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Introduction

Modern synthetic strategies rely on stereoselective transfor-
mations to increase molecular complexity through genera-
tion of optical activity. In this context, asymmetric reduction
involves the transformation of prochiral sp2-centers into
chiral sp3-moieties, which creates complexity and added
value in the formed product. Hence, reduction is widely ap-
plied in the chemical and pharmaceutical industry, in which
single enantiomers are highly desired.[1–3] The asymmetric
catalytic reduction of C=C bonds is particularly powerful,
because it (theoretically) leads to the generation of up to
two stereogenic centers.[1] On industrial scale, transition-
metal-catalyzed processes are most sophisticated,[4–6] where-
as organocatalytic asymmetric transfer hydrogenations are
still at the stage of development.[7–11] The biocatalytic var-
iant, that is, the asymmetric bioreduction, is gaining in-

creased attention due to its exquisite chemo-, regio-, and
stereoselectivity, further strengthened by mild operational
conditions and independence from heavy metals.[12] The en-
zymes catalyzing this reaction are ene-reductases
[EC 1.3.1.X], members of the “Old Yellow Enzyme” (OYE)
family.[13] Over the past few years, these flavoproteins have
been proven to be powerful catalysts for the synthesis of
valuable chiral building blocks, amino acid derivatives, ter-
penoids, and fragrances.[14] Ene-reductases catalyze the re-
duction of C=C bonds that are electronically activated by
a conjugated electron-withdrawing group (EWG), which
also serves as anchor for substrate binding in the enzyme
active site; nonactivated (isolated) alkenes are unreactive
(Scheme 1). Well-accepted substrates include enals, enones,

a,b-unsaturated carboxylic acids and esters, nitriles, and ni-
troalkenes. Although enzyme- and substrate-based stereo-
control techniques are now well understood, no rules re-
garding substrate activation have been defined, which would
allow the prediction of reactivities and thus assist to use
these enzymes more systematically.[15] Based on their high
degree of polarization, enals, enones, and nitroalkenes con-
stitute excellent Michael acceptors and are thus well accept-
ed by OYEs. On the other hand, carboxylic acids and deriv-
atives thereof, such as esters and nitriles, are less activated
and often behave as “borderline substrates”. The data avail-
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Scheme 1. Asymmetric bioreduction of a,b-unsaturated esters by using
ene-reductases.
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able to date indicate that alkenes with a single carboxylic
acid or ester group are generally poorly converted by
OYEs.[16–18] The insufficient degree of substrate activation in
a,b-unsaturated carboxylic acids may be overcome by using
so-called “enoate-reductases”, which possess an [Fe4S4]
cubane cluster in addition to the flavin cofactor. Unfortu-
nately, this motif renders these enzymes extremely sensitive
towards traces of O2, which makes them inapplicable to
preparative-scale bioreductions.[19,20]

Although a single carboxylic acid/ester/nitrile moiety is
barely sufficient for alkene activation, addition of a second
electron-withdrawing moiety may help to enhance the
degree of polarization of the C=C bond to facilitate the bio-
reduction of these “borderline-substrates”. Recently, OYEs
1–3 were shown to catalyze the stereoselective bioreduction
of methyl a-halo-2-alkenoates and 3-arylacrylates.[21–23] Com-
parable methods for the preparation of chiral a-halo esters
include organocatalytic[24–26] and metal-catalyzed[27] a-halo-
genation, stereoselective substitution[28–31] as well as resolu-
tion of racemic esters by enzymatic hydrolysis.[32, 33] Asym-
metric hydrogenation of alkenes is restricted to fluoro deriv-
atives[34,35] due to reductive dehalogenation in the presence
of reducing metal agents. Additionally, stereoselective bro-
mination leads to enantiopure a,b-dihalogenated com-
pounds.[36,37] Chiral a-halo esters have found application in
the synthesis of biologically active compounds[38,39] and her-
bicides[40] as well as in natural-product synthesis,[41] whereas
stereocontrolled nucleophilic substitution on enantiopure a-
halo esters gives access to optically active N-, O-, and S-con-
taining compounds.[42–47]

Herein, we propose the concept of “supported substrate
activation” as a tool to probe the reactivity of a,b-unsaturat-
ed carboxylic esters with ene-reductases and to test the in-
fluence of additional substituents on the C=C bond activa-
tion. The electronic properties and the size of the a- and b-
substituents of the unsaturated acid moiety together with

variations in the alcohol part of the ester functionality were
investigated, and the degree of C=C bond activation was re-
lated to enzymatic activity. Additionally, both reaction rate
and stereoselectivity could be tuned by a switch of substrate
E/Z-configuration and type of organic co-solvent to produce
enantiopure a-halo esters.

