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Abstract: The efficient and selective formal total synthesis of
aliskiren is described. Aliskiren, a renin inhibitor drug, has re-
ceived considerable attention, primarily because it is the first
of the renin inhibitor drugs to be approved by the FDA.
Herein, the formal synthesis of aliskiren by iridium-catalyzed
asymmetric hydrogenation of two allylic alcohol fragments is
reported. Screening a number of N,P-ligated iridium catalysts

yielded two catalysts that gave the highest enantioselectivity
in the hydrogenation, which gave the saturated alcohols in
97 and 93 % ee. In only four steps after hydrogenation, the
fragments were combined by using the Julia–Kocienski reac-
tion to produce late-stage intermediate in an overall yield of
18 %.

Introduction

Hypertension is the most modi-
fiable risk factor in the treat-
ment of heart disease. There-
fore, inhibition of kidney-pro-
duced renin has become an
emergent field of focus.[1] Aliski-
ren (Tekturna) is an efficient
renin-inhibitor drug used to
treat hypertension and renal
failure (Scheme 1). It is also the
first renin inhibitor to be admin-
istered orally. Hence, a simple
and facile synthetic protocol for
its preparation is widely sought after. Several synthetic meth-
ods for its preparation have been reported[2] and some patent-
ed.[3]

Aliskiren has four stereocenters: C-2, C-4, C-5, and C-7. Some
emphasis has been directed to the enantioselective prepara-
tion of C-2 and C-7.[4] In these syntheses, the chirality induced
at C-2 or C-7 or both has been utilized to direct stereoselectiv-
ity at C-4 and C-5. Thus, achieving high enantioselectivity at
these points is crucial to the total synthesis of aliskiren. In
a number of earlier reported syntheses, chiral auxiliaries (Evans’
oxazolidinones) have been used to prepare both C-2 and C-
7.[2a,c,d, 4a] The two fragments are then joined by a Grignard reac-
tion or an aldol condensation.

Organocatalysis has been employed by Hanessian and Ch¦-
nard to prepare both C-2 and C-7 through an asymmetric ally-

lation of isovaleraldehyde using MacMillan’s catalyst.[2b,g] The
two fragments were joined by Yamaguchi esterification fol-
lowed by ring-closing metathesis to form a nine-membered
unsaturated lactone. Hanessian and Ch¦nard have also demon-
strated a palladium-catalyzed asymmetric allylation protocol to
prepare C-7. In this case, cross-metathesis was used to join the
two fragments to produce late-stage intermediate 1 with an
E :Z ratio of 86:14.[4b]

Attention has also been focused on the preparation of C-7
through asymmetric hydrogenation. Excellent results for the
hydrogenation of the corresponding a,b-unsaturated esters
and acid have been achieved by using iridium, ruthenium and
rhodium, P,P-, and N,P-ligated catalysts.[5]

Asymmetric methods for the preparation of analogues of C-
2 are scarce. Buchwald et al. have produced the corresponding
aldehyde by an asymmetric hydroformylation reaction with
92 % ee in 91 % yield.[6] Peterson et al. have prepared the alco-
hol by enantioselective Brønsted acid catalyzed kinetic resolu-
tion with 52 % ee and 56 % conversion. However, long reaction
times (72 h) were required.[7]

Iridium-catalyzed asymmetric hydrogenation is a valuable
tool for the hydrogenation of unfunctionalized and functional-

Scheme 1. Retrosynthetic approach to key intermediate 1.
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ized olefins.[8] Andersson et al. have studied this reaction and
have not only expanded the substrate scope,[9] but also stud-
ied the mechanism and the origin of stereoselectivity.[10]

Here we report the formal synthesis of aliskiren through
a convergent approach employing the asymmetric hydrogena-
tion of two allylic alcohol fragments as key intermediates.
These fragments were combined by using the Julia–Kocienski
reaction to produce 1, a late-stage precursor in the preparation
of aliskiren.

Results and Discussion

The retrosynthetic analysis (Scheme 1) of aliskiren is shown in
Scheme 1; precursor 1 resulted in synthons 2 and 3. The fact
that chirality in these fragments could easily be installed by
using asymmetric hydrogenation made 4 and 5 synthetic tar-
gets.

We originally planned to prepare allylic alcohol 4 from ethyl
crotonate by an alkylation, epoxidation, and rearrangement se-
quence (Scheme 2). The efficient and high-yielding preparation

of 6 by deconjugative alkylation of commercial ethyl crotonate
has earlier been reported by Herrmann et al. (Scheme 2 i).[11]

They employed HMPA as an additive to form a strongly basic,
non-nucleophillic complex with LDA. In an effort to avoid the
use of significantly toxic or harmful substances such as HMPA,
several other additives were screened as potential replace-
ments. However, low conversions (determined by 1H NMR
spectroscopy) were obtained, and a significant amount of con-
jugated ester was formed as a byproduct. The best result was
obtained with DMPU, albeit with a low yield of 20 %. Instead,
an alternative route (Scheme 2 ii), employing alkylation of ethyl
3-butenoate with LDA and iPrI was developed and enabled
synthesis of 6 in high yield (85 %), without the use of HMPA.

