Total Synthesis of Epothilone A: The Macrolactonization Approach**

K. C. Nicolaou,* Francisco Sarabia, Sacha Ninkovic, and Zhen Yang

Dedicated to Professor Stephen Hanessian on the occasion of his 60th birthday

The novel molecular structures of the epothilones, for example epothilone A (1, Figure 1), coupled with their antifun-gal^[1, 2] and antitumor activities^[1-4] and microtubule binding properties^[4] promise an exciting new chapter in chemistry, biology, and medicine. Particularly intriguing is the ability of these compounds to displace taxol from its binding site on microtubules,^[4] towards which epothilones exhibit much higher affinity than taxol.^[5] An indication of the intense interest in this field is the flurry of activity^[6] directed toward their total synthesis within the relatively short time since their structural elucidation.^[2] While our first total synthesis^[6f] of 1 enjoys the benefits of the olefin metathesis reaction, the one we wish to report here relies on a macrolactonization process for constructing the main ring skeleton. In addition, the reported synthesis is highly convergent and flexible and therefore allows entry into a large library of epothilones, including epothilone B and all of the 2⁶ stereoisomers of 1.

Figure 1. Structure and retrosynthetic analysis of epothilone A (1).

By the macrolactonization approach to 1 (Figure 1), three fragments (C1–C6, C7–C12, and C13–C21), each containing a stereogenic center, are to be constructed stereoselectively by asymmetric synthesis procedures, united, and elaborated to the final target. A Wittig and an aldol reaction will be used for the coupling of these fragments, whereas the C(O)–O bond formation is reserved for the macrocycle forming process, in the form of a macrolactonization. It is important to note that this strategy allows for the preparation of all the possible stereoisomers of 1, since the configuration of each stereocenter can easily be reversed.

The execution of this rather simple strategy proceeded smoothly for **1** (Scheme 1). The SAMP derivative **2**, obtained by

Fax: Int. code + (619) 784-2469

and

Department of Chemistry and Biochemistry University of California San Diego

9500 Gilman Drive. La Jolla, CA 92093 (USA)

[**] This work was financially supported by The Skaggs Institute of Chemical Biology and the National Institutes of Health (USA). F. S. thanks the Fundacion Ramon Areces for a postdoctoral fellowship.

Scheme 1. Total synthesis of epothilone A (1): a) 1.1 equiv LDA, THF, 0°C, 8 h; then 1.5 equiv 4-iodo-1-benzyloxybutane in THF at -100 to 0 °C, 6 h, 92%; b) O₃, $CH_{2}Cl_{2}, -78\,^{\circ}C, \ 77\,^{\circ}; \ c) \ 3.0 \ equiv \ NaBH_{4}, \ MeOH, \ 0\,^{\circ}C, \ 15 \ min, \ 98\,^{\circ};$ d) 1.5 equiv TBSCl, 2.0 equiv Et₃N, CH₂Cl₂, 0 to 25°C, 12 h, 95%; e) H₂, Pd(OH)₂ cat, THF, 15 min, 40 psi, 25 °C, 95%; f) 1.5 equiv I₂, 3.0 equiv imidazole, 1.5 equiv Ph₃P, Et₂O/CH₃CN (3:1), 0°C, 0.5 h, 91%; g) Ph₃P, neat, 100°C, 2 h, 92%; h) 1.5 equiv TBSCl, 2.0 equiv imidazole, THF, 0 to 25°C, 1 h, 99%; i) 1 mol% OsO₄, 1.1 equiv NMO, 25 °C, 14 h, 95%; j) 1.1 equiv Pb(OAc)₄, EtOAc, 0°C, 10 min, 99%; k) 1.2 equiv 9, 1.2 equiv NaHMDS, THF, 0°C, 0.25 h, then addition 1.0 equiv aldehyde 13 at 0°C, 15 min, 69% (Z: E ≈ 9:1); 1) 1.0 equiv CSA in portions over 1 h, CH2Cl2/MeOH (1:1), 0°C, then 25°C, 0.5 h, 86%; m) 2.0 equiv SO3 · pyridine, 10.0 equiv DMSO, 5.0 equiv Et3N, CH2Cl2, 25 °C, 0.5 h, 82%; n) 3.0 equiv LDA, THF, 0°C, 0.25 h, then 1.2 equiv 18 in THF at -78 to -40 °C, 0.5 h, then 1.0 equiv 17 in THF at -78 °C, high yield of 19 and its 6S,7R-diasteromer (ca. 1:1 ratio); o) 3.0 equiv TBSOTf, 5.0 equiv 2,6-lutidine, $CH_{2}Cl_{2},0\,^{\circ}C,2\,h;p)\,\,2.0$ equiv $K_{2}CO_{3},$ MeOH, 25 $^{\circ}C,$ 15 min, 31 % of 21 and 30 %of its 6S,7R-diasteromer from 17; q) 6.0 equiv TBAF, THF, 25°C, 8 h, 79%; r) 5 equiv 2,4,6-trichlorobenzoylchloride, 6.0 equiv Et₃N, THF, 25 °C, 15 min, then addition to a solution of 10.0 equiv 4-DMAP in toluene (0.002 M based on 22), 25°C, 0.5 h, 90%; s) 20% CF₃COOH (v/v) in CH₂Cl₂, 0°C, 1 h, 92%. LDA = lithiumdiisopropylamide; 4-DMAP = 4-dimethylaminopyridine; TBS = tert-butyldimethylsilyl; NaHMDS = sodium bis(trimethylsilyl)amide; DMSO = dimethylsulfoxide; Tf = triflate; NMO = *N*-methylmorpholine *N*-oxide.

