Heterocycle Synthesis

Palladium-Catalyzed Synthesis of *N*-Aryl Pyrrolidines from γ-(*N*-Arylamino) Alkenes: Evidence for Chemoselective Alkene Insertion into Pd–N Bonds**

Joshua E. Ney and John P. Wolfe*

In recent years, palladium(aryl)(amido) complexes have been shown to serve as key intermediates in the synthesis of aniline derivatives.^[1] Although the propensity of these intermediates to undergo C-N bond-forming reductive elimination has been well established,^[1] small molecule (alkene) insertion reactions of these complexes have been largely unexplored and have not been exploited in catalytic processes.^[2] In fact, only a single example of the stoichiometric insertion of an activated alkyne into an isolated $[Pd(Ar)(NR_2)]$ complex has been reported,^[2b] and insertions of alkenes have not been demonstrated. Herein we describe a new, stereoselective, palladium-catalyzed synthesis of pyrrolidines from γ -(Narylamino) alkenes and aryl bromides, and present mechanistic evidence that suggests the transformation proceeds by a chemoselective intramolecular insertion of an unactivated alkene into the Pd-N bond of an intermediate [Pd(Ar)(NRR')] complex.^[3] This reaction allows convergent access to substituted pyrrolidines, which are found in a variety of natural products.^[4] In contrast to most methods available for the synthesis of substituted pyrrolidines,^[5] this reaction effects intramolecular C-N bond formation with concomitant intermolecular formation of a C1'-C bond.^[6]

In preliminary studies we employed γ -aminoalkene substrates with *N*-aryl substituents because of their ease of preparation and handling. After optimization of the reaction conditions we found that the reaction of *N*-phenyl-4-pentenylamine (**1a**) with 2-bromonaphthalene in the presence of NaOtBu and a catalytic amount of [Pd₂(dba)₃]/dppb (1 mol%; dppb = 1,4-bis(diphenylphosphanyl)butane) at 60 °C in toluene afforded the desired *N*-aryl 2-(β -naphthylmethyl)pyrrolidine **2a** and regioisomeric product **3a** in 94 % yield and a 25:1 ratio [Eq. (1)].

As shown in Table 1, the reactions of electron-rich, electron-neutral, and electron-deficient *N*-aryl amine derivatives with a variety of aryl bromide coupling partners proceeded in good yield. A number of functional groups are

 [*] J. E. Ney, Prof. J. P. Wolfe University of Michigan Department of Chemistry Ann Arbor, MI 48109-1055 (USA) Fax: (+1) 734-763-2307 E-mail: jpwolfe@umich.edu

[**] This research was supported by the University of Michigan. J.P.W. thanks The Dreyfus Foundation for a New Faculty Award and Research Corporation for an Innovation Award. J.E.N. thanks the University of Michigan for a Regents Fellowship. Additional unrestricted support was provided by Eli Lilly, 3M, and Amgen.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

Angew. Chem. Int. Ed. 2004, 43, 3605–3608

DOI: 10.1002/anie.200460060

Communications

Table 1: Palladium-catalyzed synthesis of pyrrolidines.^[a]

Entry	Amine	Aryl bromide	Product	2/3	Yield [%]
1	Ph NH 1a	O Br	O → N 2b	16:1	73
2	1a	Me ₂ N	$\overset{Ph}{\underset{Me_2N}{\overset{Ph}{\overset{N}}{\overset{N}{\overset{N}{\overset{N}}{\overset{N}}}}}}}}}$	17:1	81 ^(b)
3	la	Ph(O)C	Ph Ph(O)C 2d	100:1	45
4	PMR NH	Br	PMP N 2e	14:1	67
5	16	Br	Me PMP N 2f	35:1	75
6	ρ-(NC)C ₆ H ₄ NH	<i>t</i> Bu Br	p-(NC)C ₆ H₄ ↓ N 2g	100:1	78
7	1c	Ph(O)C	P-(NC)C ₆ H ₄ N Ph(O)C	>100:1	86
8	PMP 1d Me	<i>t</i> Bu	PMP N Me 2i	10:1	66 ^[c] (d.r. > 20:1)
9	PMP NH Ph	MeO	MeO	10:1	72 ^[c] (d.r. > 20:1)
10	PMP PhNH 1f	Me	Me PhP Ph	8:1	88 ^[c] (d.r. 2:1)
11	PMP NH Ph	MeO Br	MeO	10:1	68 ^[c,d] (d.r.>20:1)

[a] Conditions: amine (1.0 equiv), ArBr (1.1–1.3 equiv), NaOtBu (1.1–1.3 equiv), $[Pd_2(dba)_3]$ (1 mol%), dppb (2 mol%), toluene (0.25 m), 60 °C. [b] This material contained a second, unidentified regioisomer in approximately 3% yield. [c] Reaction conducted at 100 °C; dppe used in place of dppb. [d] This material contained *N*-(PMP)-2-(3-methoxybenzyl)-3-phenylpyrrole in approximately 8% yield. dppe = 1,4-bis(diphenylphosphanyl)ethane, PMP=4-methoxyphenyl.

