 Fount: (, $67.42 ; H, 6.54 ; N$, 9.5)

5-(2-Dimethylaminopropionyl)-3-phenylisoxazole (XIVc, Y = Yi) was obtaned as unstable crystal in $2: 3,3^{3}$, yied in a simila. manner as above. It was reduced with NaBHa without purification.

3-(2-Piperidinopropionyl)-5-phenylisoxazole (XIVa, $\mathrm{Y}=\mathrm{Y}^{3}$). A ninture of $\mathrm{X}\left(\mathrm{Y}=\mathrm{Y}^{3}\right)(3.75 \mathrm{~g})$, piperidine hydrochloride $(2.43 \mathrm{~g})$, paraformaldehyde (0.90 g), concentrated $\mathrm{HCl}(0.0 .5 \mathrm{ml}$). and dioxane (6 ml) was heated to refux. After 1 hr: paraformaldehyde $(0.45 \mathrm{~g})$ was added and refluxing was cominned for 2 hr. The reaction mixture was treated in a similar manmer to yield colorless erystals (3.60 g). Reerytallization from petroleum ether (bp 60-70 $)$ gave colorless plates, mp $94-96^{\circ}$.
 Found: (, 71.65 ; $\mathrm{H}, 7.1 \mathrm{~S}$; $\mathrm{N}, 9.65$.

3-(2-Morpholinopropionyl)-5-phenylisoxazole (XIVb, $\mathbf{Y}^{\prime}=\mathbf{Y}^{3}$.
A misture of $\mathrm{X}\left(\mathrm{Y}=\mathrm{I}^{3}\right)(3.75 \mathrm{~g})$, morpholine hydrochloride (2.47g), parafomaldehyde (0.90 g), concentrated $\mathrm{HCl}(0.1 \mathrm{ml})$, and EtOII (3 ml) was treated as the above. The remulting prodwet consisted of colorless plates (3.22 g), mp $112-113^{\circ}$, when arvathized from benzene-petroleum ether (bp $60-70^{\circ}$).

Anal. Caled for $\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$: C , 67.1.1: $\mathrm{H}, 6.34 ; ~ \therefore$, 9.7s. Fonuld: (, $67.20 ; \mathrm{H}, 6.43 ; \mathrm{N}, 9.59$.

Reduction of the Amino Ketones XII and XIV with $\mathbf{N a B H}_{4}$ (Table I, Method B).--The amino ketome (0.5 mole) was treated with NaISH_{4} (0.14 mole) in Meo MI (1 1.) at 60° for 30 min. After eooling, the resulting solution was acidified with deOH and
evaporated in mouo. After addition of 20% armems Natoll, the mixture was extracted with benzene and the extract was washed with water, dried over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$, and evaporated. The residue was discolved in hot $1 C_{c}$ aqueous HCl and the solution was treated with Norit and then made alkaline with por. aqueous NaOH to give the corresponding 3 -pheng- $\overline{\mathrm{N}}$ or x -phenyl-3-(α-hydroxy- ω-aminoalky) isoxazole (XIII or XV). The base were converted to their hydrochlorides by the ordinary procedure.

Hydrochloride of 5-(1-Hydroxy-2-piperidinoethyl)-3-phenyl-
 and piperidiue $(1 .(5 \mathrm{~g})$ iti ether $(100 \mathrm{ml})$ was treated as for XIb $\left(\mathrm{Y}=\mathrm{Y}\right.$) The remuting hydrochloride of XIS: Y $=\mathrm{Y}^{3}$ (2.42 (5) wat added to a solution of $\mathrm{NaBH}_{4}(0 .)^{5}$ g) ath Me()N: $(0.5 \mathrm{~g})$ in Eitolf (s) mb) with stiring. The mixutre, stirred at . 30° for 1.5 hr, was cooled in an ice bath, aciditied with lor, afueous II (I, and evaporated in mano. The residue, after wdition of ithe atueons NaOH, was extracted with CHCla and the extract was washed with water, and dried $\mathrm{K}_{\mathrm{C}} \mathrm{CO}_{3}$). Byaporafon of the sulvent left monless erystals which gave its hydrawhoride hy the ordinary procedure.

Acknowledgment.-The athors thank Professor Emeritus E. Ochim of Tokyo Vniversity and Dr. K Takeda, Director of this Laboratory, for continued encouragement. They are indebted to members of the Analytical Section of this Laboratory for elemental analyses.

Phenylindenes and Phenylindans with Antireserpine Activity'

Smaley J. Dykstra, Jhmes M. Berdahl, Fenveth N. Clmpbell, Cfarles M. Combs, and Donald G. Laxkin

Maul Johnson Research Center, Mead Johnsom and Company, Enunsville, Indiana harel

Received Vonember 18, 1966

Abstract

A verins of aminoalkylphentindenes and indans has been suthesized and phamacologically evahated. The majomy of the phenylindene derivativen was prepared by the alkylation of phenylindene with aminomalkl hatides. I mixture of iommers in obtaned when ? F phenyhindene i alkylated by this procedure and the isomers wh thim mature have been characterized. The final asignment of structure was based on nmr studies and thess are reported in detail. An mequivocal synthesis of one isomer type, 1 -aminoalkyl-1-phenylindene, is deseribed. The indan derivatives were prepared by hydrogenation of the corresponding indenes. The indene derivatives, of reserpine-induced ptosis in mice, a test which has been used as a eriterion for antidepressant activity. In addition, several of the indene and indan derivatives have exhibited significant antispasmodic and antiseromin activity

Aminoalkyl derivatives of diphenylmethane and its trieyclie analogs such as the phenothiazines have received considerable attention as useful pharmacological agents. ${ }^{24}$ The $1-$ and 3 -phenylindene ring systems awell as the indan analogs also incorporate the diphenylmethane moiety. A series of aminoalkyl derivatives of phenylindene and phenylindan I-IX ($\mathrm{R}=$ aminoalkyl) was prepared and tested for a wide variety of activities associated with the diphenylmethane derivatives. Although compounds having the general formulas VI and IX are not diphenylmethane derivatives, we have included them for comparison purposes.

During the course of this investigation, the interesting phamatcological properties of the dibenzocycloheptenes were reported. ${ }^{2 \mathrm{~b}, \mathrm{e}}$ Examination of molecular models
(1) (a) Presented in part at the $1+90 h_{1}$ National Meeting of the American (hemical Society, Detroit, Mich., Ipril 1965, Nbstract, p 17 N ; (b) K. N. (amplell, U. S. Patent $2,884,456$ (1959); K. N. Campbell, D. E. Rivard,

(2) (a) "Xedicinal (hemishy," A. Burger, Ed. 2nd ed, Interacience Pub. linhery lac, Now York, N. Y., loge (b) I. H. Biel, Advances in

1

IV

VII

II

V

VIII
indiates that the two benzene rings in the phenyindenes and phenylindans can be spacially oriented in much the same mamer as in the dibenzocyeloheptenes
and phenothiazines. We consider derivatives of the phenylindenes and phenylindans to have structural features in common with both the substituted diphenylmethanes per se and the derivatives of the rigid condensed tricyclic ring systems.

Our interest first focused on the aminoalkylphenylindenes I, II, and III which were prepared by the alkylation of 3-phenylindene with dialkylaminoalkyl halides in the presence of base. When sodium amide was used as the base, the products of this reaction consisted of a mixture of the three monoalkylated derivatives I, II, and III, as well as considerable quantities of two bisalkylated phenylindenes. ${ }^{3}$

Because of the difficulty encountered in separating the components of the mixture and the concomitant low yields, the procedure was modified to eliminate the bisalkylated phenylindenes. These modifications consisted of substituting butyllithium for sodium amide and also employing the inverse addition of the phenylindenyllithium to the dialkylaminoalkyl halide. The indene derivatives are listed in Table I. The composition of the mixtures listed in the table was determined by nmr studies.