reaction of SAMP^[7] with propionaldehyde, was alkylated with 4-iodo-1-benzyloxybutane in the presence of LDA in THF at -100 °C according to the method of Enders et al.^[7] to produce **3** in 92% yield and greater than 98% *ee.*^[8] Ozonolysis of **3** followed by treatment with NaBH₄ furnished alcohol **5**, via aldehyde **4**, in 77% overall yield. Protection of the hydroxyl group in **5** as a *tert*-butyldimethylsilyl (TBS) ether, followed by standard elaboration of the other end of the molecule (hydrogenolysis of benzyl ether, iodonation, and phosphonium salt formation) yielded the desired fragment **9** in 79.5% overall yield (from **5**).

^[*] Prof. Dr. K. C. Nicolaou, Dr. F. Sarabia, Dr. S. Ninkovic, Dr. Z. Yang Department of Chemistry and The Skaggs Institute of Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)

COMMUNICATIONS

The second requisite fragment, thiazoline aldehyde **13**, was rapidly constructed from the thiazoline derivative $10^{[6f]}$ by silylation (TBSCl, imidazole, 99%), selective 1,2-dihydroxylation^[9] (OsO₄, NMO, 95%), and Pb(OAc)₄ cleavage (99%). Generation of the phosphorane **14** from the phosphonium salt **9** with sodium bis(trimethylsilyl)amide (NaHMDS), followed by addition of aldehyde **13**, led predominently to the (*Z*)-olefin **15** in 69% yield (*Z*: *E* ≈ 9:1). The primary TBS group was selectively removed from **15** with camphorsulfonic acid (CSA) in MeOH to give alcohol **16** (86% yield), which was oxidized to the corresponding aldehyde (**17**) by the action of SO₃ pyridine (82% yield). Condensation of the dilithio derivative of **18**^[6f] (2.6 equiv of LDA, THF, -78 to -40 °C) with aldehyde **17**

Table 1. Selected physical properties of compounds 21-23.

