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Abstract—New 4-aminoquinolines having a –CF2CH–(heteroaryl)–OH moiety are obtained in moderate yields from the electro-
chemical catalyzed reaction of the corresponding 4-amino-3-chlorodifluoroacetyl-2-methoxyquinoline in the presence of heteroaryl
aldehydes. A one-pot intramolecular zinc mediated aromatic nucleophilic substitution also gave access to novel difluorinated
5-aminodihydropyrano[2,3-b]quinolin-4-ones.
� 2005 Elsevier Ltd. All rights reserved.
There continues to be an interest in the synthesis of new
gem-difluorinated compounds because of the potential
biological properties of such molecules.1 For example,
electrophilic carbonyl derivatives, such as a,a-difluoro-
ketones, are compounds of great interest because they
have the capability to form stable adducts (such as
hydrates and hemiketals) with nucleophiles;1 it is
believed that this property allows some fluorinated
ketones to mimic the transition states involved in the
hydrolytic action of many enzymes.1 In addition, the
difluoromethylene moiety (CF2) is a key structural unit
in many fluorinated compounds of biological and phar-
maceutical significance. Fluorine substituted aromatics
and heterocycles may find broad applications such as
agrochemicals, anticancer, and antiviral agents.2 Quino-
lines are important heterocyclic systems, constituting the
structure of many naturally occurring products and
having interesting pharmacological properties.3 In par-
ticular quinolylamine derivatives have been used as the
basis in the molecular design for synthetic antimalarial
compounds,4 anti-HIV agents,5 and for the treatment
of Alzheimer�s disease.6 Recently, we have been inter-
ested in the aromatic nucleophilic substitution reactions
of N,N-dimethyl-2,4-bis(trifluoroacetyl)-1-naphthyl-
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amine,7 N,N-dimethyl-2-trifluoroacetyl-4-halo-1-naph-
thyl-amines,8 N,N-dimethyl-5,7-bis(trifluoroacetyl)-8-
quinolylamine,9 with amines, thiols, and alcohols and
we have shown that the corresponding exchanged prod-
ucts could be easily converted to various fluorinated
fused-heterocycles of potential biological importance.
Recently these aromatic nucleophilic substitution reac-
tions were extended to N,N-dimethyl-2-trifluoroacetyl-
1-naphthylamine.10 As part of our ongoing efforts in
search of synthetic approaches for the synthesis of fluo-
rinated compounds with potential biological and syn-
thetic applications,11 we wish to present a method to
prepare, new –CF2CHOH– derivatives that incorporate
a 4-aminoquinoline unit. In addition a one-pot process
for the synthesis of novel difluorinated 5-amino dihy-
dropyrano[2,3-b]quinolin-4-one products is presented
(Scheme 1).

Our major goal was to find the conditions to obtain an
efficient way to prepare new 4-aminoquinoline structures
Scheme 1.
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for biological evaluation; these new difluoromethylene
heterocycles were designed as part of a project devoted
to the synthesis and biological evaluation of fluorinated
analogs of reported potential antiviral agents, and
memory enhancing agents (for potential application for
the treatment of Alzheimer disease; Fig. 1). For example,
some 2,3-dihydropyrano[2,3-b]pyridine structures have
been evaluated as new acetylcholinesterase inhibitor
analogs of TACRINE (THA),12 or have demonstrated
some in vitro antiviral activity.13

Our starting material, 4-amino-3-chlorodifluoroacetyl-
2-methoxyquinoline 3 was synthesized in three steps
(Scheme 2). Chlorodifluoroacetylation of methyl ortho-
acetate [chlorodifluoroacetic anhydride (CDFAA)/
pyridine in anhydrous CH2Cl2] followed by O–N
exchange reaction of the resulting 1-chloro-1,1-difluoro-
4,4-dimethoxybut-3-en-2-one 1 with 2-aminobenzonitrile
in refluxing MeCN afforded 1-chloro-1,1-difluoro-4-
methoxy-4-(2-cyanophenyl)aminobut-3-en-2-one 2. The
much deshielded peak of the amino proton at dH =
12.03–12.60 ppm due to hydrogen bonding between
NH and C@O indicated E configuration. Compound 2
Figure 1. 2,3-Dihydropyrano[2,3-b]pyridine structures of biological
importance.

Scheme 2.
was then cyclized in refluxing CF3SO3H for 5 min to
give the corresponding 3 in a modest 34% isolated
yield.14 Other acids were tested such as CF3CO2H,
CH3CO2H, C2H5CO2H, HCl, H2SO4, but they either
afforded no desired target or gave very complex mix-
tures. Careful examination, by cyclic voltammetry, of
the reduction potential of starting material 3 (Epc1 =
�1.27 V vs SCE, first peak potential measured in
DMF/0.1 M NBu4PF6), indicated that this substrate
might be a good electron-acceptor, and this therefore
prompted us to use electron-transfer activation for the
in situ generation and trapping of the corresponding
a,a-difluoroacetyl anion with a series of aromatic and
heterocyclic aldehydes. Since we have already developed
some useful carbon–carbon bond forming reactions be-
tween aromatic and heterocyclic chlorodifluoromethyl-
ated ketones and unsaturated compounds, by utilizing
tetrakis(dimethylamino)ethylene (TDAE)15 as a syn-
thetic electron-transfer reagent or electrochemical reduc-
tion, we first intended to apply these electron-transfer
induced approaches to the coupling reaction of 3 and
benzaldehyde.

