European Journal of Medicinal Chemistry 96 (2015) 14-21

Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Original article

Exploring the chemical space of ureidothiophene-2-carboxylic acids as inhibitors of the quorum sensing enzyme PqsD from *Pseudomonas aeruginosa*

癥

J. Henning Sahner ^a, Martin Empting ^a, Ahmed Kamal ^a, Elisabeth Weidel ^a, Matthias Groh ^a, Carsten Börger ^b, Rolf W. Hartmann ^{a, *}

^a Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Design and Optimization, Campus C2 3, 66123 Saarbrücken, Germany

^b PharmBioTec GmbH, Science Park 1, 66123 Saarbrücken, Germany

ARTICLE INFO

Article history: Received 1 October 2014 Received in revised form 1 April 2015 Accepted 2 April 2015 Available online 6 April 2015

Keywords: Quorum sensing Pseudomonas aeruginosa Bacterial cell-to-cell communication Ureidothiophene-2-carboxylic acids Antibacterial agents

ABSTRACT

Pseudomonas aeruginosa employs a quorum sensing (QS) communication system that makes use of small diffusible molecules. Among other effects, the QS system coordinates the formation of biofilm which decisively contributes to difficulties in the therapy of *Pseudomonas* infections. The present work deals with the structure-activity exploration of ureidothiophene-2-carboxylic acids as inhibitors of PqsD, a key enzyme in the biosynthetic pathway of signal molecules in the *Pseudomonas* QS system. We describe an improvement of the inhibitory activity by successfully combining features from two different PqsD inhibitor classes. Furthermore the functional groups, which are responsible for the inhibitory potency, were identified. Moreover, the inability of the new inhibitors, to prevent signal molecule formation in whole cell assays, is discussed.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Antibiotic therapy is characterized by the everlasting competition between the generation of novel antibacterial substances and the development of the respective bacterial resistances [1,2]. One outstanding example is the opportunistic pathogen Pseudomonas aeruginosa which is responsible for severe infections and is a leading cause of death in cystic fibrosis patients [3]. Its ability to rapidly form resistances against the currently used antibiotics necessitates new approaches for antibacterial treatment [4,5]. Typically, antibiotics affect bacterial viability and thus cause a selection pressure that inevitably leads to the development of resistances. In recent years several research groups have been trying to break out of this vicious cycle by reducing the virulence of the pathogens instead of affecting their viability [6]. One approach is the inhibition of the bacterial cell-to-cell communication systems like QS [7]. In OS, bacterial cells release a variety of small diffusible molecules which can be detected by other bacteria. This kind of molecular

* Corresponding author. E-mail address: rolf.hartmann@helmholtz-hzi.de (R.W. Hartmann). signaling allows the bacterial population to assess its cell density and coordinate group behavior. The Pseudomonas QS system consists of two N-acylhomoserine lactone (AHL) regulatory circuits (las and *rhl*) linked to an 2-alkyl-4-quinolone (AQ) system [3]. Whereas the AHL systems are widespread among Gram negative bacteria [8], our group focuses on the so called Pseudomonas quinolone signal quorum sensing (PQS-QS) system, an AQ system that exclusively exists in P. aeruginosa and some Burkholderia strains [9]. It is involved in the production of a number of virulence factors that contribute to their pathogenicity [10]. Moreover, it takes part in regulating the formation of biofilms, a main cause for bacterial resistance against conventional antibiotics in clinical use [11]. The pqsABCDE operon, whose expression is controlled by the transcriptional regulator PqsR (MvfR), directs the AQ biosynthesis in *P. aeruginosa*. Molecules, produced upon activity of this operon are among others, 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal, PQS) and its biosynthetic precursor 2-heptyl-4quinolone (HHQ) [12]. HHQ and PQS themselves activate PgsR leading to an auto-induction of the *pqsABCDE* operon [13,14]. Besides, they can modulate the innate immune response of mammalian cells, affecting the first defense barrier of the host

[15,16,17]. Compounds, interfering with the PQS-QS system have proven to be promising candidates for drug development. Treatment with antagonists of the PqsR receptor enabled the survival of P. aeruginosa infected Galleria mellonella larvae [18]. Furthermore we could show that inhibitors of the enzyme PqsD, a key player in the AO biosynthesis (Scheme 1), are able to reduce biofilm in *P. aeruginosa* cultures [19]. It was recently reported by Dulcev et al.. that PgsD produces 2-aminobenzovlacetate-coenzyme A (2-ABA-CoA), a highly active intermediate in the HHQ biosynthesis, by converting anthraniloyl-coenzyme A (ACoA) with malonyl CoA. Firstly, ACoA is covalently transferred to C112 of PgsD, followed by the reaction with malonyl-CoA. Further conversion of the intermediate 2-ABA-CoA in several enzymatic steps finally results in HHQ and PQS (Scheme 1) [17]. Interestingly, PqsD is also capable of directly producing HHQ by converting ACoA with β -ketodecanoic acid [20]. In the recent past we frequently used this enzymatic reaction to assess the activity of PqsD inhibitors [19,21-25]. For compounds interfering with the first enzymatic step, the formation of the PqsD-CoA complex, this is still a valid method [23,24].