Although the modified alkylation procedure eliminated the bisalkylated products, the mixtures of monoalkylated products persisted. On this basis, a study was made of the origin of the three monoalkylated. derivatives. ${ }^{4}$

The purity of the 3-phenylindene (X) precursor was established by oxidation of 3 -phenylindene with chromic acid. The only isolated acidic product, although the yield was not quantitative, was the expected 2-benzoyl-α-toluic acid. ${ }^{j}$ The nmr spectrum of 3-phenylindene was consistent with the assigned structure and demonstrated the existence of only one component. In addition, the isomeric 1-phenylindene ${ }^{6}$ (XII) was prepared and was shown to have physical properties and infrared and nmr spectra which were distinctly different from 3 -phenylindene. The instability of 1 -phenylindene was demonstrated by its rapid and irreversible conversion to 3 -phenylindene in the presence of catalytic amounts of triethylamine. ${ }^{7}$

Since 3 -phenylindene was homogeneous and was shown to be the stable isomer, we investigated the nmr spectra of the anions derived from 1-phenylindene and 3 -phenylindene by treatment with butyllithium (Scheme I). These spectra were identical. The elec-
(3) These bisalkylated phenylindenes presumably arise from the alkylation of the anion derived from the monoalkylated isomers I and II, Subse-

Gtent to our disclosure, ${ }^{1 a}$ the isolation and characterization of these monoalkylated and bisalkylated isomers were reported by C. R. Ganellin, J. M. Loynes, and M. F. Ansel!, Chem. Ind. (London), 1256 (1965).
(4) In contrast to this work, O. Blum-Bergmann, Ann. Chem., 484, 26 (1930); 492, 277 (1932), reported that only one monosubstituted isomer was obtained when 3 -phenylindenyllithium was carbonated with dimethyt carbonate. Methyl 3-phenylindenylcarboxylate, obtained in 54% yield, was isolated as the only product.
(5) C. F. Koelsch and R. V. White, I. Am. Chem. Soc., 65, $16: 39$ (1943).
(6) K. Bott, Tetrahearm Letters, 4569 (1965).
(7) (a) A. M. Weidler, Acta Chem. Scand., 17, 2724 (1963). (1)) A. Isosch and R. K. Brown, Can. J. Chem., 42, 1718 (1964), reported a similar base-catalyzed complete and irreversible conversion of 1 -methylindene to 3 -methylindene.

Scheme I

III
tron charge distribution for the phenylindenyl anion was estimated from the nmr spectrum using the method employed by Schaefer and Schneider. ${ }^{8}$ The positions of the highest electron charge densities of the anion (XI) were found on the C_{1} and C_{3} carbon atoms, and the electron densities on these two positions were estimated to be equal. Therefore, the anion XI would be expected to be alkylated at both the C_{1} and C_{3} positions, in accord with the experimental results.

Although isomer types I and III should be the only products formed by the alkylation of the phenylindenyl anion, the presence in the reaction mixture of a third isomer type (II) was demonstrated by nmr studies. Isomer type II was shown to arise from the free base of I by tautomeric equilibration. No prototropic rearrangement was observed in solutions of the hydrochloride salt of isomer type I. Apparently, the basic side chain provided the catalytic impetus for this tautomerization. A similar tautomeric equilibrium between 1-isopropyl-3-methylindene and 3-isopropyl-1methylindene in the presence of an organic base has been reported by Weidler. ${ }^{7 a}$

Our interest in 1-(2-dimethylaminocthyl)-1-phenylindene (IIIa) prompted us to investigate a more selective synthesis for the 1,1-disubstituted indenes. One approach employed the alkylation of the dianion of 3 -phenyl-1-indanone with dimethylaminoethyl chloride. Rockett and Hauser ${ }^{9}$ have shown that in liquid ammonia, benzyl bromide alkylates the dianion of 3 -phenyl-1-indanone (XIV) at C-3. By this procedure we obtained a moderate yield of 3-(2-dimethylamino-ethyl)-3-phenyl-1-indanone (XVa) when the dianion was alkylated with 2-dimethylaminoethyl chloride (Scheme II). Because the steric bulk of the two substituents on C-3 presumably prevented catalytic hydrogenation of the ketone, a lithium aluminum hydride reduction was required to prepare the amino alcohol XVIIIa. Mild acidic dehydration of the amino alcohol readily afforded 1-(2-dimethylaminoethyl)-1phenylindene (IIIa). Although this synthesis of IIIa was unequivocal, the rather low yields in the alkylation step and the required LiAlH_{4} reduction prompted us to

[^0](9) 13. W. Rockett and C. R. Hauser, J. Org. Chem., 29, 1394 (1064).
'lablek I: Phenyundenes

No.	R_{1}	R2	$1 \mathrm{li}_{3}$	14_{4}	Isomer,	Mathend	Yield.
1	(HLCH CN (CH_{3})	H	11	$\mathrm{C}_{6} \mathrm{H}_{3}$	100	A, B	10, 24
\because	($\mathrm{H} 2 \mathrm{CHN}\left(\mathrm{CH}_{3}\right)^{2}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	11	11	100	A. B, 6	$24,54,31$
3	($\mathrm{H} 2 \mathrm{CH} \mathrm{N}\left(\mathrm{CH}_{3}\right)^{2}$	- $\mathrm{Cl}^{1-\mathrm{C}_{6} \mathrm{H}_{4}}$	11	11	100	.	26
4	11	H1	$\mathrm{C}_{6} \mathrm{H}_{6}$		100	13	30
i	($\mathrm{HECH} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	11	11	100	1)	i1
${ }^{\text {f }}$	($\mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{NHCH}$	CrH_{5}	11	11	100	E	
7a		H	11	($\mathrm{CH}_{1} \mathrm{H}_{5}$	x		
b)	$\left({ }_{6} \mathrm{H}_{5}\right.$	11	11			.	30
${ }^{\text {c }}$	$\text { ('HeCHNN (}\left(\% \mathrm{H}_{3}\right)$	$\left(C_{6} H_{5}\right.$	H	11	81		
8 it	$\mathrm{CH}_{2} \mathrm{CH}_{2} \times \sim$	11	11	$\mathrm{C}_{6} \mathrm{H}_{5}$	1.5		
1.	$\mathrm{C}_{6} \mathrm{H}_{5}$	11	H		8	d	14
\cdots		(\%) H_{0}	11	!	79		
:		$\mathrm{C}_{6} \mathrm{H}_{5}$	11	11	100	A	12
10		$\mathrm{C}_{6} \mathrm{H}_{5}$	11	11	100	13	19
11a		11	H		1:3		
,	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{H}_{5}$		11	($\mathrm{H}: \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	8	1	$2: 1$
${ }^{\circ}$	($\mathrm{Ha} \mathrm{CHaCH} \mathrm{CH}\left(\mathrm{CaH}_{5}\right)_{2}$	$\mathrm{Cr}_{6} \mathrm{H}_{5}$	H	1 H	7 7		
$1 \because$			11	$\mathrm{C}_{5} \mathrm{H}$,	100	(19.5
3			H	(isH_{5}	100	(i)	64
1							
1.4	11	11	$\mathrm{CH}_{2} \mathrm{~N} \longrightarrow$	($6_{6} \mathrm{H}_{4}$	100	Ref 11	17
1.5	11	11		$\mathrm{C}_{6} \mathrm{H}_{5}$	100	F	11
$1{ }^{1}$	11	11	$\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	(6) ${ }^{\text {c }}$	100	1	22
17		$\mathrm{C}_{6} \mathrm{H}_{5}$	$1 /$	11		'	21
13:		11	11	$\left(6 H_{6}\right.$	1.5		
b	(611%	11	11		11	A	31
\cdots		($5_{5} \mathrm{H}_{5}$	11	11	7		
19 a		11	11	($\mathrm{i}_{\text {lis }}$	22		
b	$\mathrm{C}_{6} \mathrm{H}_{5}$	11	H		13	. 1	24
*		($61 \mathrm{H}_{0}$	11	11	6.5		
20		$\mathrm{C}_{6} \mathrm{H}_{6}$	11	11	100	A	13
21		11	11	(ntis	23		
1.	$\mathrm{C}_{6} \mathrm{H}_{3}$	11	11		13	A	16
\cdots		$\mathrm{C}_{6} \mathrm{H}_{6}$	11	11	64		
$I^{\text {Indene }}$	11	H	1	H	100	g	
${ }_{1}$-Phenylindene	(\%11\%	H	H	H	100	Ref 6	79
2 -Phenstindene	11	11	CbH_{6}	H	100		
${ }_{3}$ Phenslindene	H	H	H	Cill	100	Ref 19	