Using our usual conditions, 1.2 equiv of TDAE was
added dropwise to 1 equiv of ketone 3 and 2 equiv of
PhCHO in anhydrous DMF at �20 �C, warming to
room temperature reaction and then stirring at room
temperature for 18 h, led to rather disappointing results,
with reduction product 4 being the major component
(54% 19F NMR yield, with PhOCF3 as internal stan-
dard); alcohol 5 was also formed along with another
gem-difluorinated product in a 5/1 ratio as minor com-
ponents. Other fluorinated impurities were also ob-
served in the crude reaction mixture. Isolation and
characterization of the third compound, demonstrated
that it was the cyclized structure 6 (12% isolated yield),16

resulting from an intramolecular displacement of the
OMe group (Scheme 3).

When the reaction was conducted in PhCHO as solvent
and electrophile, it was cleaner but yields of 5 and 6 were
not improved. Indium has been found to be a suitable
reagent for the coupling reactions of b-aminovinyl chlo-
rodifluoromethylated ketones with a series of hetero-
aldehydes.17 However using our described conditions
[In 1.2 equiv, PhCHO 1.2 equiv, THF/H2O (1/4, v/v)
at room temperature for 18 h], starting material 3 was
Scheme 3.
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recovered with no fluorinated products being formed.
Strong binding of nitrogen atoms at the indium center
may be an explanation for this disappointing result.
Electrochemical activation of substrate 3 in the presence
of 2 equiv of PhCHO, using an undivided cell (carbon
felt cathode/magnesium anode, at room temperature)
at controlled potential electrolysis corresponding to
the first peak potential measured by cyclic voltammetry,
afforded cleanly the reduction product 4 and alcohol
adduct 5 in a 1/2 ratio with a consumption of electricity
close to 1.6 F/mol. None of the cyclized product 6 was
observed. Product 5 was isolated after silica gel chroma-
tography in 49% isolated yield as a viscous yellowish oil.
The electrolysis reaction was also extended with other
aldehydes to yield the corresponding alcohol adducts
in moderate yields (Scheme 4).18

The Reformatsky reaction of halogenodifluoromethyl
ketones with carbonyl compounds mediated by zinc1,19

is one of the well-known synthetic methodologies to
obtain the corresponding carbon–carbon coupling
products. Using 2.2 equiv of acid washed, activated zinc,
and 2 equiv of PhCHO in anhydrous DMF at 110 �C
(oil bath temperature) for 16 h, starting material 3 was
totally consumed and gave the cyclized compound 6 as
major product (42% isolated yield) along with reduction
product 4 (Scheme 5).20 19F NMR monitoring clearly
indicated that 5 was an intermediate and that it was
subsequently transformed into 6. This approach was
then applied to other aldehydes. When using
p-CF3C6H4CHO, cyclized product 10 was obtained in
19% isolated yield because of partial decomposition
during silica gel chromatography (19F NMR yield using
PhOCF3 as internal standard was close to 38%). In addi-
tion pinacol coupling product was observed by 19F
NMR (dF = �62.1 ppm). With p-FC6H4CHO, some
pinacol was also formed but in lesser amount, and
cyclized product 11 could be obtained in 40% isolated
Scheme 4.

Scheme 5.
yield. With 3,4-dimethoxybenzaldehyde, reaction was
slower (24 h) with a 22% isolated yield of 12. An
increased amount of activated zinc (4 equiv) resulted in
shorter reaction time but the final product unfortu-
nately had decomposed into unidentified fluorinated
compounds.

In conclusion we have demonstrated that the method
used to activate the C–Cl bond of a suitable 4-amino-
3-chlorodifluoroacetyl-2-methoxyquinoline, can lead to
different types of fluorinated 4-aminoquinoline derived
products.

Under electrochemical activation, gem-difluorinated
alcohol adducts can be obtained in reasonable yields,
whereas a Reformatsky type reaction gave directly
gem-difluorinated 5-aminodihydropyrano[2,3-b]quino-
lin-4-one cyclized products in modest yields. The yields
of the products 5–12 need to be improved, but using
the present methodology has been adequate for prepara-
tion of these novel molecules in sufficient quantity for
biological screening. We are currently trying to optimize
the yields of the dihydropyrano[2,3-b]quinolines as well
as to extend these reactions with other electrophiles and
new chlorodifluoromethylated heterocyclic substrates.
The products described in this letter are currently being
screened as potential acetylcholinesterase inhibitors and
antivirals.
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Shimizu, Y.; Takeuchi, H. Tetrahedron Lett. 2003, 44, 741.

11. (a) Fujii, S.; Kato, K.; Médebielle, M. Tetrahedron 2000,
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