Results

Seven isolated ene-reductases (OYEs 1–3, YqjM, NCR,
OPR1, and OPR3) known to display broad substrate accept-
ance in the reduction of a,b-unsaturated compounds were
investigated by using a series of acrylic ester derivatives 1 a–
8 a (Scheme 1 and Table 1). The overall poor reactivity of
acrylonitrile (1 a ; only NCR, OYE1, and OYE2 showed
modest activities, Table 1, entry 1)[48] indicated that the ni-
trile moiety was a poor activating group and prompted us to
test various alkyl acrylates (2 a–7 a). The change from nitrile
to carboxylic ester as activating group had a huge influence
on the reaction rates, because alkyl esters 2 a–4 a were
almost quantitatively converted by the ene-reductases
tested, except with YqjM and OPR1 (Table 1, entries 2–4).
Surprisingly, the chain length of the alcohol moiety had
a strong positive effect on YqjM and OPR1 activities, in
which conversions improved from 27 to 91 % and <1 to
55 % going from methyl to n-butyl. An analogous effect was
observed with Roche� ester precursors and a-alkoxy-func-
tionalized enones,[49,50] which may be caused by alternative
substrate-binding modes induced by steric effects. The
steric ACHTUNGTRENNUNGally cumbersome tert-butyl ester (5 a) was only accept-
ed by NCR (87% conversion), whereas the other enzymes
were poorly active (cmax =7 %; Table 1, entry 5). The pres-
ence of an a-methyl group in methyl methacrylate (6 a) di-
minished the reactivity of OYE2, OYE3, NCR, and OPR3
(2 a : 89–99 % conversion; 6 a : 14–91 % conversion; Table 1,

Table 1. Bioreduction of acrylic-ester derivatives with ene-reductases.

Entry Substrate Product Cofactor OYE1 OYE2 OYE3 YqjM NCR OPR1 OPR3
Conv. ee
[%]

Conv. ee
[%]

Conv. ee
[%]

Conv. ee
[%]

Conv. ee
[%]

Conv. ee
[%]

Conv. ee
[%]

1 NADH 31 30 <1 <1 9 n.c. <1
2 NADH >99 >99 97 27 >99 <1 89
3 NADH >99 >99 80 42 >99 5 98
4 NADH >99 98 98 91 >99 55 >99
5 NADH 7 6 n.c. 1 87 <1 7

6 NADH >99 91 58 46 89 26 14

7 NADH
98 >99 83 >99 >99 >99 33
40 (S) 45 (S) 83 (S) 86 (R) >99 (R) 93 (R) >99 (R)

8 NADH
93 90 >99 9 34 21

n.c.
>99 (S) >99 (S) >99 (S) >99 (S) 57 (R) 53 (R)

9 NAD+/GDH
83 97 88 37 74 19 4
99 (S) 98 (S) >99 (S) 98 (S) 72 (R) 54 (R) 45 (S)

10 NADH
97 92 >99 33 >99 87 35
39 (R) 43 (R) 57 (S) 93 (R) 97 (R) 90 (R) 69 (R)

11 NAD+/GDH
14 79 9 54 77 19 56
75 (R) 14 (R) 59 (S) 69 (R) 94 (R) 84 (R) 94 (R)

Reaction conditions: substrate (10 mm), NADH (15 mm) in Tris-HCl buffer (50 mm, pH 7.5), 30 8C, 24 h; n.c.=no conversion; NAD+/GDH =glucose/glu-
cose dehydrogenase was used for cofactor recycling.
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entries 2 and 6). Changing the electron-donating a-methyl
moiety to an electron-withdrawing a-chloro substituent
translated into greatly improved reactivity: all enzymes
showed enhanced conversion with methyl 2-chloroacrylate
(7 a) compared with 6 a, in particular OYE3, YqjM, OPR3,
and OPR1, which displayed a 1.4 to 3.8-fold improvement in
conversions (Table 1, entry 7). It is tempting to relate this
effect of electronic activation to the mechanism of OYEs,
because the reaction proceeds through a Michael-type addi-
tion through nucleophilic attack of a hydride onto the b-
carbon followed by proton addition onto the a-position.[51]