"The hydrochoride salt: were recrvstallized from 2 -propanol and the mucate salts were recrystalized from gs o ethanol. b Measwred as $10-15 \%$, shotions in solvent mentioned. Chemical shift values in ppm with respect to internal tetramethylsilane. Ino solu-

Salt ${ }^{\text {a }}$	$\begin{aligned} & 13 \mathrm{p}(\mathrm{~mm}) \\ & \text { or } \mathrm{mp},{ }^{\circ} \mathrm{C} \end{aligned}$	Formula	--C, \%-		-H, \%		- N .		- Nmr chemical shifts $\mathrm{ppm}^{\text {b }}$				
			Caled	Found	Caled	Found	Caled	Found	$\mathrm{R}_{1,8}=\mathrm{H}$	$\mathrm{R}_{3}=\mathrm{H}$	$\mathrm{R}_{4}=\mathrm{H}$	$\mathrm{N}-\mathrm{CH}_{3}$	Solvent
									3.48	6.45		2.65	$\mathrm{D}_{2} \mathrm{O}$
HCl	170-172	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N} \cdot \mathrm{HCl}$	76.10	76.40	7.40	7.68	4.67	4.78	3.86	6.54		$2.93{ }^{\text {c }}$	$\mathrm{CF}_{3} \mathrm{COOH}$
									3.62	6.59		2.18	$\mathrm{CCl}_{4}{ }^{\text {d }}$
										6.54	6.87	2.65	$\mathrm{D}_{2} \mathrm{O}$
HCl	202-203	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N} \cdot \mathrm{HCl}$	76.10	76.23	7.40	7.28	4.67	4.72		6.63	7.06	$2.83{ }^{\text {c }}$	$\mathrm{CF}_{3} \mathrm{COOH}$
										6.57	6.79	2.05	$\mathrm{CCl}_{4}{ }^{\text {d }}$
										6.51	6.90	2.75	$\mathrm{D}_{2} \mathrm{O}$
HCl	198-199.5	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ClN} \cdot \mathrm{HCl}$	68.26	68.30	6.33	6.33	21.21^{e}	21.33^{e}		6.50	7.00	2.90°	$\mathrm{CF}_{3} \mathrm{COOH}$
										6.57	6.85	2.08	$\mathrm{CCl}_{4}{ }^{\text {d }}$
	63-65	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}$	86.65	86.84	8.04	8.21	5.32	5.08	3.77			2.32	CCl_{4}
1 Cl	189-190	$\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{NO} \cdot \mathrm{HCl}$	72.25	72.09	7.02	6.95	$11.23{ }^{\text {e }}$	11.19°		6.45	6.87	3.37	$\mathrm{CF}_{3} \mathrm{COOH}$
HCl	176-178	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N} \cdot \mathrm{HCl}$	75.64	75.87	7.04	7.14	12.41^{e}	12.27^{e}		6.40	6.75	2.42	CDCl_{3}
									3.58	6.66			CCl_{4}
	156-162 (0.3)	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}$					4.81	4.86	4.50	6.37			CCl_{4}
										6.61	6.84		CCl_{4}
									3.63	6.62			CCl_{4}
	150-154 (0.04)	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}$	87.14	87.24	8.24	8.25	4.62	4.90	4.52	6.31			CCl 4
										6.58	6.79		CCl_{4}
HCl	150-152	$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO} \cdot \mathrm{HCl}$					4.10	4.12		6.64	7.06		$\mathrm{CF}_{3} \mathrm{COOH}$
										6.51	6.78	2.55	$\mathrm{D}_{2} \mathrm{O}$
HCl	191.5-193	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N} \cdot \mathrm{HCl}$	76.53	76.54	7.71	7.81	4.46	4.27		6.70	7.06	$2.40{ }^{\text {c }}$	$\mathrm{CF}_{3} \mathrm{COOH}$
										6.59	6.86	2.05	$\mathrm{CCl}_{4}{ }^{d}$
									3.49	6.65			CCl_{4}
	168-176 (0.7)	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}$					4.59	4.62	4.55	6.31			CCl_{4}
										6.60	6.83		CCl_{4}
HCl	179-180 dec	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N} \cdot \mathrm{HCl}$					3.81	3.97		6.68			$\mathrm{CF}_{3} \mathrm{COOH}$
HCl	$272-273 \mathrm{dec}$	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N} \cdot \mathrm{HCl}$	79.36	79.60	5.08	4.76	4.41	4.60		6.71			$\mathrm{CF}_{8} \mathrm{COOH}$
HCl	234-236	$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N} \cdot \mathrm{HCl}$							3.71				$\mathrm{CF}_{3} \mathrm{COOH}$
		$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N} \cdot \mathrm{HCl}$	79.64		6.10			10.20^{e}	3.78				$\mathrm{CF}_{3} \mathrm{COOH}$
HCl	$191-192$	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N} \cdot \mathrm{HCl}$	79.65	79.74	6.68	6.81	$9.80{ }^{\text {e }}$	$9.84{ }^{\text {e }}$	3.65				$\mathrm{CFs}_{3} \mathrm{COOH}$
Mucate	159-160.5	$\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{8}$	73.07	72.82	7.15	7.05	3.55	3.53		6.53	6.79	$\begin{aligned} & 2.05 \\ & 2.12 f \end{aligned}$	$\mathrm{CCl}_{4}{ }^{\text {d }}$
									3.48	6.61			CCl_{4}
	$16 \pm$ (0.15)	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}$					4.62	4.61	4.52	6.28			CCl_{4}
										6.59	6.82		CCl_{4}
									3.48	6.60			CCl_{4}
	160-163 (0.1)	$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}$	87.02	86.86	8.57	8.34	4.41	4.84	4.51	6.28			CCl_{4}
										6.56	6.80		CCl
	158-160 (0.08)	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}$	87.57	87.75	7.99	7.67	4.44	4.77		6.57	6.83		CCl4
									3.46	6.58			CCl
	172-178 (0.3)	$\mathrm{C}_{44} \mathrm{H}_{29} \mathrm{~N}$	86.96	86.92	8.82	8.39	4.23	4.59	4.48	6.26			CCl_{4}
										6.56	6.80		CCl_{4}
		$\mathrm{C} 9 \mathrm{H}_{8}$							3.29	6.42	6.78		CCl_{4}
	37-38	$\mathrm{C}_{16} \mathrm{H}_{12}$	93.71	93.60	6.29	6.10			4.48	6.49	6.81		CCH_{4}
	169-171	$\mathrm{C}_{16} \mathrm{H}_{12}$							3.80		7.22		CCl
	118-125 (0.4)	$\mathrm{C}_{16} \mathrm{H}_{12}$							3.40	6.46			CCl_{4}

${ }^{+} \mathrm{N}-\mathrm{H}$ proton. ${ }^{d} \mathrm{Nm}$ observation of the free base of the salt. ${ }^{e}$ Analysis for chloride. f Two 1,1 -substituted isomers of this compound observed in a $1: 2$ ratio mixture. Eastman Chemical Co.

XIII

XVI
$\downarrow \begin{aligned} & 2 \mathrm{NaNH}_{2} \\ & \mathrm{NH}_{3}(\mathrm{liq})\end{aligned}$

XVII
homemi 11

XIV $\downarrow \begin{aligned} & \text { 1. } \\ & 2 . \mathrm{HCl} \\ & \mathrm{H}, \mathrm{O}\end{aligned}$

XV
$\downarrow^{L_{i j A I H}}$

XVIII
$\|_{-\mathrm{H}_{3} \mathrm{O}}^{\mathrm{H}^{+}}$

III
(xamine altermative procedures for the preparation of 1-(2-dimethylaminocthyl)-1-phenylindene.

A more sonvenient synthesis of IIIa utilized an extension of the dianion concept. Whereas XVa could not be hydrogenated, 3-phenyl-1-indanol (XVI) was readily obtained by catalytic hydrogenation of 3 -phenyl-1-indanone (XIII). The alcohol XVT should be rapable of dianion formation since, like the corresponding ketone, it also possesses two potentially ionizable hydrogen atoms, the hydroxyl hydrogen and the less acidic benzhydryl hydrogen. That dianion formation did take place when XVI was treated with ? equiv of sodium amide in liquid ammonia was demonstrated by the appearance of a dark red solution characteristic of the diphenylmethyl anion. After addition of 1 equiv of 2 -dimethylaminoethyl chloride. the red color disappeared, and on hydrolysis :3-(2-dimethylaminoethyl)-3-phenyl-1-indanol (XVILIa) wat obtained in excellent yield. This wats readily dehydrated to IIIa.

