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Abstract: The intramolecular Pauson–Khand reaction of 1,8-
enynes derived from salicylaldehyde derivatives has been investi-
gated. Substrates derived from salicylaldehyde itself reacted poorly
in this reaction, but related substrates containing ortho-tert-butyl
substituents participated quite effectively and in many cases the
cyclizations proceeded with high levels of diastereoselectivity.
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Our lab has been interested for several years in extending
the scope of the intramolecular Pauson–Khand (PK) reac-
tion to permit the construction of a cyclopentenone annu-
lated to a medium-sized ring, with the expectation of
using this strategy in natural product total synthesis en-
deavors.1–3 Our earliest efforts along these lines involved
the use of phenylacetylene analogues derived from
iodophenols.4–6 The basic idea was to use the aromatic
framework as a means to reduce the conformational mo-
bility of the enyne, and thus enhance the encounter rate of
the alkene and the Co-complexed alkyne. While systems
of this type provided 5,6-fused systems quite efficiently,7

extension to higher homologues was not successful. How-
ever, it was found that the introduction of a steric buttress-
ing element ortho to the olefin-containing side chain led
to both enhanced reaction rates and access to medium-
sized rings.8 Perhaps the most interesting result obtained
in the course of this investigation was that these systems
cyclized to give bridged systems, a mode of cyclization
hitherto unobserved (e.g. 1 → 2, Scheme 1).9 This out-
come was rationalized in terms of both electronic and
steric factors that are thought to control the PK reaction in
general. In order to further probe this mode of cyclization,
we began an investigation of a set of related substrates, in
which an additional carbon atom was placed between the
aromatic and acetylenic moieties. We hoped to establish
whether this apparently minor modification was tolerated
in a general sense, and whether the unusual regiochemis-
try would be observed in this case.

Our initial investigations began with the elaboration of
salicylaldehyde (3), by O-alkylation and subsequent re-
action with variously substituted acetylenic Grignard
derivatives, which provided enynes 5–7 in good yields

(Scheme 2). These enynes were converted into the corre-
sponding Co2(CO)6 complex by treatment with Co2(CO)8
and then subjected to the PK reaction under both oxidative
[exposure to N-methylmorpholine N-oxide, (NMO)]10 and
thermal conditions (toluene, ~70 °C).11 As can be seen in
Scheme 2 only the phenyl-substituted enyne 7 undergoes
cyclization, providing the cycloadduct 10 in poor yield.
Interestingly, it was found that the corresponding silyl
ether underwent the cycloaddition somewhat more effi-
ciently, providing 11 in 50% yield.12 However, despite the
fact that this latter example did undergo cyclization, we
required a more general solution to cyclizing this type of
substrate.13 In our previous study we had found that the
incorporation of buttressing elements (ortho-tert-butyl
groups) increased both the rates and efficiencies of
intramolecular PK reactions, and so we decided to explore
this tactic with these substrates.5b,c

2,4-Di-tert-butylsalicylaldehyde (12) was O-alkylated
with allyl bromide as before (Scheme 3), and then treated
with acetylenic Grignard reagents, affording the enynes
14–16 in good yield (ca 75%). Initial attempts to engage
these substrates in the PK reaction were complicated by
the formation of multiple products, and therefore to ease
our initial evaluation of these reactions, we decided to re-
move the propargylic hydroxyl group. This was accom-
plished readily by treatment of enynes 14–16 with Et3SiH
in the presence of TFA leading to the formation of 17–19
(Scheme 3). The resulting reduced products were subject-
ed to the PK reaction under both oxidative and thermal
conditions (Scheme 4, Table 1). Under both sets of condi-
tions similar results were obtained. The TMS- and Ph-
substituted derivatives 18 and 19 both underwent cycliza-
tion, providing the expected enones, 21 and 22, in yields
between 45–55% as the only isolable product. An X-ray
crystal structure of enone 22 was obtained (Figure 1), con-
firming the formation of the anticipated tricyclic system.
Interestingly, the parent substrate 17 failed to undergo cy-
clization, providing only decomplexed enyne. We assume
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that the substituted enyne complexes are somewhat more
stable under the PK reaction conditions, whereas the par-
ent substrate complex decomposes faster than it partici-
pates in cyclization. We were also able to engage both 15
and 16 in a one-pot, complexation, reduction and cycliza-
tion sequence, which provided the enones in comparable
yields (Table 1, conditions C), whereas the parent sub-
strate 14 again failed to provide cycloadduct.