Thus, the additional electron-withdrawing a-chloro group
(in contrast to the methyl moiety) enhances the degree of
C=C polarization, thereby favoring the overall addition of
[2H]. However, comparing 7 a with unsubstituted methyl ac-
rylate 2 a, it appears that also steric factors play a role. Al-
though (electronically expected) higher reaction rates were
achieved with YqjM and OPR1, OYE3 and OPR3 showed
reduced conversion with nonactivated 7 a. Moderate-to-high
S-stereoACHTUNGTRENNUNGselectivity was obtained with OYEs 1–3 (40–83 %
enantiomeric excess (ee)), whereas YqjM, NCR, and OPRs
showed excellent opposite stereopreference (86 up to
>99 % ee for (R)-7 b).

Next, we investigated the effects of b-substituents. Inter-
estingly, the addition of an alkyl substituent, regardless of its
size, totally deactivated the system (compounds 9 a–12 a,
<1 % conversion, Figure 1 A). Herein, the result can also be
rationalized by considering the reaction mechanism. Indeed,
the electron-donating group diminished the d+ at the b-
carbon; in addition, the b-position may be particularly sensi-
tive towards steric hindrance, because the hydride has to be
delivered at this point from N5 of the flavin cofactor. In
need of additional activation of unreactive b-alkyl- or b-
aryl-substituted acrylic esters, we looked for potential a-acti-
vating groups. Because methyl (Z)-2-ethoxy-3-(4-methoxy-
phenyl)propenoate with a moderately electron donating a-
alkoxy group was not converted by OYE3,[52] a-cyano-sub-
stituted acrylates, such as methyl 2-cyanoacrylate (15 a),
methyl 2-cyano-3,3-dimethylacrylate (16 a), and methyl 2-
cyano-3-phenylpropenoate [(E)-17 a], were tested, expecting

that the a-cyano group would enhance the C=C bond polari-
zation (Figure 1 B). Unfortunately, substrates 15 a–17 a un-
derwent decomposition and/or polymerization under screen-
ing conditions (data not shown) and were not further inves-
tigated.

As an alternative, we tested b-substituted a-haloacrylic
ester derivatives. To our delight, methyl 2-chloropentenoate
[(Z)-8 a] was nicely accepted and yielded (S)-8 b with excel-
lent stereoselectivity (conversion up to>99 %, >99 % ee) in
the presence of OYEs 1–3 and YqjM (Table 1, entry 8). This
supports the hypothesis that C=C bond activation can be
tuned by the presence of a-halo substituents, because the
corresponding a-unsubstituted derivative [(E)-12 a] was not
converted at all. By using the glucose/glucose dehydrogen-
ase (NAD+/GDH) cofactor recycling system, 97 % conver-
sion and 98 % ee were obtained by using OYE2 (Table 1,
entry 9). Interestingly, NCR and OPR1 showed moderately
expressed opposite stereopreference [ee up to 72 % for (R)-
8 b]. The E-isomer was similarly well accepted, and the
change of isomer geometry had a strong influence on the
stereochemical outcome for some of the enzymes: OYE1,
OYE2, YqjM, and OPR3 showed a strong switch, that is,
(Z)-8 a gave (S)-8 b and (E)-8 a led to (R)-8 b. In contrast,
OYE3 always formed (S)-8 b, and NCR and OPR1 were
always R-selective, regardless of the E/Z-configuration of
substrate 8 a (Table 1, entry 10). This behavior has been pre-
viously observed with OYEs.[53] The cofactor recycling
system yielded noticeable variations in conversion and ee
values (Table 1, entry 11). Such an influence of the nicotin-ACHTUNGTRENNUNGamide regeneration system on the bioreduction reaction has
been observed in numerous cases.[54–57] Although not fully
understood, it may result from differences in the (bi-bi Ping-
Pong) kinetics between ene-reductase and recycling enzyme,
leading to variations in the ratio oxidized/reduced cofactor.