Interestingly, Borovicka and Protiva ${ }^{10}$ obtained only the O-alkylated product when they treated 3-phenyl-1indanol with 2 equiv of sodium amide and 2 -dimethylaminoethyl chloride in benzenc. Their choice of this solvent apparently precluded the formation of the dianion. Consequently, alkylation at $\mathrm{C}-3$ could not take place.

Compounds of structure type IV also appear in Table I. These aminoalkylidene-3-phenylindenes were obtained by the condensation of an aminoaldehyde with :3-phenylindene using basic conditions (Scheme III).

[^1]

Compounds having the general structure V were syt thewized by two methods. The tertiary amino derivatives ($\mathrm{V}, \mathrm{K}=\left(\mathrm{H}_{2} \mathrm{NR}^{\prime \prime}{ }_{2}\right.$) were prepared areording to the procedure described by Hoffmam ${ }^{11}$ in which 1 indanone was subjected to a Mannich reaction to give ?-dialkylaminomethyl-1-indanone. Treatment of this ketone with phenylmagnesium bromide and dehydrition gave the desired indenes. For the preparation of the secondary amines ($\mathrm{V}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{NHR}^{\prime}$), which were difficult to obtain by the Mamich reaction, we firt prepared 3-phenyl-2-indenylearboxaldehyde (XIX) hy the formylation of 3 -phenylindene with N-methyformanilide and phosphorus oxychloride. The marboxaldehyde was reductively aminated with the desired primary amines (scheme III).

Compound having the gencral strueture VI were obtained by the alleylation of 2 -phenylindene (XXI) (Sheme 1V). This intermediate was prepared by

dehydration of 2-phenyl-1-indanol which in turn was obtained from ?-phenyl-1-indanone'" (XX) by a sodium borohydride reduction. Alkylation of 2 -phenyindene with 2 -dimethylaminoethyl chloride give : $;$ (2 -dimethylaminoethyl)-2-phenylindene [VI, $\mathrm{R}=\left(\mathrm{H}_{2}-\right.$ $\left(\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right\}$. The nmr spectrum was consistent with the assigned structure (a singlet for the two alicycli.protons at $3.77 \mathrm{ppm}, \mathrm{CCl}_{4}$ solvent). Under the alkylttion conditions used, the 1,2 -disubstituted indene (XXII) would first be formed. However, based on our previous tatomerization studies, it was not surprising to find that this intermediate had rearmaged into the more stable 2,3 -disubstituted indene VI. ${ }^{13}$

[^2]The aminoalkylphenylindans (VII-IX) listed in Table II were routinely prepared by catalytic hydrogenation of the indene derivatives. 1-(2-Dimethyl-aminoethyl)-1-phenylindan was also prepared by direct alkylation of 1-phenylindan.

Experimental Section

Determination of Structures by Nmr Spectroscopy.-The chemical shifts of phenylindenes and their derivatives are given in Table I. The structure proofs for monoalkylphenylindenes from their umr spectra are unambiguous. The assignments of structure are in agreement with those published in the recent note of Ganellin, et al. ${ }^{3}$. If the alkyl and phenyl groups are both located at the 1 position of the indene ring (structure III), the olefinic protons in the 2,3 positions show a typical AB pair of doublets with a coupling constant of about 5.7 cps . This value is in good agreement with the coupling constants found in indene ${ }^{14}$ and in methylindenes. ${ }^{15,16}$ The lines for the AB patterns, are ubserved at $\sim 6.5-6.7$ and $\sim 6.8-7.0 \mathrm{ppm}$, corresponding to the 2 and 3 positions, respectively. The absorption peaks for the proton in the 3 position of these compounds were neither further split nor broadened by coupling with the proton in the 7 position. The spectra of indene and methylindenes ${ }^{25,16}$ show this proton to have a long-range coupling, $J_{3,7}$, of about 0.7 cps .

When the indene substitutions are 1 -alkyl-3-phenyl (structure I), two distinct resonance signals are observed. The olefinic proton at the 2 position gives a narrow line doublet at ~ 6.6 ppm with a splitting of about 2 cps and the proton at the 1 position appears as a very broad multiplet at $\sim 3.6 \mathrm{ppm}$.
When the substituents are 3 -alkyl-1-phenyl (structure II), the 2 position olefinic proton absorbs at $\sim 6.3 \mathrm{ppm}$ as a poorly resolved doublet while the benzhydryl proton in the 1 position is observed as a slightly broadened band at $\sim 4.5 \mathrm{ppm}$. The coupling between the protons in the 1,2 positions in these compounds was not resolved, apparently due to broadening by allylic conplings. ${ }^{17}$

Certain regularities are apparent from the spectra of the phenylindenes. Whereas alkyl substitution on the alicyclic ring of indene tends to shift the alicyclic ring proton absorptions toward higher magnetic field ${ }^{17}$ (smaller parts per million values), phenyl substitution deshields these protons and causes a low-field shift of their resonance absorptions (giving larger parts per million values). Olefinic protons in the 2 position of phenylindenes show lines in the region $6.3-6.6 \mathrm{ppm}$; olefinic protons in the 3 position absorb in the region 6.8-7.2 ppm; and protons in the 1 position show lines in the region $3.4-3.8 \mathrm{ppm}$, unless the indene molecule has the phenyl group substituted at this position. Benzyhydryl protons of this type absorb at $\sim 4.5 \mathrm{ppm}$. This (ategorized information is helpful in determining the composition of isomer mixtures and can also be used in the identification of disubstituted phenylindenes.

The chemical shifts of monoalkyl phenylindans are given in Table II. The 1-alkyl-1-phenylindans (structure IIII) are characterized by the absence of any alicyclic ring proton absorption in the region $3.5-4.5 \mathrm{ppm}$. The 1 -alkyl-3-phenylindan (structure \II) spectra show a multiplet at $\sim 4.2-4.4$ ppm for the benzhydryl proton in the 3 position of the indan molecule.

The spectrum of the phenylindenyl anion in an ether-hexane whution, prepared from either 1 -phenylindene or 3 -phenylindene, consisted of a one-proton doublet at 6.01 ppm and a ten-proton complex multiplet from 6.6 to 8 ppm . The doublet at 6.01 ppm , assigned to the hydrogen at the C_{1} position, had a splitting of 3.7 cps from coupling with the C_{2} position hydrogen and also a smaller doublet splitting of 0.75 cps due to long-range coupling with the hydrogen in the 4 position. The position of the hydrogen doublet from the C_{2} position (6.88 ppm) was determined by the dou-ble-resonance technique using a Varian $V-6058$ spin decoupler.

The electron density distribution was determined ${ }^{8}$ from the above values to be 1.17 at the C_{1} position and 1.10 at the C_{2} position. From the close correspondence of these values with those found for the unsubstituted indenyl anion, 1.17 at the C_{1}

[^3]and C_{3} position and 1.00 at the C_{2} position, ${ }^{8}$ it was estimated that the electron density at the C_{3} position in the phenylindenyl anion was very nearly that found at the C_{1} position.

The pmr spectra were obtained with a Varian A-60 spectrometer. Accuracies of the chemical shifts measurements are within $\pm 0.02 \mathrm{ppm}$, with the spectrometer calibration checked according to the method of Tiers and Hotchkiss. ${ }^{18}$

2-Benzoyl- α-toluic Acid--3-Phenylindene $(X)^{19}(20) ~ g, ~ 0.1$ mole), was suspended in 110 ml of $65 \% \mathrm{H}_{2} \mathrm{SO} \mathrm{O}_{4}$ and a solution of 30) g of CrO_{3} in 64 ml of water was added over 15 min . During the addition, the mixture was kept at $30-50^{\circ}$ by cooling. After the addition, the mixture was allowed to stand at room temperature for 2 hr , then, after dilution with 500 ml of water, it was extracted with four $100-\mathrm{ml}$ portions of ether. The ethereal extracts were washed (saturated NaHCO_{3}) and after acidification of the bicarbonate layer $16.9 \mathrm{~g}(70 \%$ yield) of crude product was isolated. Recrystallization from ethyl acetate gave pure acid, $m p 132-134^{\circ}$ (lit. ${ }^{5} \mathrm{mp} 130-131^{\circ}$).