21: $R_{\rm f} = 0.61$ [silica gel, methanol:dichloromethane (5%)]; $[\alpha]_{\rm D}^{22} = -8.8$ (c = 0.8in chloroform); IR (film): $\tilde{v} = 2931$, 2856, 1712, 1466, 1254, 1083, 836 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.94$ (s, 1H, -C=CHS-), 6.61 (s, 1H, -C=CH-C=), 5.44-5.41 (m, 2H, -CH=CH-CH₂-, -CH=CH-CH₂--), 4.40 (dd, 1 H, $J_1 = 3.2$ Hz, $J_2 = 6.5$ Hz, $-(CH_3)_2C-CH-)$, 4.11 (dd, 1 H, $J_1 = 5.9$ Hz, $J_2 = 6.5$ Hz, $-CH(OSi(CH_3)_2 tBu)-)$, 3.75 (dd, 1 H, $J_1 = 3.0$ Hz, $J_2 = 6.5 \text{ Hz}, \text{ TBSO}-CH-CH(Me)), 3.12 \text{ (dq, 1 H, } J_1 = 7.0 \text{ Hz}, J_2 = 6.5 \text{ Hz},$ $\begin{array}{l} -\mathrm{C(O)C}H(\mathrm{CH}_3)-),\ 2.69\ (\mathrm{s},\ 3\mathrm{H},\ -\mathrm{S}-\mathrm{C(CH}_3)=\mathrm{N}-),\ 2.48\ (\mathrm{dd},\ 1\mathrm{H},\ J_1=3.2\ \mathrm{Hz},\\ J_2=16.0\ \mathrm{Hz},\ -\mathrm{CH}_2-\mathrm{COOH}),\ 2.35\ (\mathrm{dd},\ 1\mathrm{H},\ J_1=6.7\ \mathrm{Hz},\ J_2=16.0\ \mathrm{Hz}, \end{array}$ -CH₂-COOH), 2.31-2.28 (m, 2H, -CH₂CH=CH), 2.10-2.00 (m, 2H, $-CH_2-CH=CH$), 1.95 (s, 3H, $-C(CH_3)=CH-C=$), 1.42–1.30 (m, 5H), 1.18 (s, 3H, $-C(CH_3)_2$), 1.10 (s, 3H, $-C(CH_3)_2$), 1.06 (d, 3H, J = 7.0 Hz, $-C(O)-CH(CH_3)-$, 0.90–0.85 (m, 30 H, $-C(O)-CH(CH_3)-$, 3× $-SiC(CH_3)_3(CH_3)_2$, 0.12 (s, 3H, $-SiC(CH_3)_3(CH_3)_2$), 0.09 (s, 3H, $-C(O)-CH(CH_3)-,$ $-SiC(CH_3)_3(CH_3)_2)$, 0.07 (s, 3H, $-SiC(CH_3)_3(CH_3)_2)$, 0.05 (s, 3H, $-SiC(CH_3)_3(CH_3)_2), \quad 0.04 \quad (s, 3 \text{ H}, -SiC(CH_3)_3(CH_3)_2), \quad 0.03 \quad (s, 3 \text{ H}, -SiC(CH_3)_3(CH_3)_2), \quad 0.03 \quad (s, 3 \text{ H}, -SiC(CH_3)_3(CH_3)_2); \quad ^{13}C \text{ NMR} (600 \text{ MHz}, CDCI_3): \delta = 218.2, 176.1, 164.9, 152.7, \quad (s, 3) = 218.2, 176.1, 164.9, \quad (s, 3) = 218.2, 176.1, 164$ 0.04 (s, 142.8, 131.4, 126.0, 118.5, 114.7, 78.7, 73.3, 53.7, 44.7, 40.0, 39.0, 34.7, 30.8, 28.0, 27.8, 26.2, 26.0, 25.8, 23.6, 19.0, 18.8, 18.5, 18.2, 17.2, 15.8, 13.8, -3.8, -3.9, -4.2, -3.8, -3.9, -4.2, -3.8, -3.9, -4.2, -3.8-4.6, -4.7, -4.9; HRMS: calcd for C₄₄H₈₃NO₆SSi₃ (M + Cs⁺) 970.4303, found 970.4318.