In a recent work, we reported on the class of ureidothiophene-2-carboxylic acids as potent inhibitors of PqsD. Biophysical methods were used to confirm a binding hypothesis derived from molecular docking studies. This approach enabled the structurebased optimization of a screening hit compound resulting in a series of highly active molecules (e.g. **A** and **B** in Chart 1) [21]. According to our docking pose and the results from SPR competition experiments, the most active derivative **B** occupies an area, spanning from the entrance of the binding channel to the active site, leaving a gap of about 6 Å to the bottom of the pocket where the catalytic residues are located. Its carboxylic acid groups are supposed to interact with Asn154 and Arg262 respectively anchoring the inhibitor in the binding channel of PqsD The phenylalanine residue perfectly fits into a narrow pocket at the channel's entrance delimited by Arg 223 and Phe226 and (Fig. 1).

In this work we describe further exploration of the chemical space, the structure activity relationships (SAR) and the intracellular effects of this class of inhibitors.

2. Results and discussion

According to our binding hypothesis, the carboxylate group of the amino acid part in **A** and **B** interacts with Arg262 at the entrance of the PqsD binding channel (Fig. 1). The natural substrate anthraniloyl CoA (ACoA) builds several ion bridges between its phosphoric acid groups and the arginines on the surface of the protein. Such interactions are considered very potent in literature [26,27]. Inspired by ACoA we replaced the carboxylic acid moiety by a phosphoric acid group (**1**). In comparison to the glycine derivative

Scheme 1. Biosynthetic pathway of the signal molecules HHQ and PQS according to Dulcey et al. [15].

Fig. 1. Docking pose of **B** inside the binding channel of PqsD.

Fig. 2. Illustration of the proposed clash between the additional methoxy group and the protein residue Arg223.

A the activity did not increase. Based on these findings, the phosphoric acid was not considered for further optimization due to synthetic reasons.

The so far most active inhibitor **B** carries a phenylalanine substituent at the ureido motif. In order to fine-tune the electronic properties of the aromatic system we investigated electron donating and electron withdrawing substituents in *para*-position (Table 1). In case of an electron donating hydroxyl function (**2**), the activity dropped to 29 μ M similar to an additional methoxy group (**3**; IC₅₀: 31 μ M). In case of the latter this is probably due to steric reasons, which is in good agreement with our binding hypothesis (Fig. 2).

Introduction of an electron withdrawing and lipophilic chlorine substituent (**4**) also resulted in decreased inhibitory potency (14 μ M). As both kinds of substituents with inverse electronic properties were detrimental to the activity, we considered the unsubstituted ring as most favorable. In the next step we shortened (**5**) and prolonged (**6**) the linker between the α -position and the phenyl ring. In the crystal structure, the entrance to the sub-pocket, delimited by Arg223 and Phe226 and Glu227 is narrow and therefore requires a special conformation. This conformation is obviously only provided by the compound with the methylene linker as both, **5** and **6** displayed significantly weaker inhibitory potency. As a last trial to explore the SAR at this part of the

Fig. 3. Energy minimized conformations showing the orientation between the phenyl ring and the thiophene core of B, 15 and 16.

Fig. 4. a) Docking pose of **B** (green) and **C** turquoise). b) Docking pose of **B** (green) and **D** (yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Docking pose of **B** (green) extended with the NAC moiety (blue) present in **24**, illustrating how the additional residue is directed outside the binding channel of PqsD. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Chart 1. Structures of the PqsD inhibitors A and B.

molecule, further readily available (*S*)-amino acids were introduced. None of the resulting compounds (**7**–**11**) outperformed the potency of **B**.

We proceeded, retaining the phenylalanine residue at the ureido-motif, as the most promising moiety and subsequently focused on the opposite side of the molecule. Firstly parts of the methoxy equipped ring of **B** were removed to determine the essential functional groups (Table 2). Demethylation, resulting in hydroxyl compound 12 decreased the activity. Further omitting this OH-group (13) however partially restored it. This leads to the assumption that the oxygen of the methoxy group contributes to the activity to a certain extent, presumably as a hydrogen bond acceptor. In absence of an appropriate interaction partner the hydrogen bond donor of 13 is surrounded by highly ordered water molecules, leading to an entropic loss and, therefore, a lowered activity. Removal of the entire methoxyphenyl ring (14) results in a total loss of inhibitory potency. To reveal the bioactive conformation and the orientation of the methoxyphenyl ring towards the thiophene, 15 and 16 were investigated. The methyl group of 15 increased the IC₅₀ to 8 µM suggesting an ortho-effect and thus an unfavorable perpendicular orientation of the two rings or a steric clash of the additional substituent. Rigidification by an ethylene linker (16), which directly connects the two aromatic systems causing a planar structure (Fig. 3), did not improve the activity as well. The tight shape of the PqsD binding channel that demands certain flexibility from entering inhibitors can once more be an explanation for these findings.