3-(3-Methoxyphenyl)propiophenone.-A solution of 23.8 g (0.1 mole) of 3 -methoxychalcone ${ }^{20}$ in 115 ml of ethyl acetate was reduced in the presence of 0.2 g of $\mathrm{P}_{1} .$. . One mole equivalent of hydrogen was absorbed after 2 hr and the catalyst and solvent were removed. The solid residue was recrystallized from absolute ethanol, to give $19.2 \mathrm{~g}(80 \%)$ of pure dihydro compound, $\operatorname{mp} 67-$ 68°.

Anal. Caled for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$: $\mathrm{C}, 79.97 ; \mathrm{H}, 6.71$. Found: C, $79.80 ; \mathrm{H}, 6.97$.

6-Methoxy-3-phenylindene.-Using the same procedure as reported for 5,6 -dimethoxy-3-phenylindene, ${ }^{21} 72 \mathrm{~g}$ (0.3 mole) of 3 -(3-methoxyphenyl)propiophenone was cyclized in 550 g of polyphosphoric acid at 90° for 0.5 hr . After decomposition of the polyphosphoric acid with ice, the precipitate was removed by filtration and recrystallized from 700 ml of methanol. A first crop of $51 \mathrm{~g}(76.5 \%), \mathrm{mp} 64-65^{\circ}$, was analytically pure.

Anal. Caled for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}$: $\mathrm{C}, 86.45 ; \mathrm{H}, 6.35$. Found: C, 86.22; H, 6.46.
2-Phenylindene (XXI).-To a solution of 2-phenylindanone $(\mathrm{XX})^{12}(30 \mathrm{~g}, 0.14$ mole $)$ in 300 ml of 2-propanol was added in small portions 5.3 g (0.14 mole) of NaBH_{4}, followed by cautious addition of 150 ml of anhydrous methanol. After stirring 2.5 hr at room temperature, the mixture was concentrated to 150 ml and then brought to pH 3 with dilute HCl . Water was added and the mixture was extracted with three $100-\mathrm{ml}$ portions of ether. After drying, the combined ether extracts were evaporated and the residue was distilled yielding $25.5 \mathrm{~g}(83 \%)$ of $2-$ phenyl-1-indanol, bp $120-130^{\circ}(0.1 \mathrm{~mm})$. The indanol was dehydrated using a procedure described by Traynellis, et al., ${ }^{22}$ to give after crystallization from methanol $17.5 \mathrm{~g}(75 \%)$ of pure XXI, mp 167-168 ${ }^{\circ}$ (lit. ${ }^{23} \mathrm{mp} 167.5^{\circ}$).

3-(2-Dimethylaminoethyl)-3-phenyl-1-indanone Hydrochloride (XVa).-To a stirred suspension of NaNH_{2} [from 4.6 g (0.2 g-atom) of Na in 500 ml of liquid NH_{3}] was added dropwise a solution of 20.8 g (0.1 mole) of 3 -phenyl-1-indanone (XIII). ${ }^{24}$ The liquid NH_{3} was replaced with 200 ml of benzene and a catalytic amount of KI. To the stirred suspension was added a solution of 10.8 g (0.1 mole) of 2-dimethylaminoethyl chloride in a mixture of xylene (25 ml) and benzene (75 ml). The mixture was heated at $55-60^{\circ}$ for 1 hr and stirred at room temperature overnight. It was washed with water, then extracted with 4.5% $\mathrm{HCl}(100 \mathrm{ml})$. The acidic extract was made basic and the precipitated vil was extracted with ether. After drying the ethereal rolution, 6 N 2-propanolic HCl was added. The precipitated hydrochloride salt was recrystallized from ethanol to give 14.6 g (46%) of the product, $\mathrm{mp} 242-244^{\circ}$ dec. An analytically pure sample was prepared by recrystallization from acetone-ethanol, $\mathrm{mp} 245.5-246.5^{\circ}$. The nmr and infrared spectra were consistent with the assigned structure.

Anal. Caled for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO} \cdot \mathrm{HCl}: \mathrm{C}, 71.79 ; \mathrm{H}, 7.69 ; \mathrm{Cl}$, 11.16. Found: C, $71.51 ; \mathrm{H}, 7.60 ; \mathrm{Cl}, 11.14$.

3-(2-Dimethylaminoethyl)-3-phenylindan-1-ol Hydrochloride (XVIIIa). A. From 3-(2-Dimethylaminoethyl)-3-phenylindan-

[^4]
 with respert to internal Meqsi. "Obscured by broad aliphatic proton absorption band. d Doublet, is (ps splitting. Conpling of CD: with + NH proton. ${ }^{\circ} \mathrm{R}_{3}=\mathrm{H}$ in this compound. f Prepared by HBr demethylation of 25 . a Pair of doublets, spliting of $\overline{7}-\mathrm{s}$,

1-one (XVa).-To a stired suspension of $\mathrm{LiAlH}_{4}(9.5 \mathrm{~g}, 0.25$ mole) in tetrahydrofuran (THF) (100 ml) was added a solution of 6.8 g (0.025 mole) of XVa in THF (100 ml .) The mixture was stirred at reflux for 2 hr, then allowed to stand at room temperalure overnight. After decomposition of the excess LiAlH 4 with aqueons THF , the mixture was heated at $35-60^{\circ}$ for 1 hr and filtered. The solvent was distilled from the filtrate and the residue was dissolved in anhydrons ethanol and acidified with $6 . V$ HCl in 2-propanol. Isopropyl ether was added to clomdiner-
and the product was allowed to crystallize to give 6.2 g (78 x , of the indanol, $\mathrm{mp} 193-194^{\circ}$ dec. The nmr spectrum was consistent with the assigned structure as an 80:20 mixture of the two possible stereoisomers.

Anal. Caled for C19H2NO-IICl: C, 71.79; H, 7.61: (1, 11.16. Found: (, $71.51 ; \mathrm{I}, 7.60$) $\mathrm{Cl}, 11.14$.
B. From 3-Phenylindan-1-ol (XVI).-To a stirred suspension of NaNH_{2} [from $4.6 \mathrm{~g}(0.2$ g-atom $)$ of Na in 11 . of NH_{3}] was added dropwise a solution of 21 g (0.1 mole) of $:$-phenyl- 1