tolerated, including nitriles, nonenolizable ketones, and acetals. The main side products in these reactions are areness that result from reduction of the aryl bromide^[7] and *N*,*N*-diaryl amines that presumably form through Pd-catalyzed N-arylation of the substrate.^[1] Side products resulting from Heck arylation of the alkene are generally not observed. These results contrast with those of previously described Pd-

catalyzed reactions of γ -(*N*-benzylamino)alkenes with aryl iodides, which have been reported to afford exclusively products resulting from Heck arylation of the alkene.^[8]

In most cases examined the cyclizations proceed with good levels of diastereoselectivity. The 3-substituted alkenyl amine **1g** underwent cyclization with > 20:1 diastereoselectivity to provide the *trans*-2,3-disubstituted product **2l** (Table 1, entry 11),^[9] and reactions of the 1-substituted alkenyl amines **1d** and **1e** gave the *cis*-2,5-disubstituted pyrrolidines **2i** and **2j** with d.r. > 20:1 (Table 1, entries 8–9). In contrast, the C2-substituted amine **1f** reacted with only modest (2:1) *cis* stereoselectivity for the 2,4-disubstituted product **2k** (Table 1, entry 10).

The ratio of the regioisomeric products 2/3 of the cyclization reactions typically ranged from 10:1 to 25:1 for substrates with terminal alkenes, although in some instances selectivities of up to >100:1 were observed.[10] However, reactions of substrates with internal alkenes provided complex mixtures of regioisomeric products. Interestingly, the reaction of 4 with 4bromobiphenyl in the presence of catalytic $[Pd_2(dba)_3]/P(o-tol)_3$ afforded a mixture of four products [Eq. (2)].^[11] The desired 6aryl pyrrolizidine product 6 was formed as the major regioisomer. A substantial amount of the 5-aryl regioisomer 7 was also isolated, along with a small amount of the unsaturated pyrrolizidine 8. The use of dppb or dppe as a ligand led to the formation of increased amounts of 8 relative to the other products.^[11,12]

Although the yield of the desired regioisomer **6** is modest, these results provide important information about the mechanism of the cyclization reaction. This transformation presumably occurs through initial oxidative addition of the aryl bromide to Pd^0 followed by reaction of the resulting complex with the substrate and base to afford **9** (Scheme 1).^[1] A *syn* insertion of the alkene into the Pd–C bond of **9** would provide **10**. However, products **7** and **8** can not derive from **10**; C–C bond-forming alkene-insertion reactions are generally

3606 © 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.angewandte.org

Scheme 1. Proposed mechanism.

not reversible.^[13] Furthermore, if the alkene underwent insertion into the metal–carbon bond to give **10**, the use of ligands that decrease the rate of reductive elimination, such as dppe,^[12] would not provide increased amounts of **8** as is observed. A *syn* β -hydride elimination^[13] of the intermediate **10** would instead afford the arylated imine **11**, which is not detected.^[11]

A more reasonable pathway, which would account for all products formed in the reaction, involves syn insertion of the alkene into the Pd-N bond in 9 to afford 12 (Scheme 1).^[2] Complex 12 could either undergo C-C bond-forming reductive elimination with retention of configuration to afford the desired product $6^{[14]}$ or could undergo reversible β -hydride elimination to give the alkene complex 13.^[13] Reinsertion of the alkene into the Pd-H bond with reversal of regiochemistry would afford 14.^[15] which would yield the regioisomeric side product 7 following reductive elimination. Dissociation of the alkene complex 13 before reinsertion would provide 8. The N-arylated product 5 is presumably formed through C-N bond-forming reductive elimination of 9.^[1] This mechanistic pathway is also consistent with observed ligand effects: ligands that decrease the rate of reductive elimination afford increased amounts of products derived from the proposed intermediate 13.

Examples of the insertion of alkenes into palladiumnitrogen bonds are rare,^[2,16] and only two catalytic reactions that proceed by alkene insertion into a Pd(NRR')X complex (X = Cl,^[16a] OC(O)C₆F₅^[16b]) have been described.^[17-19] The insertion of unactivated alkenes into [Pd(Ar)(NR₂)] complexes has not been reported.

In conclusion, we have developed a new, stereoselective synthesis of pyrrolidines from γ -(*N*-arylamino) alkenes. The transformations described herein are the first examples of catalytic reactions that most likely proceed by the chemoselective intramolecular insertion of an alkene into a [Pd(Ar)(NRR')] intermediate. Furthermore, the reaction of

4 with 4-bromobiphenyl provides the first probe of the chemoselectivity of insertion under catalytic conditions; the most plausible pathway for the conversion of **4** into **7** and **8** involves olefin insertion into a Pd–N bond. Further studies on the scope, limitations, applications, and mechanism of these reactions are currently underway.