22: $R_{\rm f} = 0.40$ [silica gel, methanol:dichloromethane (5%)]; $[\alpha]_{\rm p}^{22} = -19.2$ (c = 0.1 in chloroform); IR (film): $\tilde{v} = 3358$ (br, OH), 2932, 2857, 1701, 1466, 1254, 1088, 988, 835 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 6.95$ (s, 1 H, -C=CHS-), 6.61 (s, 1H, -C=CH-C=), 5.58-5.54 (m, 1H, -CH=CH-CH₂-), 5.43-5.39 (m, 1 H, $-CH=CH-CH_2-$), 4.39 (dd, 1 H, $J_1 = 3.9$ Hz, $J_2 = 6.7$ Hz, $-(CH_3)_2-$ C-CH-), 4.18 (dd, 1 H, $J_1 = 5.0$ Hz, $J_2 = 7.5$ Hz, -CH(OH)-), 3.78 (dd, 1 H, $J_1 = 3.0 \text{ Hz}, J_2 = 6.9 \text{ Hz}, -\text{SiO}-\text{CH}-\text{CH}(\text{Me})), 3.11 \text{ (dq, 1H, } J_1 = 6.9 \text{ Hz},$ $J_2 = 6.7$ Hz, $-C(O) - CH(CH_3) - 0$, 2.70 (s, 3 H, $-S - C(CH_3) = N - 0$), 2.43 (dd, 1 H, $J_1 = 3.9 \text{ Hz}, J_2 = 16.2 \text{ Hz}, -CH_2 - COOH), 2.40 - 2.35 \text{ (m, 2H, } -CH_2 - CH=),$ 2.35 (dd, 1H, $J_1 = 6.7$ Hz, $J_2 = 16.2$ Hz, $-CH_2$ -COOH), 2.15-2.10 (m, 1H, $-CH_2-CH=$), 2.00 (s, 3H, $-C(CH_3)=CH-C=$), 1.99-1.95 (m, 1H, $-CH_2-CH=$), 1.48-1.30 (m, 5H), 1.18 (s, 3H, $-C(CH_3)_2-$), 1.08 (s, 3H, $-C(CH_3)_2$, 1.05 (d, 3 H, J = 6.7 Hz, $-C(O)-CH(CH_3)-$), 0.89-0.84 (m, 21 H, $-C(O)-CH(CH_3)-$, $-SiC(CH_3)_3(CH_3)_2)$, 0.09 (s, 3 H, $-SiC(CH_3)_3(CH_3)_2)$, 0.05 (s, 3H, -SiC(CH₃)₃(CH₃)₂), 0.04 (s, 3H, -SiC(CH₃)₃(CH₃)₂), 0.03 (s, 3H, $-\text{SiC}(\text{CH}_3)_3(\text{CH}_3)_2);$ ¹³C NMR (600 MHz, CDCl₃): $\delta = 218.9, 175.4, 166.3, 152.8,$ 134.4, 125.7, 119.5, 115.9, 74.4, 74.3, 54.7, 45.5, 40.9, 40.0, 34.3, 31.9, 30.6, 28.9, 28.8, 27.0, 26.9, 24.4, 22.0, 21.4, 20.0, 19.6, 19.3, 19.1, 17.9, 17.1, 15.5, 8.6, -2.9, -3.1, -3.3, -3.8; HRMS: calcd for $C_{38}H_{69}NO_6SSi_2$ ($M + Cs^+$) 856.3439, found 856.3459.

23: $R_{\rm f} = 0.37$ [silica gel, hexane:ether (2:1)]; $[\alpha]_{\rm D}^{2.2} = -22.9$ (c = 0.3 in chloroform); IR (film): $\tilde{v} = 2926$, 2854, 1734, 1693, 1463, 1381, 1252, 1099, 829 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 6.98$ (s, 1H, -C=CHS-), 6.58 (s, 1H, -C=CH-C=), 5.53 (m, 1H, -CH=CH-CH₂-), 5.43-5.34 (m, 1H, $-CH=CH-CH_2$), 5.00 (d, 1 H, J = 6.0 Hz, -O-CH), 4.03 (d, 1 H, J = 10.0 Hz, -CH(OH)-), 3.89 (d, 1H, J = 9.0 Hz, -CH(OH)), 3.04-2.98 (m, 1H, -C(O)-CH-), 2.85 (d, 1 H, J = 15.0 Hz, $OOC-CH_2-$), 2.72 (s, 3 H, $-S-C(CH_3)=N-)$, 2.66 (dd, 1 H, $J_1 = 15.0$ Hz, $J_2 = 10.0$ Hz, $OOC-CH_2-)$, $2.42-2.31 (m, 2H), 2.11 (s, 3H, -C(CH_3)=), 1.92-1.83 (m, 1H), 1.66-1.38 (m, 1H)$ 4H), 1.20 (s, 3H, $-C(CH_3)_2-$), 1.16 (s, 3H, $-C(CH_3)_2$, 1.09 (d, 3H, J = 7.0 Hz, $-C(O)-CH(CH_3)-)$, 0.95 (d, 3H, J = 7.0 Hz, $-CH(CH_3)-)$, 0.94 (s, 9H, $-\text{SiC}(CH_3)_3(CH_3)_2), \quad 0.85 \quad (s, 9H, -\text{SiC}(CH_3)_3(CH_3)_2), \quad 0.12 \quad (s, 3H, 3H)$ C_6D_6): $\delta = 215.0, 171.3, 135.1, 122.7, 79.5, 76.4, 53.3, 48.0, 38.8, 31.7, 29.7, 122.7, 79.5, 76.4, 53.3, 48.0, 38.8, 31.7, 29.7, 122.7,$ 29.2, 28.4, 26.4, 26.2, 26.1, 25.0, 24.2, 19.1, 18.7, 18.6, 17.7, 15.3, -3.1, -3.2, -3.7, -5.8; HRMS: calcd for $C_{38}H_{67}NO_5SSi_2$ ($M + H^+$) 706.4357, found 706.4382.