---C. ${ }^{\text {C }}$		$\text { Calcd } \quad \mathrm{H}, \%$		$\text { Caled } \mathrm{N}, \% \text { Found }$		$\xrightarrow{-} \mathrm{Cl} \%^{-}$							
Calcd	Found			Caled	Found	$\mathrm{R}_{2}=\mathrm{H}$	$\mathrm{R}_{4}=\mathrm{H}$	$\mathrm{N}-\mathrm{CH}_{3}$	Solvent				
75.60	75.75	8.01	8.16			4.64	4.51			c	4.38	$3.06{ }^{\text {d }}$	$\mathrm{CF}_{3} \mathrm{COOH}$
75.60	75.31	8.01	8.03			11.75	11.61	c	c	$2.96{ }^{\text {d }}$	$\mathrm{CF}_{3} \mathrm{COOH}$		
75.60	75.80	8.01	8.19	4.64	4.58	11.75	11.86	3.85°	c	$2.66{ }^{\text {d }}$	$\mathrm{CF}_{3} \mathrm{COCH}$		
72.38	72.15	7.90	7.99	4.22	3.94	10.68	10.96	c	4.37	$3.09^{\text {d }}$	$\mathrm{CF}_{3} \mathrm{COOH}$		
72.38	72.08	7.90	7.97	4.22	4.06	10.68	10.65	c	c	$3.00^{\text {d }}$	$\mathrm{CF}_{3} \mathrm{COOH}$		
69.69	69.52	7.79	7.83	3.87	3.92			c	c	$3.08{ }^{\text {d }}$	$\mathrm{CF}_{3} \mathrm{COOH}$		
71.79	71.71	7.61	7.61	4.41	4.32	11.16	11.16	c	4.22^{9}	3.02^{d}	$\mathrm{CF}_{3} \mathrm{COOH}$		
85.95	85.51	9.28	8.84					3.30	4.20°		CCl_{4}		
								c	c		CCl_{4}		
86.55	86.21	8.65	7.95	4.81	4.89			c	4.16		CCl_{4}		
								c	c		CCl_{4}		
86.50	86.73	8.91	8.58	4.59	4.98			3.28	$4.23{ }^{8}$		CCl_{4}		
								c	c		CCl_{4}		
				$\begin{aligned} & 4.44 \\ & 4.07 \end{aligned}$	$\begin{aligned} & 4.64 \\ & 4.00 \end{aligned}$	11.23	11.23	c c	$\begin{aligned} & c \\ & c \end{aligned}$	$2.88{ }^{\text {d }}$	$\begin{aligned} & \mathrm{CF}_{3} \mathrm{COOH} \\ & \mathrm{CHCl}_{3} \end{aligned}$		
76.45	76.06	8.85	8.92	4.25	4.33			c	4.17^{8}	$2.68{ }^{\text {h }}$	CHCl_{3}		
				4.07	4.15	10.31	10.38	c	$4.22^{\text {a }}$	$2.92{ }^{\text {d }}$	CHCl_{3}		
				3.77	3.88	9.53	9.23	c	4.30°		$\mathrm{CF}_{3} \mathrm{COOH}$		
78.19	77.87	8.92	9.13			9.23	8.95	c	4.16^{7}		CHCl_{3}		
76.92	76.88	7.99	7.96			10.81	10.99	c	4.22^{g}	2.86	CHCl_{3}		
								3.10	$4.16{ }^{\circ}$	2.24	$\mathrm{CCl}_{4}{ }^{\text {a }}$		
76.92	76.90	7.99	8.28	4.27	4.29			c	c	2.12	$\mathrm{CCl}_{4}{ }^{\text {i }}$		
86.50	86.20	8.91	8.89	4.59	4.74			c	4.20°		CCl_{4}		
								c	c		CCl_{4}		
86.47	86.82	9.15	9.0 .5					c	4.17^{9}		CCl_{4}		
86.47	86.67	9.15	9.04					c	4.08°		CCl_{4}		
86.43	86.58	9.37	8.99	4.20	3.98			c	$4.21^{\text {a }}$		CCl_{4}		
								c	c		CCl_{4}		
60.97	61.04	6.51	6.72	3.23	3.11			c	4.37°	3.25	$\mathrm{CF}_{3} \mathrm{COOH}$		
										3.35			

10-11 cps. $\quad{ }^{h}$ Triplet, 8 -cps splitting. Coupling of CH_{3} with $+\mathrm{NH}_{2}$ protons. Nmr observations of the free base of the hydrochloride salt. ${ }^{j}$ Prepared by quatemization of $38 .{ }^{k}$ Methiodide salt.
indanol (XVI) ${ }^{25}$ in ether (200 ml). To the resulting red suspension was added a solution of 10.7 g (0.1 mole) of 2-dimethylaminoethyl chloride in a mixture of xylene (11 ml) and ether $(100 \mathrm{ml})$. Stirring was continued until the liquid ammonia had evaporated. The residual ethereal solution was washed with water and the basic fraction was extracted with $4.5 N \mathrm{HCl}$.

[^5]The acidic extract was made basic and the precipitated oil was extracted with ether. After drying, the ethereal solution was concentrated to an oil which was dissolved in ethanol, acidified with $6 N \mathrm{HCl}$ in 2-propanol, and allowed to crystallize. A white crystalline solid was obtained; yield $20.0 \mathrm{~g}(71 \%), \mathrm{mp} 204$ 205° dec. The nmr spectrum was consistent with the assigned structure as an $85: 15$ mixture of the two stereoisomers.
Anal. Caled for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO} \cdot \mathrm{HCl}: \mathrm{C}, 71.79 ; \mathrm{H}, 7.61 ; \mathrm{Cl}$, 11.16. Found: C, $71.86 ; \mathrm{H}, 7.81 ; \mathrm{Cl}, 11.00$.

A mixatre meling point of $197-199^{\circ}$ der wat obtaned when a sample was combined with material from method A.

3-Phenylindene-2-carboxaldehyde (XIX).-. A mixture of PO) (${ }^{1}$ L: ($18.2 \mathrm{ml}, 0.2 \mathrm{~mole}$) and N -methylformanilide ($27.2 \mathrm{~g}, 0.2$ mole) Was allowed to stand for 0.5 hr . Keeping the lemperature at $<30^{\circ}$ with an ice bath, 3.4 g (0.2 mole of 3 -phenylindene wan added dropwise. After stireng for an addimat 2 hr, the misture was allowed to stand overnight. The resulting tar was do(ampored with ice and the organie frachion war extracted with an ether-benzene mixture. After washing with dilute IICl and water, the solntion was dried $\left(\operatorname{Iggs}_{4}\right)$ and filtered and the solvent was removed. The residual yellow solid was recryandized

 ($\therefore .57 .18: \mathrm{II}, 5.63$.

The infiared spectrom wat consistent for an α, β-insathoted (arbonyl and the nmy sectrom thowed the presence of the wo uncoupled methylene protons.
(2-Dimethylaminoethyl)phenylindenes from Alkylation of 3 Phenylindene. Method A.-A suspension of $19.5 \mathrm{~g}(0.5 \mathrm{~mole})$ of NaNlo and 96 g (0.5 mole) of 3 -phenvindene in dry benzenc was refluxed for 1 hr: To this minture was added over 1 he at retux a solution of dimethytaminoethyl chloride [from 71.5 g (0.5) mole) of dimethylaminoethyl chlonide hydrochloridel in dry benzene $(100 \mathrm{ml})$. Heating was cominned for an additiomal 2 hr. After cooling, the reation mixture was poured into an exces of dilute HCI and the hayem were reparated. The ated bayer was made basic and the rembing oil which separated was extracted with ether. Comrentration ot the ethereal extract and factionation of the residue gave three principal factions.
 primarly 1-(2-dimethylaminoethyl) 1-phenydindene (IIIa) which was inolated and characterized at it- hydrochloride sall (mp $202-203^{\circ}$. Fraction 2 , hp $166-16$ s $^{\circ}$ (0. $3^{2} \mathrm{~mm}$), $n^{210} 1.6905$
 of 1-(2-dimethymimethyl)-3-phenslindene (I: and $3-(2-$ dimethylaminoethy)-1-phenylindene (IIa). Ia wavinolatedfom this fraction as the hydrochborde (mp 170-1720). Fraction 3 , bp $168-174^{\circ}(0.2 \mathrm{~mm}), n^{20}$, 1.7535 (26.3g, eontained a mixture of bisalkylated products.
 hydrons ether (150 ml) under N_{2} was added (0.4 mole of butylithimm in hexane. A temperature of $20-300^{\circ}$ was mamtaned by external coohing duming the addition. After refloxing for 0.5 hr the wolnton was dibuted with ethe! 200 ml) and added to an ethereal solution (100) ml) of 2 -dimethylaminethy chloride from 71.5 g (0.5 mole) of the hydrochloride . The mixume was refinxed for 2 hr, then cooled and extracted with 6 人 HCl (20) ml . The acid extract was made basic and the precipitated oil was isolated as in the preceding experment. Two main fractions were obtaned corresponding to framions 1 and 2 of method it (fraction $1,56.7 \mathrm{~g}$, and fraction $2,25.6 \mathrm{~g}$).

1-(2-Dimethylaminoethyl)-1-phenylindene Hydrochloride (Illa). Method C.-.Sodium amide wat prepared from 86.4 g (3.7) g-atoms) of Na with liquid NH: (1:3 1.). To the stirred shopension was added 315 g (1.5 moles) of 3 -phemy-1-indanol
 was added a solution of $241 \mathrm{~g}(2.25$ molen) of \because-dimethylaminoethyl chloride in a mixture of xylene (20) ml) and ether (1.3 .). The brown sumpension was atired until the ammonia had evapomated. The ethereal mopension was washed with I l. of water and then extracted with $4.5 \times 1 / C l(1 / 3$. The acid extract wat heated at 90° for 2.5 he and made basio and the of which sepamated wat extracted with ether. After drying and concentrating the ethereal solntion, the oil was disoolved in 2 -poropanol and acidified with 2 -propanolic HCl. The precipitate (410 g, 91\%). mp 200-20 12°, was rerrstallized from $2-p$ mpanol to give analyti-
 determinationt with the hydrochlonide trom faction 1 of method A gave no depresion.