Received: March 19, 2004 [Z460060]

(2)

Keywords: alkene insertion · aryl halides · diastereoselectivity · nitrogen heterocycles · palladium

- For reviews on aryl C-N bond-forming reactions that involve Pd(Ar)(NR₂) intermediates, see: a) A. R. Muci, S. L. Buchwald, *Top. Curr. Chem.* 2002, 291, 131-209; b) J. F. Hartwig, *Pure Appl. Chem.* 1999, 71, 1417-1423.
- [2] a) J. M. Boncella, L. A. Villanueva, J. Organomet. Chem. 1994, 465, 297–304; b) L. A. Villanueva, K. A. Abboud, J. M. Boncella, Organometallics 1992, 11, 2963–2965.
- [3] For related studies on the synthesis of tetrahydrofurans, see: J. P. Wolfe, M. A. Rossi, J. Am. Chem. Soc. 2004, 126, 1620–1621.
- [4] a) D. O'Hagan, Nat. Prod. Rep. 2000, 17, 435-446; b) J. R. Lewis, Nat. Prod. Rep. 2001, 18, 95-128.
- [5] a) A. Mitchinson, A. Nadin, J. Chem. Soc. Perkin Trans. 1 2000, 2862–2892; b) M. Pichon, B. Figadere, *Tetrahedron: Asymmetry* 1996, 7, 927–964.
- [6] For pyrrolidine syntheses that involve intramolecular C-N bond formation and intermolecular C-C bond formation, see: a) Y. Tamaru, M. Kimura, *Synlett* **1997**, 749-757; b) Y. Tamaru, M. Hojo, Z.-i. Yoshida, *J. Org. Chem.* **1988**, 53, 5731-5741; c) H. Yorimitsu, K. Wakabayashi, H. Shinokubo, K. Oshima, *Bull. Chem. Soc. Jpn.* **2001**, *74*, 1963-1970; d) R. C. Larock, H. Yang, S. M. Weinreb, R. J. Herr, *J. Org. Chem.* **1994**, 59, 4172-4178.
- [7] Imine side products presumably formed through β-hydride elimination of an intermediate [Pd(Ar)(NR₂)] complex are occasionally observed; see reference [1].
- [8] G. Fournet, G. Balme, J. Gore, Tetrahedron 1990, 46, 7763-7774.
- [9] Diastereomeric ratios were determined by ¹H NMR spectroscopy and/or GC analysis of the crude reaction mixture. The stereochemistry of the products was assigned on the basis of ¹H NMR NOE experiments and/or by analogy with related compounds of known configuration.
- [10] The reaction of 2-bromonaphthalene with N-(4-methoxyphenyl)-3-pentenylamine under the standard reaction conditions afforded only the product of N-arylation; no cyclized products were observed. This result suggests that the regioisomeric products are not formed through initial isomerization of the alkene substrate followed by 5-endocyclization.
- [11] ¹H NMR spectroscopic analysis of the reaction mixture showed that the products 5, 6, 7, and 8 were formed in a ratio of 6:7:2:1. The use of dppe as a ligand led to a 2:1:2:4 ratio of 5/6/7/8, and the use of dppb as a ligand afforded a 2:2:2:1 mixture of 5/6/7/8.
- [12] The ligands dppe and dppb have been shown to decrease the rate of C-C and C-N bond-forming reductive elimination and increase the formation of side products by competing β-hydride elimination; see: a) A. Gillie, J. K. Stille, J. Am. Chem. Soc. 1980, 102, 4933-4941; b) M. S. Driver, J. F. Hartwig, J. Am. Chem. Soc. 1997, 119, 8232-8245; c) J. P. Wolfe, S. L. Buchwald, J. Org. Chem. 2000, 65, 1144-1157.
- [13] I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009– 3066.
- [14] D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1979, 101, 4981-4991.

www.angewandte.org

Communications

- [15] H. Qian, R. A. Widenhoefer, J. Am. Chem. Soc. 2003, 125, 2056– 2057.
- [16] a) J. Helaja, R. Göttlich, *Chem. Commun.* 2002, 720-721; b) H. Tsutsui, K. Narasaka, *Chem. Lett.* 1999, 45-46
- [17] The treatment of *trans*-[PdH(NHPh)(P(C₆H₁₁)₃)₂] with ethylene or acrylonitrile led to reductive elimination of aniline rather than alkene insertion: A. L. Seligson, R. L. Cowan, W. C. Trogler, *Inorg. Chem.* **1991**, *30*, 3371–3381.
- [18] For examples of insertion reactions of activated alkenes into platinum-nitrogen bonds, see: a) R. L. Cowan, W. C. Trogler, *Organometallics* **1987**, *6*, 2451–2453; b) R. L. Cowan, W. C. Trogler, J. Am. Chem. Soc. **1989**, *111*, 4750–4761.
- [19] For an example of a catalytic reaction that proceeds through the insertion of norbornene into an iridium–nitrogen bond, see:
 A. L. Casalnuovo, J. C. Calabrese, D. Milstein, *J. Am. Chem. Soc.* 1988, *110*, 6738–6744.