Prompted by these results, a series of a-halogenated cin-
namic esters (18 a–20 a) were tested to overcome the insuffi-
cient degree of activation in (unreactive) methyl cinnamate
((E)-13 a, <1 % conversion, Figure 1 A). Again, the intro-
duction of an a-halo substituent proved to be successful, be-
cause all substrates were converted with OYEs 1–3 (Table 2,
entries 1–8). Among them, OYE3 showed highest activities
(conversion 36–97 %) and S-stereoselectivity (79 % up to
>99 % ee) with methyl a-chloro-, bromo-, and iodocinna-
mates. The ability of OYE3 to accept larger substrates is
likely due to an enlarged binding pocket caused by an ex-
change of phenylalanine F296 (in OYE1 and OYE2) by
serine S297 in OYE3.[58,59] The type of halogen had a strong
effect on the activity of OYE3: although a-fluoro-substitu-
tion led to an unreactive substrate ((Z)-14 a, <1 % conver-
sion, Figure 1 A), the Cl-, Br-, and I-analogues (Z)-18 a, (Z)-
19 a, and (Z)-20 a were successfully converted at different
rates, and the a-bromo derivative (Z)-19 a was the most re-
active of the series (Table 2, entry 3). The S-stereoprefer-
ence of OYEs 1–3 was conserved throughout the series 18 a–
20 a, reduced stereoselectivity was observed with the steri-
cally most demanding iodo analogue (Z)-20 a (ee 79–80 %).
The E/Z-configuration of the brominated substrate had no

Figure 1. A) Nonsubstrates for ene-reductases (<1% conversion, data
not shown). B) Substrates undergoing polymerization or decomposition.
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effect on the stereorecognition by OYEs 1–3 (Table 2, en-
tries 3–6), which is in line with similar observations on
methyl a-bromo-butenoate, hexenoate, and heptenoate.[23]

In contrast, NCR and OPR1 converted the geometric E/Z-
isomers of 19 a in a stereocomplementary fashion (Table 2,
entries 3–6). YqjM and OPR3 were not active on (Z)-18 a–
20 a, whereas (E)-19 a was reduced slowly (8 and 28 % con-
version) with excellent ee to (R)-19 b. The use of a cofactor
recycling system improved the performance of OYE2,
YqjM, NCR, and OPR3 in the bioreduction of (E)-19 a
giving access to (R)-19 b in up to 42 % conversion and
>99 % ee.

Additionally, two a-halo-cinnamic ester derivatives [(Z)-
21 a and (Z)-22 a] with electron-withdrawing substituents on
the aromatic ring were tested (Table 2, entries 9–12). Inter-
estingly, the presence of two substituents on the phenyl
moiety enhanced the reactivity of (Z)-21 a compared with
(Z)-18 a, but did not influence the enzyme stereoselectivity.
OYE1 and OYE3 showed exactly the same trend with
NADH as cofactor: 55 % enhanced conversion through ring
activation. This effect was more pronounced with OYE2 in
presence of a recycling system (Table 2, entries 9–10). All
enzymes tested were inactive on (Z)-22 a. It is an interesting
aspect that the o-nitro group supports an (aci-nitro-like)
mesomeric form leading to the delocalization of positive
charge on the 1’-phenyl carbon and a-C thereby reducing
the electrophilicity on b-C (which is impossible with the m-
nitro group, cf. substrate 21 a). Although beneficial on small-
er unsubstituted alkyl acrylates (2 a–4 a), the variation of the

alcohol functionality in cinnamic ester derivatives was detri-
mental; only methyl esters reacted, ethyl esters of 19 a, 21 a,
and 22 a were not accepted by the enzymes (data not
shown).

To summarize the observed trends, the properties of the
a-halo substituent in methyl cinnamates, covalent radius and
electronegativity, were plotted against reactivity (i.e., con-
version) and stereoselectivity (ee ; Figure 2). Although the
electronegativity of the a-halogen substituent correlates
with the reactivity from bromo to iodo, it fails to predict the
reactivity of the fluoro and chloro derivatives. Likewise, the
size of the substituent[60] explains the drop in reactivity

Table 2. Bioreduction of cinnamic-ester derivatives with ene-reductases.