The proposed interaction between the carboxylic acid at the thiophene core with Asn154 was corroborated by compound **17**. Removal of the carboxylic group decreased the activity by about twentyfold.

By the application of SPR competition experiments in the above mentioned earlier work [21], we were able to narrow down the position of the ureidothiophene-2-carboxylic acids within the binding channel compared to known PqsD inhibitors from the 2-(nitrophenyl)-methanol class (**C** and **D** in Chart 2). Whereas the shorter compound **C** (Fig. 4a turquoise) did not affect the binding affinity of **B**, the longer derivative **D** (Fig. 4b yellow) prevented binding of **B** (data not shown), fitting to our binding hypothesis.

According to the docking pose, a linkage of the two inhibitor classes in order to combine their interactions with PqsD should be

Inhibitory activities of 1–11 against P. aeruginosa PqsD in vitro.

Entry	R	Inhibition of PqsD ^a
1	PO ₃ H	$7.0 \pm 0.7 \ \mu M$
2	Соон	$29.0 \pm 0.01 \ \mu M$
3		$31.3 \pm 3.7 \ \mu M$
4		13.8 ± 1.1 μM
5		~40% @ 50 µM
6		$33.7 \pm 1.5 \ \mu M$
7		$31.9 \pm 3.0 \ \mu M$
8	й соон 	19.0 ± 2.6 μM
9		$13.2 \pm 0.9 \mu M$
10	COOH NH	$5.0 \pm 0.9 \ \mu M$
11	соон 	$30.3 \pm 0.3 \ \mu M$
	Н	

^a IC₅₀ values of PqsD.

possible. We decided to enlarge the unsubstituted compound 13 step by step to achieve a full combination with **D**. Due to the absence of strong interactions with the protein, docking studies never delivered an unambiguous orientation of the aryl ring at the thiophene core within the pocket. Even though an attachment in 3position (18,19) should be favorable according to the dockings with compound **B** (compare Fig. 4), expansion in 4-position (20–22) delivers better results (Table 3). We hypothesized that this is once again due to the tight shape of the binding channel which hampers the entrance of the stronger tilted compounds 18 and 19. Whereas the introduction of the first phenyl ring (20) did not result in better inhibition, elongation with a hydroxy-methyl function (21), which is supposed to mimic the one of **C** and **D** increased the activity by twentyfold compared to 13 (factor three compared to B). Attachment of the second, nitro-substituted ring (22) forfeits parts of the activity gain. A possible explanation could be that the final compound is large and inflexible and, is therefore, incapable of adapting to conformational changes which would be necessary to retain the

Entry	Structure	Inhibition of PqsD ^a
12	HO S COOH N N COOH	$21.6 \pm 3.9 \ \mu M$
13	COOH COOH H H H	$3.8 \pm 1.4 \ \mu M$
14	S COOH O COOH H H H	no inhibition @ 50 μM
15	MeO S COOH N N N N N	7.5 ± 1.8 μM
16	MeO S COOH H H H	$23.7 \pm 0.02 \ \mu M$
17	MeO S COOH	$11.5 \pm 2.0 \ \mu M$

Table 2 Inhibitory activities of 12–17 against P. aeruginosa PqsD in vitro.

^a IC₅₀ values of PqsD.

sum of interactions of the respective single compounds **B** and **D**. To confirm, that the nitro-substituted ring of **22** reaches deep into the binding channel, SPR experiments were performed. Firstly, the binding responses of **B**, **21** and **22** towards PqsD were recorded in the absence of ACoA. In a second experiment, the PqsD loaded sensor chip was treated with ACoA. According to the catalytic mechanism of PqsD this results in the anthranilate-PqsD complex, in which the anthranilic acid is covalently bound to Cys112. Subsequently the binding responses of **B**, **21** and **22** to this complex were determined. Only the signals of **22** showed significant differences between treated and untreated PqsD (Figure S1 in supporting information). Since this behavior is typical for the 2-nitrophenylmethanol derivatives [22], occupation of the same binding site can be assumed.

Although the inhibitors displayed high potency in the cell free enzyme assay, none of them was able to reduce the HHQ levels in a whole cell *P. aeruginosa* assay. These findings can be attributed to different reasons like permeation- or efflux problems. Several steps were taken to achieve an intracellular activity.