proceeded at -78 °C to afford a mixture of diastereomers (19 + 6S, 7R-diastereomer; ca. 1:1 to 1:2 ratio depending on precise conditions) in good yield. This mixture was carried through the sequence until compound 21, at which stage it was separated into its components by silica gel chromatography. Thus, the aldol products (19 + diastereomer) were fully silvlated with TBSOTf/2,6-lutidine. The resulting mixture of tetra-TBS derivatives (compound 20 + diastereomer) was briefly exposed to K₂CO₃ in MeOH to afford, after preparative thin layer chromatography, pure carboxylic acid 21 (31 % overall yield) and its 6S,7R-diastereomer (30% overall yield from 17; 21: $R_f = 0.61$, 6S,7R-diastereomer: $R_f = 0.70$, silica gel, 5% MeOH in CH_2Cl_2 , for spectroscopic details of **21**, see Table 1). The indicated stereochemical assignment for the slower moving isomer 21 was based on its successful conversion to macrolactone 24^[6f] and 1.

At this stage, it was necessary to deprotect the C15 hydroxyl group selectively for the intended macrolactonization reaction. This task was successfully accomplished with tetra-*n*-butylammonium fluoride (TBAF) in THF at 25 °C, leading to the desired hydroxy acid **22** in 78% yield (Table 1). Steric hindrance at the sites of the other TBS groups was presumed to be responsible for this selectivity. The key ring closure of **22** was smoothly effected under Yamaguchi conditions^[10] (2,4,6-trichlorobenz-oyl chloride, Et₃N, 4-DMAP, THF/toluene, 25 °C), furnishing the 16-membered ring lactone **23** in 90% yield (Table 1). Finally, exposure of **23** to CF₃COOH (20% by volume) in CH₂Cl₂ at 0 °C led to the targeted olefinic diol **24** (92% yield). The latter compound was then converted into **1** by exposure to *m*CPBA as already described.^[6f]

This expedient route to epothilone A (1) may easily be extended to epothilone B and a variety of analogs of these naturally occurring compounds for biological investigations. Indeed, the molecular design, chemical synthesis, and biological screening of such analogs should be among the next priorities in this field.^[11]

> Received: December 2, 1996 [Z 98431E] German version: Angew. Chem. **1997**, 109, 539–540

Keywords: antitumor agents • epothilones • macrolactonization • natural products • total synthesis

- [3] M. R. Grever, S. A. Schepartz, B. A. Chabner, Seminars in Oncology 1992, 19, 622–638.
- [4] D. M. Bollag, P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, C. M. Woods, *Cancer Res.* 1995, 55, 2325–2333.
- [5] K. C. Nicolaou, W.-M. Dai, R. K. Guy, Angew. Chem. 1994, 106, 38–67; Angew. Chem. Int. Ed. Engl. 1994, 33, 15–44.
- [6] a) K. C. Nicolaou, Y. He, D. Vourloumis, H. Vallberg, Z. Yang, Angew. Chem. 1996, 108, 2554–2556; Angew. Chem. Int. Ed. Engl. 1996, 35, 2399–2401;
 b) D. Meng, E. J. Sorensen, P. Bertinato, S. J. Danishefsky, J. Org. Chem. 1996, 61, 7998–7999; c) P. Bertinato, E. J. Sorensen, D. Meng, S. J. Danishefsky, J. Org. Chem. 1996, 61, 8000–8001; d) D. Schinzer, A. Limberg, O. M. Böhm, Chem. Eur. J. 1996, 2, 1477–1482. For the first total synthesis of 1, see e) A. Balog, D. Meng, T. Kamenecka, P. Bertinato, D.-S. Su, E. J. Sorensen, S. J. Danishefsky, Angew. Chem. 1996, 108, 2801–2803; Angew. Chem. Int. Ed. Engl. 1996, 35, 2976–2978. For an olefin metathesis-based total synthesis of 1, see f) Z. Yang, Y. He, D. Vourloumis, H. Vallberg, K. C. Nicolaou, Angew. Chem. 1997, 109, 170–172; Angew. Chem. Int. Ed. Engl. 1997, 36, 166–168. Editorial note: see also another description of the total synthesis of 1 in this issue: D. Schinzer, A. Limburg, A. Bauer, O. M. Böhm, M. Cordes, Angew. Chem. 1997, 109, 543–544; Angew. Chem. Int. Ed. Engl. 1997, 36, 523–524.

