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Conjugated oligomers[1] such as the oligo(phenyleneviny-
lene)s (OPV)s have been extensively investigated for a
number of years because they exhibit properties of interest
to materials science in regard to application in nonlinear
optics (NLO) and as photoconductors and electrolumino-
phores. Typical of such a class of compounds is the con-
vergence of absorption and fluorescence with the increasing
number n of repeating units.[2] The determination of the
effective conjugation length (ECL)[1q] is important for the
characterization of the oligomers, as well as for their function
as model compounds for the corresponding polymers. A
simple algorithm, based upon exponential functions as natural
growth functions, has been demonstrated to be effective for
the determination of convergence and ECL in more than
20 series of conjugated compounds.[3]

We recently demonstrated that with a terminal push ± pull
substitution of conjugated oligomers the expected monotonic
bathochromic shifts of absorption and fluorescence with
increasing number n of repeating units need not necessarily
be present.[4] Since such series are very important, especially
for NLO materials, we have investigated the effect more
thoroughly. OPV systems were prepared which have solubi-
lizing bis(2-hexyloctyl)amino residues as the donor (D).
Different acceptors (A) were introduced at the other end of
the OPV chain (Scheme 1). The involvement of zwitterionic
resonance structures should have a decisive influence upon
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Scheme 1. Donor ± acceptor substituted OPV systems

the electronic transitions; the solely donor substituted series
(A�H) serves as a reference series.

The preparation of monodisperse, configurationally pure
oligomers was carried out by a convergent-synthesis strategy
outlined in Scheme 2. 4-Bis(2-hexyloctyl)aminobenzaldehyde
(1) was converted into the monostilbenes 3a ± c with the
phosphonates 2a ± c, and also used for the construction of the
∫styrylogous∫ aldehydes 3d ± 6d, the latter was by a repetitive
Wittig ±Horner reaction with the phosphonate 2d and a

Scheme 2. Preparation of the OPV series 3 ± 6. a) NaH, DME;
b) 1) KOC(CH3)3, THF; 2) HCl.

simple protecting-group technique.[5] Each new aldehyde
stage 3d ± 5d was then converted into the target compounds
4a ± c, 5a ± c, and 6a ± c with 2a ± c.

Figure 1 shows the long-wavelength maxima of the donor-
substituted series 3a ± 6a and the donor ± acceptor substituted
series 3b ± 6b, 3c ± 6c, and 3d ± 6d. With each additional n the
terminal acceptors lead to a marked bathochromic shift of the
push ± pull systems relative to the purely donor-substituted

Figure 1. Long-wavelength absorption maxima of the OPV series 3a ± 6a
(�), 3b ± 6b (�), 3c ± 6c (�), and 3d ± 6d (�) in CHCl3 and fitting of the
Equation (1).[7] ���� common convergence limit.

series 3a ± 6a. Most pronounced is the effect of the nitro
group, the strongest acceptor. In contrast to the OPV series
previously investigated,[2, 6] with terminal push ± pull substitu-
ents a charge transfer occurs during the electron transition.
The monotonic reduction in excitation energies (bathochro-
mic effect) with increasing n is in line with expectations in the
two series 3a ± 6a and 3b ± 6b ; in the series 3d ± 6d ��max is
surprisingly almost independent of n, and in the series 3c ± 6c
the effect is even reversed: with 3c ± 6c an increase in
conjugation leads to a pronounced hypsochromic shift. With
increasing n all four series converge towards the convergence
limit E� of the donor-substituted series 3a ± 6a.

How may the different behavior of the donor ± acceptor
substituted series be explained? It may be concluded from the
common convergence limit that with longer OPV chains the
acceptor group plays no role in the absorption. Therefore, we
have split the energy values of the electron transitions EDA(n)
into two components. The first term ED(n) corresponds to the
normal behavior of the purely donor-substituted series 3a ±
6a, that is, to the expected bathochromic shift with increase in
conjugation. The second term�EDA(n) is a correction term for
the superimposition of the intramolecular charge transfer
(ICT) in the push ± pull substituted series. Both terms can be
described by exponential functions[2] [Eq. (1)].

EDA(n) � ED(n)��EDA(n) � E�� [ED(1)�E�] e�a(n�1)

� [ED(1)�EDA(1)]e��a(n�1)
(1)

Table 1 gives an overview of the measured absorption
maxima and the parameters from the fitting for convergence
with increasing n. The charge-transfer correction term
�EDA(n) is always greatest at n� 1. With increasing separa-
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tion of donor and acceptor it falls exponentially towards zero,
for example, from 5603 cm�1 for 3c, through 2493 and 930 to
326 cm�1 for 6c in the NO2 substituted series. This reduction
cannot be offset by the opposing effect which is a result of the
extension of conjugation and is represented by ED(n). The
nitro-substituted series consequently shows a hypsochromic
shift for increasing n. In contrast the cyano-substituted series
exhibits significantly smaller correction terms �EDA(n), which
moreover decrease more slowly with increasing n, from
2557 cm�1 at n� 1 to 218 cm�1 at n� 4. In this case the
bathochromic effect on extending conjugation can overcom-
pensate the decreasing charge-transfer term and in the
summation the expected bathochromic shift is observed. In
the series 3d ± 6d the conjugation effect and the charge-
transfer effect offset each other almost completely so that ��max

is almost independent of n.
How may this theory, on the basis of empirical fit functions,

be supported quantum mechanically? We have calculated the
frontier orbitals of 3a ± c, 4a ± c, 5a ± c, and 6a ± c by AM1 and
INDO/S methods.[8, 9] . A selection of these is reproduced in
Figure 2. The long-wavelength electron transitions of the
OPV systems are essentially HOMO�LUMO transitions for
n� 1. The HOMO�LUMO energy difference decreases for