Chart 2. Structures of the PqsD inhibitors **C** and **D** and their *in vitro* IC₅₀ values against *P. aeruginosa* PsqD.

Table 3

NN COOH

^a IC₅₀ values of PqsD.

Fluoroquinolone and β-lactam antibiotics are mostly zwitterionic. According to several reports in literature, this feature significantly contributes to their transport into the cell, which was shown especially for the β -lactams [28,29]. Inspired by that we introduced S-histidine instead of S-phenylalanine, using the imidazole ring as a bioisostere of the phenyl ring while gaining a basic function and therefore a potentially positive charge at the same time. The resulting compound 23 displayed weak activity against PqsD (40% inhibition at 50 μ M) but showed for the first time significant but very moderate reduction of HHQ levels in the whole cell assay (Reduction of HHQ at 250 μ M: 16 \pm 5%). In a second attempt, we made use of an *N*-acetyl thioester (NAC-ester) which is frequently used in mutasynthesis programs. The NAC adducts thereby serve as mimics of coenzyme A esters which improve their acceptance as precursors in biosynthesis and might also facilitate the entrance into bacterial cells in comparison to the free acids [30]. The carboxylic acid moiety of the phenylalanine was considered more suitable for the attachment of an NAC unit than the one at the thiophene core. It is presumably positioned at the entrance of the pocket (Fig. 5) directing the additional substituent outside the binding channel of PqsD, and therefore avoiding steric hindrance. Thus an intracellular cleavage of the thioester to set the active form free might not be mandatory. The resulting compound 24 (Chart 3) still displayed reasonable activity (IC₅₀: 32 µM) but turned out to be inactive in the whole-cell assay. We further examined the introduction of a cell penetrating peptide (25) at the same position. Again, the inhibitory activity on the cell free level could be retained, but no inhibitory effect in the whole cell assay was observed at the test concentration.

3. Conclusions

In conclusion, we further explored the chemical space of the ureidothiophene-2-carboxylic acids as inhibitors of PqsD. The pharmacophore of the inhibitor class was determined and the essentiality of several functional groups was clarified. Moreover, two inhibitor classes could be successfully merged without having access to structural information of protein-ligand x-ray structures. The resulting compounds display higher inhibitory activity by profiting from the combined interactions with the protein. Following this approach, the most potent PqsD inhibitors described so far were obtained. Although the potency in cell free assay was high, an intracellular activity could not be achieved even by attachment of a cell penetrating peptide. We assume that the class of inhibitors is subject to efflux causing natural resistance of P. aeruginosa towards the newly developed antibacterial agents. Therefore, we consider the ureidothiophene-2-carboxylic acids to be not eligible for further development in the field of Pseudomonas quorum sensing inhibitors. The problem could eventually be solved by a combined application with efflux pump inhibitors, or by using pharmaceutical technological methods, but this is beyond the frame of this work. Nevertheless, important interactions of functional groups with the protein were revealed that can be used to improve the inhibitory activity of other PqsD inhibitors with better intracellular effects.

4. Experimental procedures

4.1. Chemistry

4.1.1. Materials and methods

Starting materials were purchased from commercial suppliers and used without further purification. Column flash chromatography was performed on silica gel (40–63 µM), and reaction progress was monitored by TLC on TLC Silica Gel 60 F₂₅₄ (Merck). All moisture-sensitive reactions were performed under nitrogen atmosphere using oven-dried glassware and anhydrous solvents. Preparative RP-HPLC was carried out on a Waters Corporation setup containing a 2767 sample manager, a 2545 binary gradient module, a 2998 PDA detector and a 3100 electron spray mass spectrometer. Purification was performed using a Waters XBridge column (C18, 150×19 mm, 5 μ m), a binary solvent system A and B (A = water with 0.1% formic acid; B = MeCN with 0.1% formic acid) as eluent, a flow rate of 20 mL/min and a gradient of 60%-95% B in 8 min were applied. ¹H and ¹³C NMR spectra were recorded on a Bruker Fourier spectrometer (500/300 or 125/75 MHz) at ambient temperature with the chemical shifts recorded as δ values in ppm units by reference to the hydrogenated residues of deuterated solvent as internal standard. Coupling constants (J) are given in Hz and signal patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublets; t, triplet; m, multiplet, br., broad signal. Purity of the final compounds was determined by HPLC. The Surveyor LC system consisted of a pump, an autosampler, and a PDA detector. Mass spectrometry was performed on a MSQ electrospray mass spectrometer (ThermoFisher, Dreieich, Germany). The system was

Chart 3. Structures of compound **23**–**25**, carrying moieties (highlighted in red) which should facilitate the entrance into Gram-negative cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

operated by the standard software Xcalibur. A RP C18 NUCLEODUR 100–5 (125 mm \times 3 mm) column (Macherey–Nagel GmbH, Dühren, Germany) was used as the stationary phase. All solvents were HPLC grade. In a gradient run the percentage of acetonitrile (containing 0.1% trifluoroacetic acid) was increased from an initial concentration of 0% at 0 min to 100% at 15 min and kept at 100% for 5 min. The injection volume was 10 µL, and flow rate was set to 800 µL/min. MS analysis was carried out at a spray voltage of 3800 V and a capillary temperature of 350 °C and a source CID of 10 V. Spectra were acquired in positive mode from 100 to 1000 *m/z* at 254 nm for the UV trace.