 ^[1] a) G. Höfle, N. Bedorf, K. Gerth, H. Reichenbach (GBF), DE-4138042, 1993
 (*Chem. Abstr.* 1993, 120, 52841); b) K. Gerth, N. Bedorf, G. Höfle, H. Irschik, H. Reichenbach, J. Antibiot. 1996, 49, 560-563.

^[2] G. Höfle, N. Bedorf, H. Steinmetz, D. Schomburg, K. Gerth, H. Reichenbach, Angew. Chem. 1996, 108, 1671–1673; Angew. Chem. Int. Ed. Engl. 1996, 35, 1567–1569.

COMMUNICATIONS

- [7] a) D. Enders, H. Eichenauer, *Chem. Ber.* 1979, *112*, 2933–2960; b) D. Enders, J. Tiebes, N. De Kimpe, M. Keppens, C. Stevens, G. Smagghe, O. Betz, *J. Org. Chem.* 1993, *58*, 4881–4884; c) D. Enders, A. Plant, D. Backhaus, U. Reinhold, *Tetrahedron* 1995, *51*, 10699–10714; d) D. Enders, *Asymmetric Synthesis* 1984, *3*, 275–339. We thank Prof. Enders for a generous gift of SAMP.
- [8] Only one diastereomer is detected in the 500 MHz 1 H NMR spectrum (CDCl₃) of **3**.
- [9] H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem Rev. 1994, 94, 2483-2547.
- [10] a) J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, Bull. Chem. Soc. Jpn. 1979, 52, 1989; b) J. Mulzer, P. A. Mareski, J. Buschmann, P. Luger, Synthesis 1992, 215-228; c) K. C. Nicolaou, A. P. Patron, K. Ajito, P. K. Richter, H. Khatuya, P. Bertinato, R. A. Miller, M. J. Tomaszewski, Chem. Eur. J. 1996, 2, 847-868.
- [11] All new compounds exhibited satisfactory spectroscopic and analytical and/or exact mass data.

Magonov, S.N. /Whangbo, M.-H.

Surface Analysis NEW with STM and AFM

Experimental and Theoretical Aspects of Image Analysis

1996. X, 300 pages with 230 figures and 5 tables. Hardcover. DM 198.00/\$ 125.00/£ 80.00. ISBN 3-527-29313-2 (VCH Weinheim)

Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are powerful tools for surface examination. In the past, many STM and AFM studies led to erroneous conclusions due to a lack of proper theoretical considerations and of an understanding of how image patterns are affected by measurement conditions. For this book, two world experts, one on theoretical analysis and the other on experimental characterization, have joined forces to bring together essential components of STM and AFM studies: The practical aspects of STM, the image simulation by surface electron density plot calculations, and the qualitative evaluation of tipforce induced surface corrugations.

Practical examples are taken from:

 inorganic layered materials
 organic conductors
 organic adsorbates at liquid-solid interfaces
 selfassembled amphiphiles
 polymers

This book will be an invaluable reference work for researchers active in STM and AFM as well as for newcomers to the field.

DiNardo, John Nanoscale Chara

Nanoscale Characterization of Surfaces and Interfaces

1994. X, 163 pages with 150 figures and 2 tables. Hardcover. DM 138.00/\$ 100.00/£ 56.00. ISBN 3-527-29247-0 (VCH Weinheim)

Derived from the highly acclaimed series Materials Science and Technology, this book provides in-depth coverage of STM, AFM, and related non-contact nanoscale probes along with detailed applications. Many high-quality images demonstrate the power of these methods in the investigation of surfaces and the processes which occur on them.

To order please contact your bookseller or:

VCH, P.O. Box 10 11 61, D-69451 Weinheim, Telefax (0) 62 01 - 60 61 84