1-(2-Dimethylaminoethyl)-1-phenylindene N -Oxide Hydrochloride. Method D.-A mixture of 9.8 g (0.0)37 mole) of IIIa and 12 ml of $306, H_{2}()_{2}$ in 40 ml of methanol was allowed 10 atand 1 week at rom temperatue. After dilution with 100 ml of water and concmataling in wono to near drynes, the residue
 base, and the telher-incolate material was dimolved in acetome. Aftor the addition of dry HCl, enther was added to the romd point. The precipitated rowals were filtered lo give s. 4 g (7'; of the hydrochoride salt, mp) $1 \times()-1 \times 1^{2}$. Kerrytallization

Tublatil

(monat	
1	$174 \leq 8$
\because	$1.11=0.2$
\because	11.7 $=2.1$
4	Inaurive
\therefore	
1 i	$1.2=110$
T:1. ${ }^{\text {c }}$	$\underline{-}$
\ar	Inactive
$!$	Inactive
10	17.1 $=43$
$1 \because$	Inactive
1.4	$6.9=2.1$
1.1	Luactive
16	Intutive
15	10.1 ± 4.3
20	1112.2. 20
2-9	2), 11×70
2:	10.4 + 4 :
$2 \cdot 1$	> ${ }^{\text {a }}$
26	>2.5
27	29.
3:3	>20,
33^{\prime}	$24.9=7.2$
3! ${ }^{\text {a }}$	11.2 ± 2.7

A- a $1: 2$ mixture of 1 wo racemates. As the mutate salt.
from 2-propanol gave phe material, mp $1 \times!3-1900^{\circ}$. The infared and mma specta were consistent with the assigned structure

1-(2-Methylaminoethyl)-1-phenylindene Hydrochloride.
Method E.--To a stirred solution of 16 g (0.15 mole) of ethyl (hloroformate at 44° in dry benzene (15 ml) wan added as rapidiy. as porible (to promote a rapid elimination of $\mathrm{CH}_{3} \mathrm{Cl}$) 13.2 g (0.05) mole of 1-(2-dimethylaminuethyl)-1-phenylindene (IIla). After the initial reaction, the mixture was allowed to reflux for \because hy, roled, and washed with water (25 ml) and dilute IHCl (25) mal). The newral benzene solution was concentrated and the residue of N-cabethoxy-1-(2-methylaminoethyl)-1-phenylindene (11.5g was hydrolyed by heating at reflux for 6 hr in a solntion of 95$)^{\circ}$; ethatol (100 ml) and $\mathrm{KOH}(45 \mathrm{~g})$. The ethanolie sohnthon was diluted with water $(100 \mathrm{ml})$ and the ethanol was partially removed under vacumm. The residue was extracted with ether and dried $\mathrm{Xg}_{\mathrm{H}} \mathrm{O}_{4}$). After removal of the drying agent, dry HCl was added. The precipitated hydrochloride salt was re-ry-talized from acetome. The vield of analytically pure material was 6.1 g (60 $;$), mp $176-175^{\circ}$.

Reductive Amination of 3-Phenylindene-2-carboxaldehyde (XIX). Method F.--In 200 ml of $95 \%_{6}$ ethanol, $11 \mathrm{~g}(0.05$ mole) of '3-phenylindene-2-carboxaldehyde and $0 . \overline{5}$ mole of primary amme were mixed and hydrogenated on a Parr hydrogenator in the presence of laney Ni catalyst. After the theoretical uptake of hydrogen ($0.0 \mathrm{a}^{\circ}$ mole), the redurtion was stopped, the batalst was removed, and the solvent was evaporated. The residue was disolved in ether and gavenus HCl was added. Tho oil which preçpitated was eryallized from 1-propanol several times antil abalytably pure hydrochbordes of 2 -alkylaminu-methyl-3-phenylindenes were obtained.

1-(3-Diethylamino-2,2-dimethylpropylidene)-3-phenylindene Hydrochloride IV (12)]. Method G.--A solution of 15.7 g (0.1 mole) of 3-(diethylamino)-2,2-dimethylpropionaldehyde, 19.2 g (0.1 mole) of 3 -phenylindene, and 0.1 g of Na in 100 ml of aboolute ethanol was heated at reffux for 3 hr . On cooling, the solution was poured into water and the oils were extracted with ether. After drying the ether extract $\left(\mathrm{SgSO}_{4}\right)$ and filtering, anhydrous HCl was added. The hydrochloride salt which precipitated was recrystallized from ethyl acetate; yield 5.j g (15%) , mp 179180° dee.

Dialkylaminoalkyl Phenylindans (VII-IX). By Hydrogenation of the Corresponding Indenes. Method H.-In a Parr hydrogenator 40 g of 10 C , $\mathrm{Pd}-\mathrm{C}$ in 30 ml of 95 , ethanol was mbjected to a hydrogen amosphere for several minutes. A shlition of 0.35 mole of the dialkylaminoalkylphenylindene in 160 ml of 955°, ethanol was added and the mixture was subjected (o) hydrogen at $4.2 \mathrm{~kg} / \mathrm{cm}^{2}$ until the theoretical amome of H_{2}

Table IV Summary of Biological Data			
	Compd 2	Imipramine	Amitriptyline
Reserpine-induced ptosis			
Prevention, mg/kg oral	1.03	5.00	5.50
Reversal	Inactive	Inactive	Inactive
Antisinistro torsion	Inactive	Inactive	Weakly active
Antiparkinson activity			
$\mathrm{ED}_{50}, \mathrm{mg} / \mathrm{kg}$ oral	Inactive	104	29.5
Antispasmodic activity vs.			
$\mathrm{ALD}_{50}, \mathrm{mg} / \mathrm{kg}$ (mouse)	41	107	80
Inhib of kynuramine oxidation in vitro AIC_{50}, M	6.2×10^{-5}		None at 5×10^{-5}
Tryptamine potentiation in vivo	None at $25 \mathrm{mg} / \mathrm{kg} \mathrm{ip}$	16% at $100 \mathrm{mg} / \mathrm{kg}$ po	None at $100 \mathrm{mg} / \mathrm{kg}$ po
j-Hydroxytryptophan potentiation	None at $10 \mathrm{mg} / \mathrm{kg}$ 6 doses on 3 days	None at $10 \mathrm{mg} / \mathrm{kg}$ 6 doses on 3 days	...

Table V
Antispasmodic Activity

was taken up (2-4 hr). After removal of the catalyst and solvent, the resulting indan was purified either by distillation or by isolation of the appropriate salts. Yields of $20-95 \%$ were obtained.

From Alkylation of 1-Phenylindan. Method I.-To NaNH_{2} freshly prepared from 4.6 g (0.2 g -atom) of Na in 500 ml of liquid NH_{3} was added with stirring a solution of 19.4 g (0.1 mole) of 1-phenylindan in ether (200 ml). To the resulting red suspension was added a solution of 0.2 mole of the appropriate dialkylaminoalkyl halide in 20 ml of xylene and 60 ml of ether. Stirring was continued until the liquid ammonia had evaporated. Work-up of the reaction in the usual manner gave the 1-dialkyl-aminoalkyl-1-phenylindan (VIII) in quantitative yield.