4.1.2. Synthesis and spectroscopic details

The synthesis of most of the 5-aryl-3-ureidothiophene-2carboxylic acids (Scheme 2) started from readily available acetophenones (I) which were converted to the 5-aryl thiophene anthranilic acid methylesters (II) *via* an Arnold-Vilsmaier-Haack reaction followed by a cyclization using methylmercaptoacetate [31]. The esters (II) were then hydrolyzed under basic conditions to afford the thiophene anthranilic acids (III) which were converted into the thiaisatoic anhydrides (IV) [32,33]. The anhydrides (IV) were reacted with various amines giving rise to the 5-aryl-3ureidothiophene-2-carboxylic acids (V) [34]. Further substituents at the 5-aryl ring were introduced using boronic acids or esters, respectively, *via* Suzuki coupling yielding VI [35].

Further details on the synthesis and spectroscopic data of final compounds and intermediates can be found in the Supporting information.

4.2. Biology

4.2.1. General procedure for expression and purification of recombinant PasD WT and R223A mutant in Escherichia coli

His6-tagged PgsD (H6-PgsD) and mutants were expressed in E. coli and purified using a single affinity chromatography step. Briefly, E. coli BL21 (λ DE3) cells containing the pET28b(+)/pgsD (kindly provided by Prof. Rolf Müller, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany) were grown in LB medium containing 50 µg/mL kanamycin at 37 °C to an OD₆₀₀ of approximately 0.8 units and induced with 0.2 mM IPTG for 16 h at 16 °C. The cells were harvested by centrifugation (5000 rpm, 10 min, 4 °C) and the cell pellet was resuspended in 100 mL binding buffer (10 mM Na₂HPO₄, 2 mM KH₂PO₄ pH 7.4, 3 mM KCl, 137 mM NaCl, 20 mM imidazole, 10% glycerol (v/v)) and lysed by sonication for a total process time of 2.5 min. Cell debris were removed by centrifugation (18500 rpm, 40 min, 4 °C) and the supernatant was filtered through a syringe filter (0.20 μ m). The clarified lysate was immediately applied to a Ni-NTA column, washed with binding buffer and eluted with 500 mM imidazole. The protein containing fractions were buffer-exchanged into 125 mM Na₂HPO₄, 50 mM KH₂PO₄ pH 7.6, 50 mM NaCl, 10% glycerol (v/v), using a PD10 column and judged pure by SDS-PAGE analysis. Then protein was stored in aliquots at -80 °C.

4.2.2. Screening assay procedure for in vitro PqsD inhibition [20].

The assay was performed monitoring enzyme activity by measuring HHQ formed by condensation of anthraniloyl-CoA and β-ketodecanoic acid. The reaction mixture contained MOPS buffer (0.05 M, pH 7.0) with 0.005% (w/v) Triton X-100, 0.1 μ M of the purified enzyme and inhibitor. The test compounds were dissolved in DMSO and diluted with buffer. The final DMSO concentration was 0.5%. After 10 min preincubation at 37 °C, the reaction was started by the addition anthraniloyl-CoA to a final concentration of 5 μ M and β -ketodecanoic acid to a final concentration of 70 μ M. Reactions were stopped by addition of MeOH containing 1 µM amitriptyline as internal standard for LC/MS–MS analysis. HHQ was quantified using a HPLC-MS/MS mass spectrometer (ThermoFisher, Dreieich, Germany) in ESI mode. Ionization of HHQ and the internal standard amitriptyline was optimized in each case. The solvent system consisted of 10 mM ammonium acetate (A) and acetonitrile (B), both containing 0.1% trifluoroacetic acid. The initial concentration of B in A was 45%, increasing the percentage of B to 100% in 2.8 min and keeping it at 98% for 0.7 min with a flow of 500 μ L/min. The column used was a NUCLEODUR-C18, 100-3/125-3 (Macherey Nagel, Dühren, Germany). Control reactions without the inhibitor, but including identical amounts of DMSO, were performed in parallel and the amount of HHQ produced was set to 100%.

