-outcome of the lactones.

The crotylboration of **3a** with **1**, in the presence of catalytic In(OTf)₃, continued until lactonization and provided *trans*-**4a** (dr = 98:2) (eq 1) almost exclusively! However, Yb-(OTf)₃-catalyzed reaction of **3a** with **1** proceeded in the anticipated manner and furnished *cis*-**4a** (dr = 92:8) (eq 1). We examined the crotylboration—lactonization of aldehydes with **1** and **2** to understand the complementary nature of the Lewis acids. Herein we report the first general diastereoselective synthesis of *cis*- or *trans*- β , γ -disubstituted- γ -buty-rolactones using *Z*-crotylboronates by the selection of appropriate catalysts for lactonization.

Our initial focus on the Lewis acid strength⁷ (Table 1) confirmed that the presence of stronger Lewis acids pro-

^{(1) (}a) Nicolaou, K. C. *J. Org. Chem.* **2005**, *70*, 7007. (b) Yeung, K-s.; Paterson, I. *Chem. Rev.* **2005**, *105*, 4237.

^{(2) (}a) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. **1986**, 108, 293. (b) Roush, W. R.; Halterman, R. L. J. Am. Chem. Soc. **1986**, 108, 294.

⁽³⁾ Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. Engl. 1985, 24, 110.

^{(4) (}a) Ramachandran, P. V.; Pratihar, D.; Biswas, D.; Srivastava, A.; Reddy, M. V. R.; *Org. Lett.* **2004**, *6*, 481. (b) Kennedy, J. W. J.; Hall, D. G. *J. Am. Chem. Soc.* **2002**, *124*, 898.

^{(5) (}a) Although reagents 1 and 2 are *E*- according to Cahn—Ingold—Prelog rules, on the basis of analogy with *Z*-crotylboranes (ref 2), we use *Z*-crotylboration for convenience throughout this manuscript. (b) Reagents such as 2 have been termed "higher crotylboranes", see the following example: Brown, H. C.; Narla, G. *Tetrahedron Lett.* 1997, *38*, 219.

Table 1. Effect of Lewis Acids on Crotylboration of Benzaldehyde^a

entry	boronate	Lewis acid	reacn time (h)	lactone	yield ^b (%)	dr^c cis:trans
1	1	Sc(OTf) ₃	8	4a	85	3:97
2	1	$In(OTf)_3$	6	4a	85	2:98
3	1	Bu_2BOTf	20	4a	90	7:93
4	1	ZnCl_2	36	4a	94	90:10
5	1	$Yb(OTf)_3$	36	4a	80	92:8
6	1	$\mathrm{Et_{3}B}$	48	4a	88	93:7
7	1	$TiCl_4$	36	4a	80	90:10
8	2	$Sc(OTf)_3$	14	5a	82	2:98
9	2	$In(OTf)_3$	10	5a	91	2:98
10	2	Bu_2BOTf	36	5a	80	2:98
11	2	$\mathrm{Et_{3}B}$	48	5a	85	95:5
12	2	$Yb(OTf)_3$	30	5a	83	95:5

^a Reaction conditions: crotylboronate **1** or **2** (1 mmol), benzaldehyde **3a** (1.5 mmol), and 20% catalyst in toluene at room temperature. Entries 3, 5, 6, 10, 11, and 12 are with 40% catalyst. Entries 3 and 4 are in diethyl ether and 5 and 12 are in THF. ^b Isolated yield after chromatography. ^c Determined by ¹H NMR of the crude reaction mixture.

vided the lactone with the reversed stereochemistry, whereas weaker Lewis acids showed no influence on the stereo-outcome (eq 2). Crotylboration of **3a** with **1**, in the presence of strong Lewis acids, such as In(OTf)₃ and Sc(OTf)₃, was completed within 6–8 h at room temperature (rt), as compared to 7 d for the uncatalyzed reaction, and provided *trans*-**4a** with very high diastereoselectivity (Table 1, entries 1 and 2). On the other hand, Lewis acids with moderate activity, such as ZnCl₂, Yb(OTf)₃, Et₃B, and TiCl₄ provided *cis*-**4a** in 90–93% diastereoselectivity. Similar diastereomeric ratios were observed in the case of **2** as well.

We then selected In(OTf)₃ for the crotylboration of a series of substituted benzaldehydes and noticed that the reversal in stereochemistry of the lactone is dependent on the electronic environment of the aldehydes as well! While an electron-donating substituent on the benzene ring inverted the stereochemistry, an electron-withdrawing group provided the cis-lactone (Table 2). A correlation was also observed for the rate of the reaction: benzaldehydes with electron-donating groups reacted faster than those with electron-withdrawing groups. Thus, the crotylboration of anisaldehydes (3b-d) and p-tolualdehyde (3e) with 1, in the presence of catalytic In(OTf)₃, provided the corresponding trans-lactones, trans-4b-e (entries 1-4) and the reaction of p- and m-nitro, p-cyano-, p-trifluoromethyl- and pentafluorobenzaldehydes (3j-n) with 1 provided the corresponding *cis*-lactones, *cis*-**4j**-**n**, respectively, with very