Entry Substrates Product Cofactor OYE1 OYE2 OYE3 YqjM NCR OPR1 OPR3
Conv. ee
[%]

Conv. ee
[%]

Conv. ee
[%]

Conv. ee
[%]

Conv. ee
[%]

Conv. ee
[%]

Conv. ee
[%]

1 NADH
9 7 36

n.c.
5 5

n.c.
92 (S) >99 (S) 98 (S) >99 (S) 94 (R)

2 NAD+/GDH n.c.
1 14

n.c.
<1 <1

n.c.
n.d. >99 (S) n.d. n.d.

3 NADH n.c.
11 79 <1 6 15 <1
95 (S) 99 (S) n.d. 48 (S) 90 (R) n.d.

4 NAD+/GDH
4 18 18 <1 10 8

n.c.
98 (S) 97 (S) 99 (S) n.d. 94 (S) 95 (R)

5 NADH
15 9 97 <1 13 45 4
90 (S) 92 (S) 98 (S) n.d. >99 (R) 66 (S) 99 (R)

6 NAD+/GDH
15 33 39 8 42 29 28
89 (S) 90 (S) 95 (S) >99 (R) >99 (R) 74 (S) >99 (R)

7 NADH
24 7 43

n.c.
<1 2

n.c.
85 (S) 85 (S) 79 (S) n.d. n.d.

8 NAD+/GDH
12 8 12

n.c.
<1 8

n.c.
85 (S) 84 (S) 80 (S) n.d. n.d.

9 NADH
14 3 58

n.c. n.c.
<1

n.c.
96 (S) 93 (S) 98 (S) n.d.

10 NAD+/GDH
16 21 9

n.c. n.c. n.c. n.c.96 (S) 98 (S) 98 (S)

11 NADH
<1 <1 <1

n.c. n.c. n.c. n.c.
n.d. n.d. n.d.

12 NAD+/GDH
1 2 3

n.c. n.c. n.c. n.c.
n.d. n.d. n.d.

Reaction conditions: substrate (10 mm), NADH (15 mm) or cofactor-recycling system in Tris-HCl buffer (50 mm, pH 7.5), 30 8C, 24 h; n.c.= no conver-
sion; n.d.=not determined; NAD+/GDH =glucose/glucose dehydrogenase was used for cofactor recycling.

Figure 2. Effect of a-halogen substituent on the bioreduction of methyl
(Z)-a-halo cinnamates by OYE3 (14a : X=F; 18a : X =Cl; 19 a : X= Br,
20a : X= I).
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(from bromo to iodo) going in hand with a drop in stereo-ACHTUNGTRENNUNGselectivity, pointing at binding issues in the active site and
imperfect substrate recognition.[49, 59] Thus, electronic effects
influencing C=C bond polarization alone cannot account for
observed trends in substrate reactivity—steric effects obvi-
ously play an important role.

We envisaged to rationalize the “supported-substrate acti-
vation” concept by using conceptual DFT[61] to estimate the
reactivity of the investigated compounds towards nucleo-
philic addition at b-C in a,b-unsaturated carboxylic esters.
The global electrophilicity index (w) was used to provide
a reactivity scale for a series of different molecules. Overall,
no strong relationship with enzyme activity was found,
though clusters of enzyme–substrate combinations could be
identified, in which electrophilicity reflected substrate reac-
tivity (Figures S1 and S2 in the Supporting Information).