4.2.3. Determination of extracellular HHQ and PQS levels

For determination of extracellular levels of HHQ produced by PA14, cultivation was performed in the following way: cultures (initial $OD_{600} = 0.02$) were incubated with or without inhibitor (final DMSO concentration 1%, v/v) at 37 °C, 200 rpm and a humidity of 75% for 16 h in 24-well Greiner BioOne (Frickenhausen, Germany) Cellstar plates containing 1.5 mL of LB medium per well. For HHQ analysis, according to the method of Lepine et al. [36], 500 μ L of the cultures supplemented with 50 μ L of a 10 μ M methanolic solution of the internal standard (IS) 5,6,7,8tetradeutero-2-heptyl-4(1H)-quinolone (HHQ-d₄) were extracted with 1 mL of ethyl acetate. After centrifugation (18,620 g, 12 min), 400 µL of the organic phase were evaporated to dryness and redissolved in methanol. UHPLC-MS/MS analysis was carried out as described in detail by Storz et al. [19] The monitored ions were (mother ion [m/z], product ion [m/z], scan time [s], scan width [m/z]z], collision energy [V], tube lens offset [V]): HHQ: 244, 159, 0.5, 0.01, 30, 106; HHQ-d₄(IS): 248, 163, 0.1, 0.01, 32, 113. For each sample, cultivation and sample work-up were performed in triplicates. Inhibition values of HHQ formation were normalized to OD₆₀₀.

Scheme 2. Synthesis of 5-aryl-3-ureidothiophene-2-carboxylic acids V or VI, respectively. Reagents and conditions: (a) POCl₃, DMF, 50 °C to rt, then NH₂OH·HCl, up to 150 °C. (b) Methylthioglycolate, NaOMe, MeOH, reflux. (c) KOH, MeOH, THF, H₂O, reflux. (d) COCl₂, THF. (e) Amine, H₂O, 100 °C then at 0 °C conc. HCl. (f) Na₂CO₃, Pd(PPh₃)₄, boronic acid or ester, THF, H₂O, toluene, 80 °C.

4.2.4. Surface plasmon resonance

4.2.4.1. General. SPR binding studies were performed using a Reichert SR7500DC instrument optical biosensor (Reichert Technologies, Depew, NY, USA) and CMD500M sensor chips obtained from XanTec (XanTec Bioanalytics, Düsseldorf, Germany). Scrubber 2 software (Version 2.0c, 2008, BioLogic Software) was used for proceeding and analyzing the data. Changes in refractive index due to DMSO dependent solvent effects were corrected by use of a calibration curve (seven solutions, 4.25%–5.75% DMSO in buffer).

4.2.4.2. Immobilization of His₆-PqsD. PqsD (38 kDA, >90% pure based on SDS-PAGE) was immobilized at an level of 5919 RU on a CMD500M (carboxymethyldextran-coated) sensor chip at 18 °C analogous to the method described by Henn et al. [37].

4.2.4.3. Binding studies. The ACoA preincubation studies were performed as previously described using a constant flow rate of 25 µL/min and HEPES buffer as instrument running buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 5% DMSO (v/v), 0.05% Polysorbat 20 (v/v) [20]. ACoA (100 μ M) was injected for approximately 40 min with a constant flow of 5 µL/min to reach saturation of the ACoA binding site. Afterwards, the flow rate was increased to 50 µL/min for 30 min in order to flush all CoA away. Once the baseline is stable again the compounds were consecutively injected and the responses at equilibrium were compared to those obtained with the untreated surface. Experiments were performed in duplicate. For B a concentration series of 250, 125 and 62.5 μ M were used. Since stronger binding signal was observed for 21, the concentration series was decreased to 100, 50 and 25 μ M, whereas a series of 25, 12.5, and 6.25 µM was measured for 22. The compounds were injected for 120 s association times and 300 s dissociation times.

4.3. Computational chemistry

4.3.1. Docking

Inhibitors were built in MOE. The receptor was derived from crystal structure of PqsD in complex with ACoA (PDB Code: 3H77) [10] The residuals of CoA, the covalently bound anthranilate and H₂O were removed and Cys112 was restored considering its conformation in 3H76 [10]. AutoDockTools V.1.5.6 was used to add polar hydrogens and to save the protein in the appropriate file formate for docking with Vina. AutoDockVina was used for docking calculations [38]. The docking parameters were kept at their default values. The docking grid was sized 18 Å \times 24 Å \times 24 Å, covering the entire ACoA channel.

Acknowledgments

The authors thank Carina Scheidt and Simone Amman for performing the *in vitro* tests. We also appreciate Patrick Fischer's help in performing the synthesis. Furthermore we thank Dr. Werner Tegge (Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany) for kindly providing the cell penetrating peptide. J. Henning Sahner gratefully acknowledges a scholarship from the "Stiftung der Deutschen Wirtschaft" (SDW). This project was funded by BMBF through grant 1616038B.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.ejmech.2015.04.007.

References

[1] J. Davies, Bacteria on the rampage, Nature 383 (1996) 219-220.