Scheme 3

Given this preliminary success with 17–19, we returned
our attention to the propargyl alcohols 14–16 as sub-
strates, which, after conversion into the Co2(CO)6 com-
plex, were subjected to both oxidative and thermal

conditions. As alluded to above, each of these substrates
gave several products (Scheme 5, Table 2), including the
expected enones 22–25. In the case of the parent substrate
14, a total of four cycloadducts were obtained. Under ox-
idative conditions, the expected cycloadduct 23 was the
minor product, obtained in only 17% yield as a 1:1 mix-
ture of diastereomers, the major product was in fact the
1,4-diketone 26, which was isolated in 80% yield as a 6:1
mixture of diastereomers.5f Under thermal conditions the
combined yield was somewhat lower, but the same
products were obtained.14 The TMS- and Ph-substituted

Scheme 2 Reagents and conditions: (a) allyl bromide, DMF,
K2CO3; (b) BrMgC≡CR, THF, 0 °C; (c) Co2(CO)8, CH2Cl2, NMO; (d)
Co2(CO)8, toluene, 70 °C; (e) TBSCl, imidazole, DMF, 55 °C.
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Figure 1 X-ray crystal structure of PK cycloadduct 22

Scheme 4

O

R

OR

X

O

14–19 20: R = H
21: R = TMS
22: R = Ph

Table 1

X = OH or H

Table 1 PK Reaction of Reduced Enynes

Substrate Conditionsa Product Yield (%)

17, R = X = H A 20 0

17, R = X = H B 20 0

18, R = TMS, X = H A 21 56

18, R = TMS, X = H B 21 45

19, R = Ph, X = H A 22 43

19, R = Ph, X = H B 22 46

14, R = H, X = OH C 20 0

15, R = TMS, X = OH C 21 48

16, R = Ph, X = OH C 22 50

a Conditions A: Co2(CO)8, toluene, 70 °C; conditions B: Co2(CO)8, 
CH2Cl2, NMO; conditions C: (i) Co2(CO)8, CH2Cl2; (ii) NaBH4, TFA, 
(iii) NMO.
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derivatives 15 and 16 also provided multiple products
under oxidative conditions, both the expected cycloadduct
24 and 25, as an approximately 2:1 mixture of diastereo-
mers and the reduction products 21 and 22 were obtained.
Interestingly, under thermal conditions, none of the reduc-
tion product was formed, only the expected cycloadducts.
Furthermore, only one diastereomer was obtained from
these reactions. An X-ray crystal structure of the product
obtained from the Ph-substituted enyne indicated that it
was the exo alcohol (Figure 2).

Scheme 5

We assume that the diketone products 26 arise as a result
of the insertion of cobalt into the allylic C–H bond and the
formation of a p-allyl complex 30 (Scheme 6). Formation
of and elimination via the isomeric olefin provides the
enol 31, decomplexation of the cobalt cluster and tau-
tomerization then provides the diketone derivative 26. We
similarly assume that the reduction products arise from
ionization of the allylic hydroxyl group forming 32, in a
process reminiscent of Nicholas-type chemistry.15,16 Loss
of the oxygen, presumably as CO2, then provides the

cobalt hydride species 33, which undergoes reductive
elimination and decomplexation to provide the reduction
products 21 and 22. While the formation of these products
can be rationalized, what is more difficult to understand is
the substrate dependence and the product variation as a
function of reaction conditions.17 Once the cobalt com-
plex is formed, the distal substituents exert little electronic
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Table 2 Oxidative and Thermal PK Cyclizations of Enynes 12–14

Substrates Condi-
tionsa

Product, Yield (%), 
(Epimer ratio)

Product,Yield (%), 
(Epimer ratio)

23 26

14, R = H A 17 (1:1) 80 (6:1)

B 11 (2:1) 50 (1:1)

24 21

15, R = TMS A 70 (2:1) 20

B 58 (1:0) 0

16, R = Ph 25 22

A 26 (2:1) 55

B 94 (1:0) 0

a Conditions: A: Co2(CO)8, CH2Cl2, NMO; Conditions B: Co2(CO)8, 
toluene, 70 °C.

