

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 2536-2539

Tetrazole based amides as growth hormone secretagogues

James J. Li,^{a,*} Haixia Wang,^a Jun Li,^a Fucheng Qu,^a Stephen G. Swartz,^a Andrés S. Hernández,^a Scott A. Biller,^a Jeffrey A. Robl,^a Joseph A. Tino,^{a,*} Dorothy Slusarchyk,^b Ramakrishna Seethala,^b Paul Sleph,^b Mujing Yan,^b Gary Grover,^b Neil Flynn,^b Brian J. Murphy^b and David Gordon^b

^aDiscovery Chemistry, Bristol-Myers Squibb Research and Development, PO Box 5400, Princeton, NJ 08543-5400, USA ^bMetabolic Disease Research, Bristol-Myers Squibb Research and Development, PO Box 5400, Princeton, NJ 08543-5400, USA

> Received 1 February 2008; revised 17 March 2008; accepted 18 March 2008 Available online 22 March 2008

Abstract—A novel series of N1 substituted tetrazole amides were prepared and showed to be potent growth hormone (GH) secretagogues. Among them, hydroxyl containing analog **31** displayed excellent in vivo activity by increasing plasma GH 10-fold in an anesthetized IV rat model.

© 2008 Elsevier Ltd. All rights reserved.

Human growth hormone (GH) replacement therapy has shown promising results for the prevention of muscle functional decline in the elderly in a number of preliminary studies.¹ However, longer term use is associated with multiple side effects such as edema, arthralgia, carpal tunnel syndrome, and hyperglycemia due to the need to administer superphysiological doses of GH in order to maintain an efficacious level in the systemic circulation.² Orally active GH secretagogues (GHS), on the other hand, have been shown to enhance the amplitude of GH during endogenous pulsatile release and are believed to more closely mimic human physiological condition.³ Therefore, treatment with an oral GHS agent should offer a more optimal approach for restoring pulsatile GH secretion in the elderly population.⁴ Several classes of GHS agonists such as 1 (MK-677),⁵ 2 (CP-42491),⁶ and 3 (LY-444711)⁷ have advanced to the clinics (Fig. 1). More recently, we have reported a novel tetrazole based GHS 4 (BMS-317180) as our first clinical candidate. Tetrazole 4 was shown to be orally active and efficacious in promoting GH release in a preclinical beagle dog model.⁸ As part of our efforts to further delineate structural features critical for activity within this series, SAR exploration of various amide and/or reverse amide linkers, in place of the corresponding car-

Keywords: GHS, growth hormone secretagogues; Tetrazole amide.

Figure 1. Representative examples of GH secretagogues.

bamate in 4, was undertaken. Herein is a summary of these SAR studies which led us to the identification of a novel series of N1 substituted tetrazole amides as potent GHS agonists.

The preparations of tetrazole amides were straightforward from readily available starting materials and are

^{*} Corresponding authors. Tel.: +1 609 818 7124 (J.J.L.); e-mail addresses: James.Li@bms.com; joseph.tino@bms.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2008.03.059

outlined in Scheme 1. The syntheses started with amide coupling of N-Boc-O-benzyl-D-Serine (5) and amines 6 via conventional mixed anhydride activation protocol. The formation of tetrazole intermediate 7 proceeded in the presence of triphenylphosphine, diethyl azodicarboxylate (DEAD), and azidotrimethylsilane (TMSN₃).⁹ The removal of Boc protecting group in 7 with strong acids and subsequent reaction with Boc-Aib-OH gave 8a-c. Hydrolysis under basic condition provided acid 9 or 11; or the alcohol intermediate 10. Amide formation from acid 9 or 11 via the activation of EDAC and HOAT followed by deprotection of Boc group gave the desired amides 12-36 or benzyl amides 40-43. For reverse amide analogs, alcohol 10 was first converted to an azide intermediate using a modified Mitsunobu condition, followed by hydrogenation of the azide to provide the corresponding amine. Once again, reverse amides 37-39 were prepared in a similar manner as previously described using a variety of acids. The last two steps of these sequences. amide formation and de-Boc deprotection, were easily amended to a parallel synthesis procedure using automated solid phase extraction purification and generally afforded the final compounds in >95% purity.¹⁰