- [2] C. Walsh, Molecular mechanisms that confer antibacterial drug resistance, Nature 406 (2000) 775–781.
- [3] J.-F. Dubern, S.P. Diggle, Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species, Mol. Biosyst. 4 (2008) 882–888.
- [4] N. Bagge, O. Ciofu, L.T. Skovgaard, N. Høiby, Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal β-lactamase, APMIS 108 (2000) 589–600.
- [5] A.R.M. Coates, G. Halls, Y. Hu, Novel classes of antibiotics or more of the same? Brit. J. Pharmcol. 163 (2011) 184–194.
- [6] F. von Nussbaum, M. Brands, B. Hinzen, S. Weigand, D. Haebich, Antibacterial natural products in medicinal chemistry - exodus of revival? Angew. Chem. Int. Ed. 45 (2006) 5072–5129.
- [7] For a recent review see: S. Scutera, M. Zucca, D. Savoia, Novel approaches for the design and discovery of quorum-sensing inhibitors Expert Opin. Drug. Discov. 9 (2014) 353–366.
- [8] S. Swift, J.A. Downie, N.A. Whitehead, A.M. Barnard, G.P. Salmond, P. Williams, Quorum sensing as a population-density-dependent determinant of bacterial physiology, Org. Biomol. Chem. 12 (2001) 6094–6104.
- [9] S. Diggle, P. Lumjiaktase, F. Dipilato, K. Winzer, M. Kunakorn, D.A. Barrett, S.R. Chhabra, M. Cámara, P. Williams, Functional genetic analysis reveals a 2alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria, Chem. Biol. 13 (2006) 701–710.
- [10] A.K. Bera, V. Atanasova, H. Robinson, E. Eisenstein, J.P. Coleman, E.C. Pesci, J.F. Parsons, Structure of PqsD, a Pseudomonas quinolone signal biosynthetic enzyme, in complex with anthranilate, Biochemistry 48 (2009) 8644–8655.
- [11] L. Yang, M. Nilsson, M. Gjermansen, M. Givskov, T. Toker-Nielsen, Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation, Mol. Microbiol. 74 (2009) 1380–1392.
- [12] L. Gallagher, S.L. McKnight, M.S. Kuznetsova, E.C. Pesci, C. Manoil, Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa, J. Bacteriol. 184 (2002) 6472–6480.
- [13] D.S. Wade, M. Worth Calfee, E.R. Rocha, E.A. Ling, E. Engstrom, J.P. Coleman, E.C. Pesci, Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa, J. Bacteriol. 187 (2005) 4372–4380.
- [14] G. Xiao, E. Déziel, J. He, F. Lépine, B. Lesic, M.-H. Castonguay, S. Milot, A.P. Tampakaki, S.E. Stachel, L.G. Rahme, MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands, Mol. Microbiol. 62 (2006) 1689–1699.
- [15] A. Bandyopadhaya, M. Kesarwani, Y.-A. Que, J. He, K. Padfield, R. Tompkins, L.G. Rahme, The quorum sensing volatile molecule 2-amino acetophenon modulates host immune response in a manner that promotes life with unwanted guests, PLoS Pathog. 8 (2012) e1003024.
- [16] K. Kim, Y.U. Kim, B.H. Koh, S.S. Hwang, S.-H. Kim, F. Lépine, Y.-H. Cho, G.R. Lee, HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down regulate the innate immune responses through the nuclear factor-κB pathway, Immunology 129 (2010) 578–588.
- [17] C.E. Dulcey, V. Dekimpe, D.-A. Fauvelle, S. Milot, M.-C. Groleau, N. Doucet, L.G. Rahme, F. Lépine, E. Déziel, The end of an old hypothesis: the Pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids, Chem. Biol. 20 (2013) 1481–1491.
- [18] C. Lu, C.K. Maurer, B. Kirsch, A. Steinbach, R.W. Hartmann, Overcoming unexpected functional inversion of a PqsR antagonist in Pseudomonas aeruginosa: an in vivo potent antivirulence agent targeting pqs quorum sensing, Angew. Chem. Int. Ed. 53 (2014) 1109–1112.
- [19] M.P. Storz, C.K. Maurer, C. Zimmer, N. Wagner, C. Brengel, J.C. de Jong, S. Lucas, M. Müsken, S. Häussler, A. Steinbach, R.W. Hartmann, Validation of PqsD as an anti-biofilm target in Pseudomonas aeruginosa by development of smallmolecule inhibitors, J. Am. Chem. Soc. 134 (2012) 16143–16146.
- [20] D. Pistorius, A. Ullrich, S. Lucas, R.W. Hartmann, U. Kazmaier, R. Müller, Biosynthesis of 2-alkyl-4(1H)-quinolones in Pseudomonas aeruginosa: potential for therapeutic interference with pathogenicity, ChemBioChem 12 (2011) 850–853.
- [21] J.H. Sahner, C. Brengel, M.P. Storz, M. Groh, A. Plaza, R. Müller, R.W. Hartmann, Combining in silico and biophysical methods for the development of Pseudomonas aeruginosa quorum sensing inhibitors: an alternative approach for structure-based drug design, J. Med. Chem. 56 (2013) 8656–8664.
- [22] E. Weidel, J.C. de Jong, C. Brengel, M.P. Storz, A. Braunshausen, M. Negri, A. Plaza, A. Steinbach, R. Müller, R.W. Hartmann, Structure optimization of 2-Benzamidobenzoic acids as PqD inhibitors for Pseudomonas aeruginosa infections and elucidation of binding mode by SPR, STD NMR, and molecular docking, J. Med. Chem. 56 (2013) 6146–6155.
- [23] M. Storz, G. Allegretta, B. Kirsch, M. Empting, R.W. Hartmann, From in vitro to in cellulo: structure-activity relationship of (2-nitrophenyl)methanol derivatives as inhibitors of PqsD in Pseudomonas aeruginosa, Org. Biomol. Chem. 12 (2014) 6094–6104.
- [24] M. Storz, C. Brengel, E. Weidel, M. Hoffmann, K. Hollemeyer, A. Steinbach, R. Müller, M. Empting, R.W. Hartmann, Biochemical and biophysical analysis of chiral PqsD inhibitor revealing tight-binding behavior and enantiomers with contrary thermodynamic signatures, ACS Chem. Biol. 8 (2013) 2794–2801.
- [25] S. Hinsberger, Johannes C. de Jong, M. Groh, J. Haupenthal, R.W. Hartmann, Benzamidobenzoic acids as potent PqsD inhibitors for the treatment of Pseudomonas aeruginosa infections, Eur. J. Med. Chem. 76 (2014) 343–351.
- [26] F.A. Cotton, V.W. Day, E.E. Hazen Jr., S. Larsen, S.T.K. Wong, Structure of bis(methylguanidinium) monohydrogen orthophosphate. A model for the