Figure 2 X-ray crystal structure of exo-25
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influence toward the propargylic center,18 although they
do provide a steric bias, which frequently leads to the exo-
type selectivity observed in PK reactions.5c,19

Given that under oxidative reaction conditions, and to a
limited extent thermal conditions, side reactions involving
the free hydroxyl group had been observed, we decided to
protect it as a silyl ether. This was readily accomplished
under standard conditions providing 34–36 (Scheme 7).
The resulting enynes were subjected to the PK reaction
under both oxidative and thermal conditions (Table 3). In
general terms, the cyclizations occurred uneventfully,
providing the expected PK products 37–3920 in good to
moderate yields and with good to excellent levels of dia-
stereoselectivity. Some reduction product 22 was still ob-
served under oxidative conditions with the Ph-substituted
derivative, but the level was substantially attenuated in
comparison to 14. Similarly, thermal conditions appear to
provide greater levels of diastereoselectivity.

In summary our investigation demonstrates that an aro-
matic ring alone does not sufficiently preorganize the
enyne substrate for cyclization leading to medium-sized
rings. However, the incorporation of conformational con-
straints induced by bulky ortho substituent enhances both
the efficiency and the yield of the enyne cyclization.21 The
PK cyclizations of the substrates reported in this Letter
occur with normal regiochemistry and where relevant,
proceed with reasonable to high levels of diastereoselec-
tivity. In several examples deoxygenation of the propar-
gylic hydroxyl moiety was observed, but this can be
generally attenuated by incorporation of a silyl protecting
group. It was also found that these reactions proceed with
the typical regioselectivity observed in intramolecular PK
reactions, presumably as a result of other orientations
requiring unfavorable geometric arrangement of the react-
ing functional groups. We are continuing to explore the
use of buttressing elements in the PK reaction and will
report on these in due course.22
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Substrates Condi-
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general procedure. The crude product was purified by flash 
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36.7, 35.2, 34.7, 31.6, 30.7. IR (neat): 2958, 1705, 1474, 758 
cm–1. HRMS (ESI): m/z [M + Na]+ calcd for C27H32O2Na: 
411.2295; found: 411.2266.
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6,8-Di-tert-butyl-10-hydroxy-1-phenyl-4,4a-dihydro-
3H,10H-5-oxabenzo[f]azulen-2-one (25): The PK 
cyclization of the enyne 16 (250 mg, 0.67 mmol) in the 
appropriate solvent (10 mL), was carried out following the 
general Procedures A and B. Co2(CO)8 (250 mg, 0.73 mmol) 
and NMO (1.22 g, 10.4 mmol) were added according to the 
general procedures. The crude product was purified by flash 
chromatography (silica gel, hexane–EtOAc, 90:10) to afford 
the reduced PK product 22 (142 mg, 55%) and the expected 
PK product 25 (70 mg, 26%) as a 1:1 mixture of epimers 
using Procedure A. Procedure B afforded only exo-25 (255 
mg, 94%) as a light yellow solid; mp 171–173 °C. 1H NMR 
(500 MHz, CDCl3): d = 7.46 (m, 3 H), 7.35 (d, J = 2.8 Hz, 1 

H), 7.23 (m, 2 H), 7.14 (d, J = 2.8 Hz, 1 H), 5.49 (d, J = 9.2 
Hz, 1 H), 4.61 (dd, J = 5.7, 11.5 Hz, 1 H), 4.09 (m, 1 H), 3.51 
(t, J = 11.9 Hz, 1 H), 3.15 (d, J = 8.7 Hz, 1 H), 2.76 (dd, J = 
6.9, 19.3 Hz, 1 H), 2.03 (dd, J = 2.8, 18.8 Hz, 1 H), 1.40 (s, 
9 H), 1.32 (s, 9 H). 13C NMR (125 MHz, CDCl3): d = 205.3, 
172.3, 156.3, 147.3, 142.8, 139.6, 133.0, 130.7, 129.6, 
128.5, 128.3, 125.1, 125.0, 77.9, 73.7, 38.8, 36.7, 35.3, 34.7, 
31.5, 30.7. IR (neat): 3435, 2959, 1702, 1598, 756 cm–1. 
HRMS (ESI): m/z [M + H]+ calcd for C27H33O3: 405.2424; 
found: 405.2425.

(22) Some initial experiments with olefins with terminal 
substitution have been successful, but internal substitution is 
apparently not tolerated.
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