Figure 2. Frontier orbitals of compounds 3b and 3c, as well as 6b and 6c
calculated by the INDO/S method. The arrows illustrate the shift of the
electron densities during the HOMO�LUMO transition.

n� 1 (and also for each higher n) in the sequence a� b� c.
Since the exchange integral for the electron correlation also
decreases in this sequence because of the decreasing tran-
sition density, a bathochromic shift in the absorption for every
n in the change from A�H, through A�CN, to A�NO2

results. Within the series a, b, and c the HOMO�LUMO
energy difference decreases with increasing n. However, the
electron correlation leads then to smaller Coulomb integrals
for the repulsion with increasing size of the chromophore, and
therefore, to an opposing tendency. Thus, in principle, with
increasing n in the oligomer series either a bathochromic or a
hypsochromic shift of the absorption can occur.

With increasing n the fraction of HOMO�LUMO tran-
sitions in the long-wavelength absorption falls drastically;
above all the electron transitions NHOMO�LUMO, HO-
MO�NLUMO, and NHOMO�NLUMO intermix (where
N� next-to-). However, as Figure 2 shows, the HOMO�LU-
MO fraction is essentially determinative for charge transfer. If
the ICT correction term �EDA(n) is now plotted against the
involvement of the HOMO�LUMO transition calculated by
the INDO/S method a simple correlation is recognized: the
greater �EDA(n) for the charge transfer is, the greater the
HOMO�LUMO contribution to the long-wavelength elec-
tron transfer is (Figure 3). Thus semi-empirical quantum
mechanics reproduces correctly the observed trend: with
increasing n the HOMO�LUMO contribution decreases,
and with it the �EDA; this effect dominates in the nitro-
substituted series 3c ± 6c and hence leads to the hypsochromic
shift–in contrast in the cyano-substituted series 3b ± 6b the
term ED(n), which expresses the extension of the conjugation,
dominates such that a bathochromic shift occurs.

Since the nitro-substituted series clearly plays a special role
we carried out electro-optical absorption measurements
(EOAM) on the compounds 3c ± 5c ; a number of the results
of these measurements are summarized in Table 2. Assuming
that polarizabilities may be neglected with respect to dipole
moments, and �(S0), �(S1), and the transition moment �01 are
parallel, EOAM[10, 11] gives �0 as well as the terms �0(�1� �0)
and (�1� �0)2, which are obtained as different regression
coefficients from the first and second derivation of �(��)
according to the wavenumber ��. Both statistically as well as by
the EOAM model the first term �0(�1� �0) leads to the more
reliable values.

As expected, the intensity I, the oscillator strength f, and the
transition moment �01 increase with increasing n. Surprisingly

Table 1. Long-wave absorption maxima (��max [cm�1], �max [cm2mmol�1]) of the OPV series 3a ± 6a, 3b ± 6b, 3c ± 6c, and 3d ± 6d in CHCl3 and parameters
from the fitting of Equation (1).[a]

Series a Series b Series c Series d
Compound n ��max �max ��max �max ��max �max ��max �max

3 1 27248 19483 24691 21711 21645 28789 23641 20462
4 2 24814 29711 23529 48107 22321 35425 23256 46822
5 3 23866 68944 23364 63341 22936 58760 23256 67320
6 4 23474 ± 23256 86164 23148 95860 23256 84882

Parameters
E� [cm�1] 23231� 12 23231� 12 23231� 12 23231� 12

ED(1)�EDA(1) [cm�1] ± 2557 5603 3607
a 0.93� 0.01 0.93� 0.01 0.93� 0.01 0.93� 0.01
�a ± 0.76� 0.04 0.86� 0.03 0.87� 0.02

[a] Curve fitting was carried out with the program Origin5.0.
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the experimental dipole moment �0 of the ground state S0

decreases with the increasing distance between donor and
acceptor. The dipole moments �1 of the electronically excited
state S1 are significantly higher. Clearly, a simple relationship
with the benzenoid and quinoid (zwitterionic) resonance
structures formulated in Scheme 1 does not exist. The
calculation of resonance parameters known in the literature
[12, 13] with the values for �0(S0), �1S1, and �01 given in Table 2
shows that for the compounds 3c ± 5c the zwitterionic
structure–independent of n[14]–contributes modestly to the
ground state at about 10%. The charge transfer on electronic
excitation indeed does increase the dipole moment consid-
erably (��� 92.3(�10.1)� 10�30 Cm), it has, however, an
increasingly smaller influence on the long-wavelength ab-
sorption with increasing n since with increasing distance
between donor D and acceptor A at almost constant ��,
increasingly less negative charge is transferred to the acceptor
part of the molecules. For the conjugated systems with large
D±A distances described here the frequently used model of a
dominating electrically neutral and a less involved terminal
zwitterionic resonance structure is usable for the ground state
S0. The electronic excited state S1 does have a significantly
higher dipole moment, but the participation of resonance
structures never reverses. The simple VB model is not
consistent with this.[15]
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Figure 3. Charge-transfer terms�EDA in relationship to the HOMO�LUMO
fraction calculated by the INDO/S method for the long-wavelength electron
transitions in the OPV series 3b ± 6b (A�CN) and 3c ± 6c (A�NO2).