This protocol allowed efficient preparation of 6 on a 23 g
scale.

Starting from 6, allylic alcohol 4 was prepared in two steps
by a protocol developed by Valenta et al.[12] First, compound 6
was epoxidized with mCPBA to give 7 in a 1:5 cis :trans ratio
(Scheme 2 iii). Next, base-catalyzed rearrangement with K2CO3

in refluxing ethanol afforded pure (E)-4 after workup (56 %
yield).[13] A small amount of the corresponding unsaturated lac-
tone, presumably formed by spontaneous cyclization of any
(Z)-4 formed in the reaction, was also observed in the crude
reaction mixture. However, the volatile lactone was completely
removed during workup, which involved evaporation of sol-
vents.

Allylic alcohol 5 was prepared via bromide 8, previously ob-
tained by Maibaum et al. in four steps from isovanillin
(Scheme 3 A).[14] Following a procedure established by Wulff

et al. , bromide 8 was treated with methyl propiolate, CuI, and
K2CO3 to afford 9 (75 % yield)[15] No allene byproducts could be
observed in the crude reaction mixture. The iPr group was in-
stalled by an organocuprate addition under optimized condi-
tions (see below) yielding 10, followed by reduction with
DIBAL to give allylic alcohol 5. The reduction proceeded
smoothly, and only a quick purification by passage through
a small plug of silica was required to afford pure (E)-5 in 79 %
yield.

The stereoselectivity for introduction of the iPr group by
using an organocuprate was found to be very sensitive to the
reaction conditions (Table 1). At temperatures above ¢50 8C,
E :Z selectivity was poor (Table 1, entries 1 and 2). However, se-
lectivity dramatically increased when the reaction was carried
out below ¢50 8C (Table 1, entries 3 and 4). The use of THF as
solvent is crucial ; Et2O had a negative effect on the selectivity,
even at low temperature (¢78 8C; Table 1, entry 5). When the
reaction was carried out at ¢100 8C, essentially only the E
product was produced (Table 1, entry 6). This protocol was also
amenable to scale-up (Table 1, entry 7). In asymmetric catalytic
hydrogenation it is often crucial that pure E or Z isomers be

Scheme 2. Preparation of compound 4. i) Literature: LDA, HMPA, iPrI, ¢78 8C,
4 h, 96 %; this group: DMPU, DMSO, NMP, DMF, TMEDA, <20 %. ii) LDA, iPrI,
¢78 8C–RT, 4 h, 85 %. iii) mCPBA, CH2Cl2, RT, 72 h. iv) K2CO3, EtOH, reflux, 4 h.
DMPU: N,N’-dimethylpropylene urea, TMEDA: N,N,N’,N’-tetramethylethylene-
diamine, HMPA: hexamethylphosphoramide, LDA: lithium diisopropylamide,
mCPBA: meta-chloroperoxybenzoic acid, NMP: N-Methyl-2-pyrrolidone.

Scheme 3. Preparation of compound 5. i) Methyl propiolate, CuI, K2CO3,
CH3CN, 40 8C, 24 h. ii) iPrMgCl, CuBr, LiBr, THF, ¢100 8C, 1 h. iii) DIBAL, THF,
¢78 8C–RT, overnight. DIBAL: diisobutylaluminium hydride.
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used. Thus, selective methods such as those developed herein
for the synthesis of compounds 4 and 10 are necessary, as
they avoid the tedious use of preparative chromatography or
crystallization to separate such isomers.

Two catalysts A and B (Table 2) having an imidazole and
a thiazole heterocyclic backbone, respectively, were evaluated
in the hydrogenation of substrates 4 and 5. Both of these sub-
strates have purely aliphatic substituents and are typically chal-
lenging substrates for obtaining high enantiomeric excess in
asymmetric catalytic hydrogenation. Screening was carried out
with CH2Cl2 as solvent, and the results for the asymmetric hy-
drogenation of compounds 4 and 5 are presented in Table 2.

For both catalysts A and B, high conversions were obtained
in the hydrogenations (Table 2, entries 1–4). Enantioselectivities

were also good, whereby the best results for alcohol 4 were
obtained with catalyst A (97 % ee, 99 % conversion), whereas
for the hydrogenation of 5, catalyst B gave the best results
(93 % ee, 99 % conversion). Both results were reproducible on
a 300 mg scale. In some reports, enantioselectivity can increase
if hydrogenation is carried out in solvents such as ClCH2CH2Cl
and CF3C6H5.[9i, 16] A number of weakly coordinating solvents
were tested but did not lead to any improvements of the
enantioselectivities (for experimental details, see the Support-
ing Information).

