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ABSTRACT: The organocatalytic enantio- and diastereose-
lective cycloetherification of in situ generated cyanohydrins
through the concomitant construction of three chiral carbon
centers is reported. This protocol facilitates the concise
synthesis of optically active tetrahydropyran derivatives, which
are ubiquitous scaffolds found in various bioactive compounds,
through the simultaneous construction of multiple bonds and
stereogenic centers, including tetrasubstituted chiral carbons.
The resulting products also contain multiple synthetically
important functional groups, which expand their possible
usefulness as chiral building blocks.

The ability to rapidly increase molecular complexity is of
great significance in synthetic chemistry because it provides

concise access to functional molecules including bioactive
compounds. In particular, optically active cyclic molecules
containing multiple chiral carbons provide three-dimensional
scaffolds that promote important functions within organisms.1

Hence, to explore unexploited molecular functions including
pharmaceutical activities, it is necessary to pursue asymmetric
catalysis that facilitates the construction of such architectures in a
single operation from achiral substrates.
In the context of accessing chiral ring structures, the

cyclizations of achiral molecules that possess enantiotopic
functional groups through successive bond formation2 and
desymmetrization3 enables the concomitant generation of
stereochemical complexity. In this study, we present an
organocatalytic enantio- and diastereoselective method for the
cycloetherification of symmetrical 1,5-diketone-bearing enones
that involves the in situ generation of intermediary cyanohydrins
(Scheme 1). This transformation simultaneously constructs two
bonds and three stereogenic centers with control of relative and
absolute stereochemistry while forming a tetrahydropyran
(THP) ring,4 which is a ubiquitous scaffold found in a range of
bioactive natural products and pharmaceuticals.5 In addition, the
resulting product contains three chiral carbons, twoofwhichbear
carbonyl-group-containing substituents, with the other bearing a
cyano group;6 these substituents are useful for further
derivatization, thereby increasing synthetic utility.
Following our recent studies on asymmetric cycloetherifica-

tions through the dynamic kinetic resolution of reversibly
generated chiral cyanohydrins,7 we began our investigations
using (E)-5-(2-oxo-2-phenylethyl)-1,7-diphenylhept-2-ene-1,7-
dione (1a) and acetone cyanohydrin (2) with 10 mol % of the

bifunctional organocatalysts 4 (Figure 1)8 in CH2Cl2 at 25 °C
(Table 1, entries 1−10). Preliminary investigations revealed that
the addition of the cyanating reagent 2 in two parts resulted in
better yields and enantioselectivities (see the Supporting
Information for details), and this protocol was employed in all
reactions. Bifunctional piperidyl-group-containing organocata-
lysts 4c and 4d gave better diastereoselectivities than the
dimethylamino-group-containing 4a and 4b (Table 1, entries 1−
4). In addition, analogous catalysts 4e and 4f (Table 1, entries 5
and 6), and additional catalysts 4g−4j bearing 4-methylpiperidyl
groups (Table 1, entries 7−10) were also investigated; among
them, catalysts 4e, 4f, 4i, and 4j, bearing phenyl groups on the
thiourea or ureamoieties, gave higher enantioselectivities (Table
1, entries 5, 6, 9, and 10). Furthermore, the urea-based catalyst
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Scheme 1. Organocatalytic Asymmetric Cycloetherification
of Cyanohydrins Generated in Situ from 1,5-Diketones
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was more reactive than the thiourea-based catalyst within each
category (4a vs 4b; 4c vs 4d; 4e vs 4f; 4g vs 4h; 4i vs 4j). These
investigations identified 4j as the most efficient catalyst for this
transformation. Alternative cyanating reagents were also
investigated (Table 1, entries 11 and 12). Trimethylsilyl cyanide
in the presence of 2-propanol afforded good stereoselectivity but
a lower yield (Table 1, entry 11); the use of trimethylsilyl cyanide
alone provided the product in even better enantioselectivity, but
in much lower yield (Table 1, entry 12).
Various solvents were next investigated using 4j and 2 as

