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Abstract: A highly chemo- and enantioselective PTC alkylation
has been developed that allows rapid access to orthogonally protect-
ed (S,S)-isodityrosine. Utility of this material in the construction of
isodityrosine-containing cyclic peptides is demonstrated by synthe-
sis of the natural product renieramide.
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Isodityrosine (1) is a naturally-occurring bis-amino acid
that was originally identified as a cross-linking element in
plant cell wall glycoprotein.1 This structural component
has since been found in a range of natural products,2 in-
cluding a series of macrocyclic tripeptides3–6 of which
renieramide (2) is the most recently reported example
(Figure 1).7 These natural products have been reported
to exhibit a diverse range of biological activities and
hence have attracted significant attention from synthetic
chemists.

Figure 1

We have recently reported an enantioselective approach
to isodityrosine (1), which employed a chiral phase-trans-
fer catalyst to promote a double asymmetric alkylation in-
volving reaction of dibromide 3a with two molecules of
glycine imine 4a.8 Although this approach provided rapid
access to isodityrosine (1), it is not applicable to the syn-
thesis of tripeptides such as 2 because it does not allow
straightforward differentiation of the the two amino acid
functions.

One possible solution to this problem would be to effect
two separate asymmetric alkylations involving a substrate
such as 3. If a different glycine imine ester (e.g. 4a and 4b,
Figure 2) was employed in each alkylation it would allow

access to orthogonally protected isodityrosine, and hence
the synthesis of targets such as renieramide (2) should
then be possible.

Preliminary experiments involving the alkylation of
glycine imines 4 with dibromide 3a suggested that the two
bromomethyl groups reacted at similar rates and so we
considered the possibility of using the alternative sub-
strate 3b. This material was prepared in four steps from
commercially available 4-bromobenzaldehyde 6 via the
sequence outlined in Scheme 1. Thus, Ullmann coupling
with phenol 5, followed by reduction of the resulting alde-
hyde and conversion into the corresponding chloride,
gave the intermediate 7 in good overall yield. Treatment
of this compound with NBS in the presence of AIBN then
led to selective bromination of the arylmethyl group,
providing target structure 3b.

Scheme 1 Reagents and conditions: (i) CuO, K2CO3, pyridine
reflux; (ii) NaBH4, MeOH, r.t.; (iii) concd HCl, EtOAc, r.t. (78%
overall); (iv) NBS, AIBN, CCl4, hn, reflux (53%).

In order to utilise bromide 3b in the synthesis of renier-
amide (2), we needed to develop a highly regio- and enan-
tioselective alkylation involving reaction of the
bromomethyl moiety with glycine imine 4b. Based on
previous studies within the group we considered that this
might be possible using phase-transfer catalyst 9
(Figure 3).9

This proved to be the case and, after some experimenta-
tion, we were able to establish conditions that led to the
desired transformation (Scheme 2).10 This process
appears to be highly chemoselective as no alkylation in-
volving the chloromethyl group could be detected even
when larger excesses of imine 4b were employed. We
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could also find no evidence of halogen exchange involv-
ing this function11 even though bromide ion is generated
in stoichiometric amounts during the reaction. These ob-
servations provide a powerful illustration of the chemo-
selectivity that can be achieved using phase-transfer
conditions.

Figure 3

To complete the construction of an orthogonally protected
dityrosine a second asymmetric alkylation is required. In
order to achieve this, the imine function in intermediate 10
was first converted into the corresponding tert-butyl car-
bamate via hydrolysis and treatment with (Boc)2O.
Finklestein reaction then provided iodide 11, which was
expected to be a suitable partner for reaction with glycine
imine 4a (Scheme 3). In this case we chose to employ
phase-transfer catalyst 8 in an effort to promote the asym-
metric alkylation as this catalyst has proved to be highly
effective for reactions involving imine 4a.12,13 The alkyla-
tion proceeded as anticipated and, after hydrolysis of the
imine function, the orthogonally protected isodityrosine
derivative 1214 could be isolated in good yield.15 At this
stage we were unable to accurately determine the stereo-
chemical purity of 12, however 1H NMR analysis of later
compounds indicated that this intermediate must have
been formed with high diastereoselectivity.

Scheme 2

In order to demonstrate the utility of intermediate 12 in the
synthesis of isodityrosine tripeptides we next investigated
conversion into renieramide (2). To this end, the amino
function in compound 12 was first coupled with (Z)-L-
Leu-OSuc. This gave the corresponding dipeptide as a
single diastereoisomer in good yield. Simultaneous re-
moval of the benzyloxycarbonyl and benzhydryl func-
tions via hydrogenolysis then provided the
macrocyclisation precursor. It was found that cyclisation
could be achieved in good yield by slow addition of this
precursor to EDCI/HOBt at 60 °C. Using this approach,

the macrocycle 13 could be obtained in 55% overall yield
(from compound 12). Deprotection using TfOH/TFA,16

followed by purification via ion-exchange chromatogra-
phy then provided synthetic renieramide (2) which exhib-
ited optical rotation and 1H/13C NMR in reasonable
agreement with that reported for the natural product.6,17,18

Scheme 3 Reagents and conditions: (i) 15% aq citric acid, THF, r.t.;
(ii) Boc2O, NaHCO3, dioxane, r.t.; (iii) NaI, acetone, r.t. (45% over-
all); (iv) 4a (1.2 equiv), 8 (10 mol%), 9 M aq KOH, PhMe, r.t. (83%
after imine hydrolysis); (v) (Z)-L-Leu-OSuc, CH2Cl2, r.t. (85%); (vi)
H2 (1 atm), Pd/C, MeOH, r.t.; (vii) slow addition of substrate to EDCI,
HOBt, NMM, PhMe, DMF, 60 °C (65% overall); (viii) TfOH, TFA,
PhSMe, –5 °C, Dowex 50WX8-200 ion-exchange chromatography
(54%).

In conclusion, we have established that it is possible to
employ two sequential asymmetric phase-transfer alkyla-
tions for the construction of orthogonally protected (S,S)-
isodityrosine. The utility of this material in the construc-
tion of isodityrosine-containing cyclic peptides has been
established by the synthesis of renieramide.
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