Pharmacology

The ability of a drug to prevent but not to reverse the ptosis induced by reserpine was used as an indication of antidepressant activity. In this assay the test compound is administered orally 1 hr before the administration of reserpine ($2.0 \mathrm{mg} / \mathrm{kg}$ iv). One hour following the reserpine administration the mice are placed on a platform away from light and the extent of closure of the palpebral fissure is estimated. Ptosis is only significant if the opening is less than 50% of normal. Compounds found to possess a high degree of activity in the prevention of reserpine-induced ptosis were further tested to determine their ability to reverse the effects of reserpine. In this part of the test reserpine ($2.0 \mathrm{mg} / \mathrm{kg}$ iv) is administered first and 1 hr later the test compound is given orally. The amount of ptosis is determined as previously described. The use of this test serves to distinguish imipramine-type antidepressants and MAO inhibitors from adrenergic $\alpha-$ receptor stimulants which both prevent and reverse reserpine-induced ptosis. The differentiation between the imipramine-type compound and MAO inhibitors was determined by in vitro and in vivo enzyme inhibition studies.
The antispasmodic effects were determined using standard in vitro procedures. The musculotropic activity was indicated by the ability of a drug to inhibit BaCl_{2}-induced spasms on rabbit ileum. The neurotropic activity was measured by the ability of a drug to inhibit acetylcholine-induced spasms on rabbit ileum. Antiserotonin activity was determined using the rat uterus procedure of Gaddum, et al. ${ }^{26}$
Listed in Table III are the results from the reserpine ptosis tests. A number of the indenes were active in
this test; 1-[2-(dimethylamino)ethyl]-1-phenylindene hydrochloride (2) was the most ative. ${ }^{27}$ Relatively minor structural changes reduced the artivity markedly. The comresponding indat (23) wats only onctenth as active as 2. Morenver, 1-fl-(dimethylamino)-ethyl]-3-phenylindene (1) was even less active and 3 - $[2$-(dimethylamino)ethyl]-2-phenylindene (4) was inattive. Extension of the side chatin by one ($\mathrm{H}_{2}(\mathbf{1 0})$ also lowered the activity considerably: a surprising result since the dimethylaminopropyl group is the side chain of both imipramine and amitriptyline. Changes in the amine portion of the molecule revealed an inverse relationship between the bulk of the amine group and the activity of the compounds. The demethyl derivative (6) and the X-oxide (5) both had attivities on the same order as 2 , while the diethylammethyl derivative (7) was only weakly active and the morpholinoethyl analog (9) was inative.

A comparison of some of the pharmacological artivities of 2 and the clinically active compounds, imipramine and amitriptyline, is summarized in Table IV. 1-(2-Dimethylaminoethyl)-1-phenylindene hydrochloride (2) has a greater milligram potency in the reserpine test. Of special interest is the larek of central anticholinergic effects of 2 as shown in the antisinistro torsion ${ }^{28}$ and antiparkinsonism ${ }^{29}$ tests. Compound 2 does show considerable MAO inhibition in vitoo, using as the criteria the change of the rate of kymumane oxi-
(27) A. Kandel and P. M. Lish, Mead Johnson and (o., British Pateme 1.041,989 (1966).
(28) M. C. DeJonge \& A. B. H. Funcke, Lich. Intern. Phomacodyn. 137, 375 (1962).
(29) Ci, M. Everet1, L. LE. Blockun, and I. M. Shepperd, Science, 124 , 74 (1956).
dation in liver homogenates, in the presence of the test componnd. By the more indicative in meo tests, using both tryptamine and i-hydroxytryptophan potentiation ats a measure of MAOI activity, 2 did not behare as an $\mathrm{MA}(\mathrm{O}$ inhibitor. Thus, the in eitro MAOI aetivity appears to be an artifact due to liver cell disuption. athough some MAO inhibition in vien is not (onmpletely ruled out. This ambination of greater milligram potency and late of anticholinergie offecte of 2 may result in significant reduction of the undesirable atropine-like side efferete encomntered clinically with the standardagents.

Table V summarizes the results obtained in the antispamodic and antiserotonin tests. The indans were the most potent compounds in this area. 3 -(1-Methyl-:3-pyrrolidinymet hyl)-1-phenylindan hydrochloride (38) Was the most attive of this series having approsimately twiee the potency of the referenee agent papaberine as a museulotropic agent with moly 0.3 1.0\% of the nemotropic effects of atropine sulfate. Itisomer, 1-(1-methyl-3-pyrrolidenymethyl)-1-phenylindan hydrochloride (39), was equally attive an a musralotropic agent: however. 39 had neurotropic etfectwhich were ten times greater than its isomer (38).

Acknowledgments. We wish to thank Drs. J. W Kirel and A . Kandel and Mr. K. W. Dungan for the pharmacologital evaluations. The aswistane of Dres. 1). E. Rivard and R. I. Majewoki and Messrs. R, I), Demio, J. P. Elkin, R. R. Covington, J. (\therefore Simme, and 1. Jones at varions times during the course of this inventigation is gratefully atknowledged. We also wish to thank Dr. A. A. Larsen for his many helpful suggestions.

Substituted Anilinopyridine Carboxylic Acids with Antiinflammatory Activity

1). Evals, K. S. Hallagoo,
Chemistry Department, Lilly Research Laboratorios L,th., Weo Fomy, Hirral, ('heshire, England
(${ }^{\prime}$ H. Cashin, and H. Jackion
Pharmacolog! Department, Lilly Research Laboralorien Ltt., Speke, Limerpool 2t, Lanrashire, England

Recemed Normber 18, 1:pfr

Abstract

The synthenis of eleven substituted anilinopyridinecarboxylic acids, of which seven were novel, is dewibed and their antininflammatory activity is compared with that of mefenamic acid and flufenamic acid. Comparable activity was found with 2 -(2,3-dimethylanilino)-, 2 -(m-trifluoromethylanilino)-, and 4 -(m-trifluoromethylanilino)nicotinic acid. The novel 8,9 -dimethylpyrido $[2,3-b]$ quinol- 0 -one was also synthevized and fond to be inative.

The recent publication of a patent ${ }^{1}$ claiming derivatives of 2 -anilinonicotinic acid as analgesic-antiinflammatory agents prompts us to report our experience with these and related anilinopyridinecarboxylic acids in which the substituted anilino and carboxyl groups are in different positions around the heterocyclic nucleus.

This study was initiated to determine if the antiinflammatory activity of mefenamic acid ${ }^{2 a}$ (1a) and

[^6]
flufenamic acid ${ }^{213}$ (1b) was affected appreciably when the phenyl ring A in these compounds was replaced by a pyridine nucleus as in 2 . For this reason the compounds which have been synthesized have been mostly confined to the 2,3 -dimethylanilino and m-trifluoromethylanilino derivatives.

[^0]: (8) T. Schaefer and W. G. Sclıneider, ibid., 41, 966 (196:3).

[^1]: (10) M. Borovicka and M. Protiva, (fath. Farm., 6, 129 (1957: Chem. (1)str.. 52, 1125 (1958).

[^2]: (11) K. Hoffmann and H. sohellenberg. Helu. Chim. Act", 27, 1782 (1944).

 (L3) Our assignment of aructure VI for the product of the abovition reaction conflicts with the structure assigned in the patemt literature, e.u., smith Kiline and French Lahoratories, Relgium Patent 621,9:33 (1963). In this patent, structure $X N I I$ was riven for the alk rlation product.

[^3]: (14) D. D. Elleman and S. L. Manatt, J. Chem. Phys., 36, 2346 (1962).
 (15) J. A. Elvidge and R. G. Foster, J. Chem. Soc., 590 (1963).
 (16) A. R. Hawdon and I. J. Lawrenson, Chem. Ind. (London), 1690 (1963).
 (17) H. Dressler and R. J. Kurland, J. Org. Chem., 29, 175 (1964).

[^4]: (18) G. V. D. Tiers and D. R. Hotchkiss, J. Phys. Chem., 66, 560 (1962), (19) J. V. Braun, Ber., 50, 1659 (1917).
 (20) P. Pfeiffer, Ann. Chem., 412, 309 (1917).
 (21) J. Koo, J. Am. Chem. Soc., 75, 1891 (1953).
 (22) V. J. Traynellis, W. L. Hergenrother, J. R. Livingston, and J. A. Valicenti, J. Org. Chem., 27, 2377 (1962).
 (23) F. Mayer, A. Sieglitz, and W. Ludwig, Ber., 54, 1397 (1921).
 (24) P. Pfeiffer and H. deWaal, Ann. Chem., 520, 185 (1935).

[^5]: (25) H. Richter and H. Jansen, German Patent 912,093 (1958) ; Chem. Abstr. 52, P11943a (1958).

[^6]: (1) Société Anonyme Laboratoires L.P.S.i., Belgian Patent 657,266 (April 16, 1965).
 (2) (a) (. V. Winder, J. Wax, L. Scoti, R, A. Scherrer, E, M. Jones, and 1. W. Short, J. Pharmucol, 138, 405 (1962): (1) (`. V. Winder, J. Wax, F. Serrano. F. M. Jones and M. L. MrPhee, Anthitis Rheumut., 6, 30 (1963).