A H4 glioma cell based GHS functional FLIPR assay was developed for the in vitro evaluation of these GHS agents.^{11,12} All the compounds reported herein showed an intrinsic activity greater than 85% as compared with endogenous Ghrelin (EC₅₀ = 1.4 nM) and therefore are considered as full agonist.¹³

Simple amides with various terminal lipophilic groups such as **12–17** exhibited modest potency in the range of 26–70 nM (Table 1). The incorporation of more polar functional groups at the distal position, such as a methyl sulfone in **18**, a sulfonamide in **19**, a primary amide in **20**, or a urea in **23** improved GHS potency to give compounds with EC₅₀ value less than 10 nM. The dramatic effect of the terminal moiety on the in vitro potency was evident by comparison to ester **21** or acid **22**. These modifications resulted in a significant loss of functional potency (EC₅₀ > 140 nM).

We have demonstrated earlier that the incorporation of a distal hydroxyl group in the tetrazole carbamate series (i.e., 4) significantly improved oral activity in our preclinical beagle dog model.8 Consequently, a series of tetrazole amides containing a terminal hydroxyl group were evaluated. A longer length in general appeared to be preferred as compounds 27–32 showed considerably greater potency than shorter length analogs 25-26 (Table 1). Interestingly, replacement with a phenolic hydroxyl moiety as in 33 provided a very potent subnanomolar GHS agonist. However, further extension of the terminal hydroxyl group as in 35, or restriction as in cyclohexanol 36, resulted in a substantial loss of activity. For two of the most potent amides 31 and 33 (EC₅₀ \sim 0.2 nM), the corresponding N-methylated tertiary amides 32 and 34 were also generated, but an approximate 10-fold loss of the functional potency was observed in both cases.

Scheme 1. Reagents and conditions: (a) NMM, *i*-BuOCOCl, 70–95%, THF; (b) TMSN₃, DEAD, Ph₃P, 50–85%, THF; (c) 15–20% TFA/CH₂Cl₂ or 4 N HCl in dioxane/methanol; (d) Boc-Aib-OH, EDAC, HOAT, 65–83%, CH₂Cl₂; (e) 1 N aq NaOH, 80–90%; (f) EDAC, HOAT, appropriate amines, 30–90%, CH₂Cl₂; (g) PPh₃, DEAD, DPPA, 95%, THF; (h) H₂/5% Pd–C catalyst, 95%, MeOH; (i) EDAC, HOAT, appropriate acids, 30–90%, CH₂Cl₂.

Table 1. In vitro potency of amides

Compound ^a	R ₁	EC50 (nM)
12	-(CH ₂) ₃ CH ₃	30
13	-CH ₂ CF ₃	26
14	–Ph	70
15	CH ₂ Ph	32
16	$-(CH_2)_2Ph$	23
17	–(CH ₂) ₃ Ph	33
18	-(CH ₂) ₂ SO ₂ Me	4.1
19	$-(CH_2)_2SO_2NH_2$	1.4
20	-(CH ₂) ₂ CONH ₂	7.6
21	-(CH ₂) ₂ CO ₂ Et	140
22	$-(CH_2)_2CO_2H$	204
23	, NH	3.3
24	-(CH ₂) ₂ OH	40
25	-(CH ₂) ₃ OH	27
26	-(CH ₂) ₄ OH	1.8
27	-(CH ₂) ₅ OH	1.3
28	-(CH ₂) ₆ OH	0.6
29	,OOH	0.7
30	, S OH	0.2
31	, Solution OH	0.2
32 ^a		3.1
33	, С ОН	0.2
34 ^a		2.9
35	, о , о , о , о , о , о , о , о	105
36	, с	521
Ghrelin		1.4

^a R_2 is hydrogen; R_2 is methyl for compounds 32 and 34.