Our earlier work on the mechanism and origin of enantiose-
lectivity in iridium-catalyzed hydrogenation have resulted in

a selectivity model that rationalizes the observed
enantioselectivities[10b, 17] From the S configuration at
C-2 and C-7 in aliskiren, it follows that both hydro-
genated products 2 and 3 also should be S-configu-
rated. In accordance with the model, catalyst A
having 2-S configuration and catalyst B having 8-S
configuration were needed to produce 2 and 3, both
of which are S-configurated. This assignment was
indeed supported by experimental data (comparison
of optical rotation data reported for 1).[4b]

The final part of the synthesis consists of joining
the two fragments into an E olefin by using the
Julia–Kocienski reaction. Tosylation of 3 provided 11
in 91 % yield (Scheme 4). The 1-phenyl-1H-tetrazole
sulfone 12 was prepared by a two-step thiolation
and molybdenum-catalyzed oxidation to produce 12
in 88 % yield over two steps. Fragment 2, on the
other hand, was oxidized to the corresponding alde-
hyde 13 in good yield (91 %).

For the Julia–Kocienski reaction, it is typically ob-
served that the use of phenyl-1H-tetrazole as the
heterocycle results in higher E selectivity compared
to benzothiazole and pyridine derivatives. To test
this hypothesis and to screen optimal conditions,
two isoamyl units (Scheme 5: 14 and 15) were
chosen as model substrates. A variety of bases and
solvents were screened, following a study by Morley

Table 1. Optimization of the addition of the iPr group to 9.

Entry T [8C] Solvent Scale [mg] E :Z

1 ¢78 to ¢30 THF 70 4:1
2 ¢40 THF 70 6:1
3 ¢50 THF 70 14:1
4 ¢78 THF 70 26:1
5 ¢78 Et2O 70 4:1
6 ¢100 THF 70 99:1
7 ¢100 THF 3000 99:1

Table 2. Screening of asymmetric hydrogenation of compounds 4 and 5.[a]

Entry Catalyst Substrate Conversion[b] [%] ee[c] [%]

1 A 99 97 ¢-S
2 B 77 72 ¢-S

3 A 99 83 ++-S
4 B 99 93 ++-S

[a] Reaction conditions: 0.065 mmol substrate, 1.0 mol % catalyst, 0.5 mL CH2Cl2,
100 bar H2 for 4, 50 bar H2 for 5, 20 8C, 17 h. In the hydrogenation of 4, 1.5 mg of pol-
yvinylpyridine was added (see Supporting Information). [b] Determined by 1H NMR
spectroscopy. No side products were detected. [c] Determined by HPLC, SFC or GC on
a chiral stationary phase.

Scheme 4. Preparation of compounds 12 and 13. i) TsCl, Et3N, DMAP, CH2Cl2,
RT, overnight. ii) a) 1-Phenyl-1H-tetrazole-5-thiol, K2CO3, CH3CN, microwave,
90 8C, 20 min, filter ; b) (NH4)6Mo7O24·4H2O (cat), H2O2, EtOH, reflux, overnight;
iii) PCC, CH2Cl2, RT, overnight.
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et al. ,[18] and the results are presented in Table 3. Increasing the
polarity of the solvent (toluene<Et2O<THF<DME) had a posi-
tive influence on selectivity toward the E product (Table 3, en-
tries 1–12). Potassium hexamethyldisilazide (KHMDS) was con-
sistently better than its Li and Na analogues, regardless of sol-
vent. With the exception of Et2O as solvent (Table 3, entries 4

and 5), NaHMDS showed somewhat better E selectivity than
LiHMDS (Table 3, entries 1 vs. 2, 7 vs. 8, and 10 vs. 11). The
highest selectivity was obtained with a combination of DME
and KHMDS (99 % E). These conditions were selected to pre-
pare 1 (Scheme 5). As anticipated, on combining fragments 12
and 13 under these conditions, only the E isomer was ob-
served by NMR spectroscopy, and 1 was isolated in 63 % yield.

From the late-stage intermediate 1, aliskiren can be synthe-
sized by the Novartis protocol (Scheme 6): hydrolysis of ester
1 to the acid followed by halolactonization to furnish 17,
which has the desired stereochemistry for the synthesis of alis-
kiren after inversion at C-5 by SN2 substitution with azide.[3a–c]

The stereospecific halolactonization starting from the corre-
sponding dimethyl amide analogue of 1 has also been repor-
ted.[3g] Both protocols that enable the construction of the cor-
rect stereocenters at C-4 and C-5 rely on the use of pure E
olefin and are readily amendable to the highly E selective
Julia–Kocienski reaction used in this work.

Conclusion

Late-stage intermediate 1 in the synthesis of aliskiren was pre-
pared in 11 steps with an overall yield of 18 % starting from 6.
The chirality at C-2 and C-7 of aliskiren was set up by asym-
metric hydrogenation of allylic alcohols 4 and 5. High enantio-
selectivities (97 and 93 % ee) were achieved by using chiral N,P
ligated iridium catalysts. The product alcohols 2 and 3 were
then modified and combined by Julia–Kocienski reaction to se-
lectively produce the desired intermediate 1 in pure E configu-
ration.

Experimental Section

All experimental details can be found in the Supporting Informa-
tion, which contains compound characterization and copies of
spectra of new compounds.
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