substrates (Table 1, entries 13−24). The use of CHCl3 resulted
in high diastereoselectivity and good yield (Table 1, entry 13);
however, hydrocarbon solvents resulted in lower stereo-
selectivities (Table 1, entries 14−17), and polar solvents resulted
in lower reactivities and stereoselectivities (Table 1, entries 18−
24). Molecular sieves (MS), as additives, were also investigated
(Table 1, entries 25−28). Among them, MS 5A andMS 13X led
to improved stereoselectivities with only slight losses in yield
(Table 1, entries 27 and 28). These additives might play roles as
bases that remove detrimental acids since similar reaction
outcomeswereobtainedusingCHCl3 passed through an alumina
column (Table 1, entry 29).
With the established conditions in hand, we next investigated

substrates bearing other substituents on their enone moieties
(Table 2). Electron-donating groups resulted in higher stereo-
selectivities (Table 2, entries 2 and 4), while an electron-
withdrawing group resulted in a lower stereoselectivity (Table 2,
entry 3). In addition, although the4-bromophenyl group resulted
in a lower yield andmoderate stereoselectivity (Table 2, entry 5),
the 2-naphthyl group provided results comparable to those of the
reaction that afforded 3a (Table 2, entry 6). An aliphatic
substituent was also tolerated in this transformation, providing
3gwith good stereoselectivity (Table 2, entry 7). Furthermore, to
our delight, an α,β-unsaturated ester, which is useful for further
synthetic transformations due to its higher oxidation state,9 gave
the highest enantioselectivity, with 3h formed in high yield and
good diastereoselectivity (Table 2, entry 8). Moreover, a
thioester, which is another synthetically important functional
group,10 was also tolerated in this reaction; 3i was obtained in
high stereoselectivity (Table 2, entry 9). The absolute
configurations of the two main diastereomers of 3e were
determined by X-ray crystallography (see the Supporting
Information for details), and the configurations of all other
products 3 were assigned on the basis of these structures.
We further explored the substrate scope usingα,β-unsaturated

esters (Scheme2). Electron-rich substrate1jwas less reactive (25

°C, 24 h: 15%, >20:1 dr, 91% ee); this reaction was performed at
35 °C for 48 h to afford a slightly higher yield than that at 25 °C
for 24 h, but with lower diastereoselectivity and high
enantioselectivity. However, electron-deficient substrates 1k
and 1l were highly reactive and afforded good stereoselectivities
that are comparable to those of the reaction involving 1h.
Heterocyclic substrate 1m required modified conditions to
afford the corresponding product 3m in high yield, but the
enantioselectivitywas high irrespective of the reaction conditions
(25 °C, 24 h: 25%, 13:1 dr, 91% ee). Substrates 1n and 1o bearing
4-methylphenyl and 3,5-dimethylphenyl groups, respectively,
also affordedTHPs 3n and 3owith high enantioselectivities at 35
°C after 48 h (25 °C, 24 h: 3n, 20%, >20:1 dr, 93% ee; 3o, 35%,
>20:1 dr, 94% ee). In addition, aliphatic substrate 1p also gave

Figure 1. Bifunctional organocatalysts.

Table 1. Optimization of Conditionsa

entry catalyst solvent additive yield (%)b drc ee (%)

1 4a CH2Cl2 48 1.5:1 71
2 4b CH2Cl2 67 3.0:1 35
3 4c CH2Cl2 73 4.6:1 69
4 4d CH2Cl2 93 14:1 56
5 4e CH2Cl2 45 17:1 89
6 4f CH2Cl2 90 16:1 81
7 4g CH2Cl2 trace
8 4h CH2Cl2 90 11:1 52
9 4i CH2Cl2 24 8.3:1 87
10 4j CH2Cl2 77 11:1 83
11d 4j CH2Cl2 44 >20:1 82
12e 4j CH2Cl2 5 >20:1 88
13 4j CHCl3 72 19:1 83
14 4j benzene 59 14:1 73
15 4j toluene 64 9.6:1 71
16 4j c-hexane 67 7.6:1 71
17 4j n-hexane 71 6.8:1 66
18 4j Et2O 14 6.4:1 77
19 4j THF 11 19:1 71
20 4j CPMEf 17 19:1 76
21 4j EtOAc 9 20:1 70
22 4j acetone 20 15:1 73
23 4j CH3CN 31 5.8:1 76
24 4j EtOH <5
25 4j CHCl3 MS 3Ag 71 17:1 86
26 4j CHCl3 MS 4Ag 64 13:1 85
27 4j CHCl3 MS 5Ag 68 >20:1 85
28 4j CHCl3 MS 13Xg 64 >20:1 85
29 4j CHCl3