Three reverse amides, generated based on SAR observations in the initial amide series (e.g., **18**, **26**, and **33**), were also evaluated (Table 2). Analogs **37–39** showed approximately a two- to fourfold loss of potency as compared to their amide analogs, limiting our interest in further optimization in the reverse amide chemotype. Finally, selected benzyl amides were assessed as part of the linker evaluation. Similar to the results obtained in the simple amide series, longer chain lengths were also preferred (i.e., **42**, EC₅₀ of 0.9 nM vs **40**, EC₅₀ of 11 nM) but the difference in potency between 1,2 and 1,3 substitution scaffold was unremarkable in the two pairs evaluated (Table 3). Table 2. In vitro potency of reverse amides

Table 3. In vitro potency of benzyl amides

$H = Me Me NH_2 O O O O O O O O O O O O O O O O O O O$				
Compound Position R ₄ EC	C ₅₀ (nM)			
40 1,2 –(CH ₂) ₂ OH 11				
41 1,3 8.4	4			
42 1,2 –(CH ₂) ₄ OH 0.9	9			
43 1,3 3.0	0			

To assess the in vivo efficacy of these novel tetrazole amide based GHS compounds, analogs 19, 28, 31, 33, and 37 were selected for evaluation in an anesthetized IV rat model for their ability to stimulate GH release.¹⁴ All the compounds showed good activity in generating 4- to 10-fold increases in plasma GH upon a single screening dose of 0.17 µmmole/kg, and were slightly more potent than carbamate 4 in this model (Table 4). Compound 31 afforded the greatest response and was tested at lower doses (0.017 subsequently or 0.052 µmmole/kg). The observed response indicates that analog 31 was the most potent in vivo analog of the series. Unfortunately, in a subsequent PK evaluation in rat, compound 31 was shown to have poor oral bioavailability (<3%), precluding it for further evaluation.

In summary, we have identified a novel series of tetrazole amides as exceptionally potent GHS agonists. The

Table 4. In vivo activity in the IV anesthetized rat model^a

Compound	EC50 (nM)	GH ± SEM ^b (%)
4	1.9	264 ± 39
19	1.4	408 ± 69
28	0.6	522 ± 88
33	0.2	606 ± 104
37	4.4	722 ± 67
31	0.2	1290 ± 119
		$956 \pm 120 \ (0.052 \ \mu mole/kg)$
		$398 \pm 65 \ (0.017 \ \mu mole/kg)$

^a Five rats per group are treated with each compound.

^b The values represent the increase of GH \pm SEM (%) relative to control after IV dosing of 0.17 µmole/kg of compound; lower doses were also evaluated for compound **31**.

incorporation of a terminal hydroxyl group in general was preferred for both potent in vitro and in vivo activity. The most potent analog **31** (EC₅₀ = 0.2 nM) showed an increase in plasma GH levels of approximately 10-fold in an anesthetized IV rat model.