Table 2. Influence of Electronic Nature of Substituents of Benzaldehyde on Crotylboration with $\mathbf{1}$ and $\mathbf{2}^a$

		aldehyde		reacn	lactone		
				time		yld^b	$\mathrm{d}\mathbf{r}^c$
entry	reagent	#	R	(h)	#	(%)	cis:trans
1	1	3b	4-MeO	12	4b	85	5:95
2	1	3c	3-MeO	8	4c	90	10:90
3	1	3d	$2 ext{-MeO}$	7	4d	88	10:90
4	1	3e	4-Me	10	4e	95	3:97
5	1	3f	4-Cl	7	4f	90	33:67
6	1	3g	4-Br	8	4g	80	40:60
7	1	3h	3-Cl	8	4h	85	55:45
8	1	3i	2-Cl	8	4i	95	75:25
9	1	3j	$4-NO_2$	18	4 j	95	99:1
10	1	3k	$3-NO_2$	14	4k	96	92:8
11	1	31	4-CN	16	41	89	97:3
12	1	3m	$4-\mathrm{CF}_3$	16	4m	95	98:2
13	1	3n	F_5	18	4n	90	95:5
14	2	3b	$4 ext{-MeO}$	10	5b	80	2:98
15	2	3e	4-Me	10	5e	98	2:98
16	2	3f	4-Cl	10	$\mathbf{5f}$	80	31:69
17	2	3g	4-Br	10	5g	83	30:70
18	2	3j	$4-NO_2$	16	5j	96	90:10
19	2	31	4-CN	16	5 l	95	98:2
20	2	3m	$4-CF_3$	14	5m	87	95:5
21	2	3n	\mathbf{F}_5	18	5n	95	98:2

 a Reaction condition: 1 or 2 (1 mmol), 20% In(OTf)₃, and aldehyde 3b-n (1.5 mmol) in toluene at room temperature. b Isolated yield after chromatography. c Determined by $^1\mathrm{H}$ NMR of the crude reaction mixture.

high selectivity, (entry 9-12). Parallel observations were made with **2** as well.

Halogen substituents provide a mixture of lactones. In line with the decreased resonance contribution, 4-bromobenzal-dehyde (**3g**) provided increased ratio (40%) of *cis*-**4g** (entry 6) as compared to 4-chlorobenzaldehyde (**3f**), which gave 33% of *cis*-**4f** (entry 5). As expected, with an increased polar effect, 2-chlorobenzaldehyde (**3i**) provided 75% of *cis*-**4i** (entry 8).

After establishing a trend for the inversion of the lactone stereochemistry, we set out to trace the occurrence of the reversal. The crotylboration of **3b** with **1** under thermal condition, in the absence of a catalyst, provided the intermediate **6b**, which upon lactonization using *p*TSA, provided *cis*-**4b** in 96% de. However, lactonization using 20% In(OTf)₃ resulted in the exclusive formation of *trans*-**4b**, revealing that the reversal occurred during lactonization following crotylboration.

3878 Org. Lett., Vol. 8, No. 17, 2006

^{(6) (}a) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586. (b) Ishiyama, T.; Ahiko, T.-a.; Miyaura, N. J. Am. Chem. Soc. 2002, 124, 12414. (c) Kennedy, J. W. J.; Hall, D. G. J. Org. Chem. 2004, 69, 4412.

⁽⁷⁾ For a review on the relative strength of Lewis acids, see the following: (a) Marshman, R. W. Aldrichim. Acta. **1995**, 28, 77. (b) Kobayashi, S.; Manabe, K. Pure Appl. Chem. **2000**, 72, 1373.

A catalytic cycle for the formation of the *trans*-lactone is postulated in Scheme 1. The strong Lewis acid coordination

Scheme 1. Postulated Catalytic Cycle for *trans*-Lactone Formation

$$R' = Me \ 1$$
 OMe
 $R' = Me \ 1$ OMe
 $R' = Me \ 1$ OMe
 $R' = Me \ 1$ OMe
 $R' = Ph \ 2$ OMe
 $R' = Ph$
 $R' =$

to the borate intermediate $\mathbf{6}$ provides the benzylic carbocation intermediate $\mathbf{8}$ via the elimination of $\mathbf{7}$. The lactonization is shown by curved arrows. The formation of B-methoxypinacolborane $\mathbf{10}$ was confirmed by ¹¹B NMR spectroscopy (δ : 22 ppm, see experimental in Supporting Information). The role of the substituents and the rates of the reaction support the carbocation mechanism.

To achieve a truly general procedure, we proceeded to prepare the *trans*-lactones from benzaldehydes bearing

electron-withdrawing groups also. On the basis of the mechanism, we envisaged the use of strong acids during the allylboration or lactonization. Following a literature report, we carried out the reaction of **3j** with **1** in the presence of 20% triflic acid, which resulted in *cis-***4j** only. Increasing the amount of the catalyst to 50% gave a 7:3 mixture and 1 equiv of the catalyst gave a 9:1 mixture favoring *trans-***4j**. However, in the latter two cases, the yield of the product was considerably reduced, presumably because of the acidification of the reagent to the boronic acid.

We then treated the intermediate **6j**, prepared from **3j** and **1**, under thermal condition, with triflic acid (1 equiv) and obtained *trans*-**4j** *exclusively* in 80% yields! The generality of this reaction was demonstrated with **6l**, prepared from **3l** (eq 4).

In summary, we have presented a general and practical procedure for the highly diastereoselective preparation of either the *cis*- or *trans*- β , γ -disubstituted- γ -butyrolactones by appropriate choice of Lewis or Bronsted acid catalysts. A chiral version of this reaction is being pursued.

Acknowledgment. Financial support from the Herbert C. Brown Center for Borane Research is gratefully acknowledged.

Supporting Information Available: Experimental details and spectral data of compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL061566G

Org. Lett., Vol. 8, No. 17, 2006

⁽⁸⁾ Ramachandran, P. V.; Pratihar, D.; Biswas, D. Chem. Commun. 2005, 1988.

⁽⁹⁾ A *trans*-lactone was reported for the lone example of electron-rich benzaldehyde. Yu, S. H.; Ferguson, M. J.; McDonald, R.; Hall, D. G. *J. Am. Chem. Soc.* **2005**, *127*, 12808.