Because all substrates tested possess low solubility in
aqueous media, we tested various organic cosolvents (10 %
v/v) to enhance their solubility thereby overcoming mass-
transfer limitations. In addition, organic cosolvents are
known to modulate the catalytic properties of enzymes.[62]

We selected OYE3 for the cosolvent study with substrates
showing particularly low-to-moderate conversions [(Z)-18 a–
22 a] (Figure 3). Although stereoselectivity of OYE3 was un-
changed, significant increase in reactivity was observed, es-
pecially in biphasic systems (Figure 3 and Table S3 in the
Supporting Information), which supports the beneficial
effect of water-immiscible solvents on the performance of
OYEs as well as enzyme robustness.[63] In general, tert-butyl
methyl ether (TBME), di-isopropyl ether (DIPE), and n-
hexane afforded superior conversion: notable improvements
were observed in the case of (Z)-18 a and (Z)-20 a with n-
hexane (from 36 to 84 %, from 43 to 67 %, respectively),
only a slight enhancement was obtained with (Z)-19 a (from
79 to 84 %). Compound (Z)-21 a also showed enhanced re-
action rate with most cosolvents including EtOAc, although

other substrates were poorly converted in the presence of
this cosolvent. An even more pronounced increase was ach-
ieved with (Z)-22 a, unreactivity of which in neat aqueous
buffer was completely overcome by addition of TBME or
DIPE (�96 % conversion, >99 % ee). Interestingly, THF,
EtOAc, acetone, TBME, DIPE, toluene, and dichlorome-
thane provided usually higher conversions for substrates
with substituents on the aromatic ring [(Z)-21 a and (Z)-
22 a], in contrast to unsubstituted derivatives [(Z)-18 a–
20 a].[22] Overall, DMF was a poor cosolvent.

Conclusion

Investigation of the de/activating effects of a- and b-sub-
stituents on the asymmetric bioreduction of acrylic and cin-
namic esters by using ene-reductases was investigated and
condensed in the following trends: 1) the tuning of the reac-
tivity is possible to some extent by influencing the polariza-
tion of the C=C bond through electronic substituent effects;
2) the presence of an a-halogen atom strongly improved re-
action rates, whereas 3) a-cyano groups were largely ineffec-
tive; 4) an electron-donating group on b-C tended to deacti-
vate nonhalogenated derivatives. However, electronic effects
could not be disentangled from steric effects. Though struc-
turally highly related, ene-reductases yield specific binding
modes with each substrate, thus preventing a general state-
ment on specific interactions involved with a given com-
pound. Overall, a-halo-substituted acrylic and cinnamic
esters were reduced with high-to-excellent conversion and
stereoselectivity, occasionally even in a stereocomplementary
fashion through enzyme- or substrate-based stereocontrol.
Additionally, organic cosolvents had a strong enhancing
effect on enzyme activity.

Experimental Section

Source of enzymes, chemicals and ma-
terials, chiral and nonchiral analytics,
synthesis of substrates, and reference
compounds, determination of absolute
configurations, additional data on or-
ganic co-solvents, and DFT calcula-
tions are available in the Supporting
Information.

General procedure for the bioreduc-
tion : An aliquot of enzyme (OYE 1–3,
YqjM, NCR, OPR1, OPR3; 6.6–31 mL
of the stock solution, final protein con-
centration 75–125 mg mL�1), was added
to a Tris-HCl buffer solution (0.8 mL,
50 mm, pH 7.5) containing the sub-
strate (10 mm) and the cofactor
NADH (15 mm). The mixture was
shaken at 30 8C and 120 rpm. After
24 h, the products were extracted with
EtOAc (2 � 0.5 mL). The combined or-
ganic phases were dried over Na2SO4

and analyzed on achiral GC to deter-
Figure 3. Effect of cosolvents (10 % v/v) on the bioreduction of a,b-unsaturated carboxylic esters with OYE3;
water-miscible solvents (blue); water-immiscible solvents (red).
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mine the conversion and on chiral GC or HPLC, respectively, to deter-
mine the ee. For cofactor recycling, the oxidized form of the cofactor
(NAD+ , 100 mm), the cosubstrate (glucose 20 mm), and the recycling
enzyme (glucose dehydrogenase, 10 U) were used.
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A Substrate-Driven Approach to
Determine Reactivities of a,b-Unsatu-
rated Carboxylic Esters Towards
Asymmetric Bioreduction

Biotransformation : The asymmetric
bioreduction of a,b-unsaturated car-
boxylic esters by ene-reductases could
be tuned by varying the degree of C=C
bond activation (see scheme). An addi-

tional a-halogenated substituent
proved to be beneficial for enzymatic
activity, whereas b-alkyl or b-aryl sub-
stituents were detrimental for the reac-
tivity of nonhalogenated substrates.
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