arginine-phosphate interactions at the active site of staphylococcal nuclease and other phosphohydrolytic enzymes, J. Am. Chem. Soc. 96 (1974) 4471-4478.

- [27] A.S. Woods, S. Ferré, Amazing stability of the arginine-phosphate electrostatic interaction, J. Proteome Res. 4 (2005) 1397-1402.
- [28] H. Nikaido, E.Y. Rosenberg, J. Foulds, Porin channels in Escherichia coli: studies with b-lactams in intact cells, J. Bacteriol. 153 (1983) 232-240.
- [29] F. Yoshimura, H. Nikaido, Diffusion of b-lactam antibiotics through the porin channels of Escherichia coli K-12, Antimicrob. Agents Chemother. 27 (1985) 84-92.
- [30] A. Kirschning, F. Taft, T. Knobloch, Total synthesis approaches to natural product derivatives based on the combination of chemical synthesis and metabolic engineering, Org. Biomol. Chem. 5 (2007) 3245–3259. [31] H. Hartmann, J. Liebscher, A simple method for the synthesis of 5-aryl-3-
- amino-2-alkoxycarbonylthiophenes, Synthesis (1984) 275-276.
- [32] F. Fabis, S. Iolivet-Fouchet, M. Robba, H. Landelle, S. Rault, Thiaisatoic anhydrides: efficient synthesis under microwave heating conditions and study of their reactivity, Tetrahedron 54 (1998) 10789-10800.
- [33] L. Foulon, E. Braud, F. Fabis, J.C. Lancelot, S. Rault, Synthesis and combinatorial

approach of the reactivity of 6-and 7-arylthieno [3,2-d][1,3] oxazine-2,4diones, Tetrahedron 59 (2003) 10051–10057.

- [34] F.X. Le Foulon, E. Braud, F. Fabis, J.C. Lancelot, S. Rault, Solution-phase parallel synthesis of a 1140-member ureidothiophene carboxylic acid library, J. Comb. Chem. 7 (2005) 253-257.
- [35] N. Miyaura, K. Yamada, A. Suzuki, A new stereospecific cross-coupling by palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides, Tetrahedron Lett. 20 (1979) 3437–3440.
- [36] F. Lépine, S. Milot, E. Déziel, J. He, L.G. Rahme, Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa, J. Am. Soc. Mass. Spectrom. 15 (2004) 862-869.
- [37] C. Henn, S. Boettcher, A. Steinbach, R.W. Hartmann, Catalytic enzyme activity on a biosensor chip: combination of surface plasmon resonance and mass spectrometry, Anal. Biochem. 428 (2012) 28–30.
- [38] O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy pf docking with a new scoring function, efficient optimization, and multi-threading, J. Comput. Chem. 31 (2009) 455–461.