References and notes

- Rudman, D.; Feller, A. G.; Nagraj, H. S.; Gergans, G. A.; Lalitha, P. Y.; Goldberg, A. F.; Schlenker, R. A.; Cohn, L.; Rudman, I. W.; Mattson, D. E. *N. Engl. J. Med.* **1990**, *323*, 1.
- 2. Hintz, R. L. Horm. Res. 1992, 38, 44.
- Chapman, I. M.; Bach, M. A.; Van Cauter, E.; Farmar, M.; Krupa, D.; Taylor, A. M.; Schilling, L. M.; Cole, K. Y.; Skiles, E. H.; Pezzoli, S. S.; Hartman, M. L.; Veldhuis, J. D.; Gormley, G. J.; Thorner, M. O. J. Clin. Endocrinol. Metab. 1996, 81, 4249.
- For a review on GHS, see: Nargund, R. P.; Patchett, A. A.; Bach, M. A.; Murphy, M. G.; Smith, R. G. J. Med. Chem. 1998, 41, 3103.
- Patchett, A. A.; Nargund, R. P.; Tata, J. R.; Chen, M. H.; Barakat, K. J.; Johnston, D. B. R.; Cheng, K.; Chan, W. S.; Butler, J. B.; Hickey, G. J.; Jacks, T.; Schleim, K.; Pong, S. S.; Chaung, L.-Y. P.; Chen, H. Y.; Frazier, E.; Leung, K. H.; Chiu, S. H.; Smith, R. G. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 7001.
- (a) Pan, L. C. Endocrine 2001, 14, 121; (b) Carpino, P. A. et al. Bioorg. Med. Chem. Lett. 2002, 12, 3279.
- Seyler, D. E.; Dodge, J. A.; Osborne, J. J.; Cox, K. L.; Viswanath, D.; Wilmot, A. F.; Keaton, M. J.; Heiman, M. L.; Bryant, H. U.; Cutler, G. B., Jr. *Drug Dev. Res.* 2000, 49, 260.
- (a) Li, J.; Chen, S.; Li, J. J.; Wang, H.; Hernandez, A.; Tao, S.; Musial, C.; Qu, F.; Swartz, S.; Chao, S.; Flynn, N.; Murphy, B.; Slusarchyk, D.; Seethala, R.; Yan, M.; Sleph, P.; Grover, G.; Smith, M.; Beehler, B.; Giupponi, L.; Dickinson, K.; Zhang, H.; Humphreys, W. G.; Patel,

B.; Schwinden, M.; Stouch, T.; Cheng, P. W.; Biller, S.; Ewing, W.; Gordon, D.; Robl, J.; Tino, J. *J. Med. Chem.* **2007**, *50*, 5890; (b) Hernandez, A. S.; Cheng, P. T. W.; Musial, C. M.; Swartz, S. G.; George, R. J.; Grover, G.; Slusarchyk, D.; Seethala, R. K.; Smith, M.; Dickinson, K.; Giupponi, L.; Longhi, D. A.; Flynn, N.; Murphy, B. J.; Gordon, D. A.; Biller, S. A.; Robl, J. A.; Tino, J. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 5928.

- Duncia, J. V.; Pierce, M. E.; Santella, J. B., III J. Org. Chem. 1991, 56, 2395.
- Lawrence, R. M.; Biller, S. A.; Fryszman, O. M.; Poss, M. A. Synthesis 1997, 553.
- For details about FLIPR, see: (a) Sullivan, E.; Tucker, E. M.; Dale, I. L. *Methods Mol. Biol.* **1999**, *114*, 125; (b) Schroeder, K. S.; Neagle, B. D. J. Biomol. Screen. **1996**, *1*, 75.
- Expression of the endogenous human GHS receptor was enhanced by Random Activation of Gene Expression (RAGE)[™] technology (Athersys, Inc.), see: Harrington, J. J.; Sherf, B.; Rundlett, S.; Jackson, P. D.; Perry, R.; Cain, S.; Leventhal, C.; Thornton, M.; Ramachandran, R.; Whittington, J.; Lerner, L.; Costanzo, D.; McElligott, K.; Boozer, S.; Mays, R.; Smith, E.; Veloso, N.; Klika, A.; Hess, J.; Cothren, K.; Lo, K.; Offenbacher, J.; Danzig, J.; Ducar, M. Nat. Biotechnol. 2001, 19, 440.
- 13. The EC₅₀ was measured by determining intracellular calcium concentration in a FLIPR assay with Ghrelin as having 100% intrinsic functional activity. All EC₅₀ values are the average of at least three measurements.
- 14. Fasted male Wistar rats (200–250 g) were anesthetized via intraperitoneal injection with ketamine (30 mg) and xylazine (10 mg) per kg body weight. The drug or vehicle (10% ethanol, 0.09% saline V/V) was administered intravenously at a volume of 10 mL/kg to a group of five rats, respectively. After 15 min, a 1.5 mL of blood sample was drawn from the abdominal aorta. Plasma samples were then assayed for rat growth hormone by radioimmunoassay using a modification of the kit supplied by the National Pituitary Hormone Center (Dr. A. Parlow, Harbor-UCLA Medical Center, Los Angeles, CA).