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Abstract: Reaction of azetidinone phosphoranes J, with aldehyde ,@, gave the olefins & which 
were converted into carbapenem esters 5 in 4 steps. Hydrogenation of & gave the title com- 
pounds. 

In our search for carbapenems with better chemical and biological stability’ we wanted to syn- 

thesize carbapenems substituted in the 3-position with aliphatic side chains, preferably pro- 

vided with a basic functionality. The four general3 syntheses known for this class of com- 

pounds have their limitations: In the two Merck procedures4 the variable side chain is intro- 

duced as Grignard or cuprate reagent onto an azetidinone aldehyde or thiol ester, which limits 

the choice of side chain substituent. The other two methods from Sanraku Ocean chemists5 and 

from us2b have the advantage that derivation occurs at a late stage in the synthesis on a bi- 

cyclic intermediate, but they only serve to introduce side chains with strongly electron-with- 

drawing groups on the a-carbon atom. 

Since very few reactions can be performed on the bicyclic carbapenem or 3-oxo-carbapenam 

system without opening at least one of the two rings’ we preferred to introduce the variable 

side chain on an azetidinone intermediate. As it turns out, the azetidinone phosphorane La7 is 

a very suitable intermediate : not only is it chemically very stable, but also, its low basicity 

allows Wittig reaction with aldehydes that can have a wide range of substituents including aci- 

dic ones such as amides and alcohols. Phosphorane Aa (mp. 152-155’C) was easily prepared 

2c from the previously synthesized bromo-ketone 2 (see Scheme and Reaction conditions) in 90% 

yield. Optically active Lb (mp. 164-165’C) was synthesized in a more direct way by reacting 

ester zb with 2.5 eq of Ph3P=CH2* in THF at -2O’C. Reaction of la with PhCHO in refluxing 

toluene gave the expected olefin $a (only trans, mp. 112-114’C) in 60% yield. Woodward’s ela- 

borationg via phophorane ia (48%) gave carbapenem ka (61%) as a yellow solid (mp. 155- - 
16O’C). Short (20 min. ) hydrogenation of ?a did not produce the expected carbapenem potas- 

sium salt, instead, 

isomerslo 

we only found carbapenam 1 as a mixture of 28,38 (22%) and 2a,3a (6%) 

which was separated by RP-18 chromatography (H20-CH3CN, O-10%). In spite of this 
11 discouraging result, we proceeded by reacting ?a with protected aminoaldehyde 5 . This reac- 

tion took place at much lower temperatures (66-80°C) than the one with benzaldehyde. Pre- 

sumably, the reaction is catalyzed by intramolecular hydrogen bonding between the amide NH 

and the developing alkoxy anion in the transition state. 
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Reaction conditions: 

2-la: N N i. PPh3, CH2C12 ii. NaHC03, H20 

2-k Ph3$CH3Br-, n-BuLi, THF -78’ -2oOc 

L-4: RCHO, benzene or toluene, reflux 

a-5: r, i. PNB02CCH(OH)2, benzene, azeotropic reflux. ii. SOC12, Et3N, THF, -2O’C. 

iii. Ph3P, THF, RT 

2-5: Toluene, reflux 

&-I,$,ll: Ha, PdlC (lo%), EtOAc, phosphate buffer pH 7 

&a-g: i. 2.5 eq LDA, 5 eq HMPA, THF, -78’C. ii. CH31 -78 O°C 

The resulting olefin 4b (only c, mp. 118-121°C, 93%) was converted to the phosphorane 5_b 

(43%) which was cyclized to carbapenem gb (mp 143-146’C, 55%). Fortunately, hydrogenation of 

sb gave 3-(4-aminobutyl)-carbapenem ?a in 84% yield after RP-18 chromatography and lyophi- 

lization. 

Merck chemists discovered that introduction of a 46-methyl group on 3-thio substituted car- 

bapenems greatly improved their stability towards renal dehydropeptidase 12 
. Synthesis of 9_c 

therefore seemed a worthwile goal, particularly since ?_a had insufficient DHP-stability. Direct 

methylation (2.5 eq. LDA, HMPA, CH31) of &a did not give (+) &,d; all we could isolate (63 8 

yield) was the unexpected elimination product l&. Better results were obtained when a 2:l 

mixture of zc and Ld 13 
was treated with 2.5 eq. of Ph3P=CH2 in THF at -2O’C overnight. Af- 

ter work-up and medium pressure chromatography we obtained pure cc-methyl-phosphorane AC 14 

(mp 153-155’C, 27%)) a mixture of AC and Ld (9%)) and pure Ld (27%) uncontaminated by AC. 

Being more interested in the R-methyl-phosphorane Ad we tried to equilibrate ,&c to &d (LDA, 

-78’C ; HOAc, -78’C). As this was unsuccessful we reacted recovered 3_d once more with 

Ph3P=CH2. This gave phosphoranes ($:Ad = 19:81) in 47% yield. Eventually, Ad was obtained 

pure after rechromatography and crystallization (CH2C12-i-Pr20, mp. 78-82’C) in 7% overall 

yield, Further elaboration of Lc and l_d to 2c and zd proceeded uneventfully; no epimerization 

occurred in any of these steps and deliberate attempts to epimerize 4_c,zc and 6c to their R- 

methyl counterparts all remained fruitless. Hydrogenation of f$ produced a mixture of 9-b (15%) 

and ga (21%) which was separable on RP-18 (H20-CH3CN, O-108) allowing us to evaluate the 

effect of the conjugated double bond on biological activity. Hydrogenation of gd likewise pro- 

duced a mixture of zc (44%) and sb (16%) but we were unable to separate this. Prolonged 

hydrogenation produced pure ,9_c in 42% yield. Full experimental details and biological activity 

of these compounds will be published elsewhere. 
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