h 63 >20:1 84
aReactions were run using 1a (0.15 mmol), 2 (0.30 mmol), and the
catalyst (0.015 mmol) in the solvent (0.30 mL) with 2 added in two
parts. bYield of the major diastereomer. cRatio of the two major
diastereomers among the four diastereomers detected in total.
dReaction was run using trimethylsilyl cyanide (0.30 mmol) with 2-
propanol (0.30 mmol) instead of 2. eReaction was run using
trimethylsilyl cyanide (0.30 mmol) instead of 2. fCPME = cyclopentyl
methyl ether. gMolecular sieves (60 mg) were used. hCHCl3 was used
after passing it through an alumina column.
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optically active THP 3p; the use of 4f as the catalyst resulted in a
higher enantioselectivity (84% ee) than 4j (11%, >20:1 dr, 81%
ee), although the yields were low in each case. Furthermore, THP
3q, containing two tetrasubstituted stereogenic centers, was
synthesized with high enantio- and diastereoselectivity, albeit in
modest yield even at 35 °Cover 48 h (25 °C, 24 h: 12%, >20:1 dr,
92% ee).
The reaction of methyl ester 1r was also examined under the

optimized conditions (Scheme 3). In this case, only a trace
amount of the THP product 3r was obtained, with the
corresponding cyanohydrin 1r′ isolated instead; 1r′ was much
less optically pure than the cyclized products3 listed in Scheme2.
These results indicate that the nucleophilic 1,2-addition step that
forms the cyanohydrin does not determine the enantioselectivity
associated with the formation of 3; rather it arises in a
synchronized manner through desymmetrization involving the
asymmetric oxy-Michael addition of the in situ generated
cyanohydrin, one stereoisomer of which is selectively recognized
and activated throughmultipoint hydrogen bonding interactions
involving the bifunctional organocatalyst.11,12

In summary, we demonstrated the organocatalytic enantio-
and diastereoselective cycloetherification of in situ generated
cyanohydrins that involves the concomitant construction of
three chiral carbon centers. This transformation provides a
concise synthetic route to optically active THP derivatives
accompanied by the simultaneous construction of multiple
bonds and stereogenic centers, including tetrasubstituted chiral
carbon centers. The resulting products also contain multiple
synthetically important functional groups in different oxidation
states (ketone, ester, and cyano groups); hence, this synthesis
method facilitates the construction of complex heterocyclic
architectures. Further studies that expand the range of optically
active heterocycles accessible using this methodology, including
those bearing other substitution patterns or scaffolds, are
ongoing in our laboratory and will be reported in due course.
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Table 2. Investigating the Michael Acceptor Substituentsa

entry R1 (3) yield (%)b drc ee (%)

1 Ph (3a) 68 >20:1 85
2 4-MeOC6H4 (3b) 57 20:1 90
3 4-CF3C6H4 (3c) 68 7.3:1 70
4 4-MeC6H4 (3d) 49 >20:1 89
5 4-BrC6H4 (3e) 38 12:1 79
6 2-naphthyl (3f) 73 20:1 82
7 Me (3g) 69 20:1 89
8 PhO (3h) 71 20:1 92
9 2,6-Me2C6H3S (3i) 61 >20:1 88

aReactions were run using 1 (0.15 mmol), 2 (0.30 mmol), and 4j
(0.015 mmol), MS 5A (60 mg) in CHCl3 (0.30 mL) with 2 added in
two parts. bYield of the major diastereomer. cRatio of the two major
diastereomers among the four diastereomers detected in total.

Scheme 2. Substrate Scopea

aYields are for the major diastereomer and represent material isolated
after silica gel column chromatography. Diastereomeric ratios relate to
the two major diastereomers among the four diastereomers detected
in total. bReactions were run using 1 (0.15 mmol), 2 (0.30 mmol),
and 4j (0.015 mmol), MS 5A (60 mg) in CHCl3 (0.30 mL) with 2
added in two parts. cReactions were run using 1 (0.10 mmol), 2 (0.20
mmol), and 4j (0.010 mmol), MS 5A (40 mg) in CHCl3 (0.20 mL)
with 2 added in two parts. dReactions were run at 25 °C for 24 h.
eReactions were run at 35 °C for 48 h. fReaction was run using 4f
instead of 4j.

Scheme 3. Reaction of Methyl Ester 1r
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