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Inhibition of IKK-2 by 2-[(aminocarbonyl)amino]-
5-acetylenyl-3-thiophenecarboxamides
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Abstract—A series of 21 novel 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides were synthesized and evaluated for
the inhibition of IKK-2. In spite of their often modest activity on the enzyme, six selected analogs showed significant inhibition of
the production of inflammatory cytokine IL-8 in IL-1b stimulated rheumatoid arthritis-derived synovial fibroblasts, demonstrating
their potential usefulness as NF-jB regulators.
� 2005 Elsevier Ltd. All rights reserved.
Nuclear factor kappa B (NF-jB) is a transcriptional fac-
tor involved in inducing autoimmune and inflammatory
responses1 as well as in regulating apoptosis.2 The IjB
inhibitory proteins sequester NF-jB in the cytoplasm
by masking its Rel homology domain. Cell activation
by proinflammatory cytokines, such as interleukin-1
(IL-1) and tumor necrosis factor alpha (TNF-a), triggers
the activation of IKK-2 that phosphorylates the IjB
proteins, resulting in their degradation by ubiquitin-
mediated proteolysis and thus in the release of NF-jB
in the cytoplasm.3 As a result, control of NF-jB release,
through IKK-2 inhibition, could provide an effective
treatment of inflammatory diseases.

Even though a variety of structurally distinct molecules
inhibit IKK-2,4–8 small thiophenecarboxamide based
inhibitors have attracted considerable interest in the past
few years.9–15 One of our early hits, the 4-amino-2,3 0-
bithiophene-5-carboxamide (SC-514), is a poor inhibitor
of IKK-2 with an IC50 of 11.2 lM, but displays a very
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attractive selectivity profile with little or no crossover
to other kinases.16,17 Since the modification of SC-514,
involving the replacement of the 3-aminothiophene-2-
carboxamide with a 2-[(aminocarbonyl)amino]-thio-
phene-3-carboxamide has been shown by others to
dramatically improve the potency on IKK-2,17 we incor-
porated this modification in our design along with the
introduction of an acetylene linker between the two
thiophene rings affording 2-[(aminocarbonyl)amino]-
3-thiophenecarboxamide 1a, a novel lead with a
0.420 lM IC50 on IKK-2 (Fig. 1).

The SAR around new template 1a was investigated by
varying the alkyne at position 5 of the 2-[(aminocar-
bonyl)amino]-thiophene-3-carboxamide. The resulting
2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarb-
oxamides18 were evaluated in vitro on recombinant
human IKK-219,20 and showed moderate inhibition
Figure 1.
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(IC50 (IKK-2) P 0.129 lM). Selected inhibitors with an
IC50 (IKK-2) < 0.5 lM were evaluated in a cellular
based assay using IL-1b stimulated rheumatoid arthri-
tis-derived synovial fibroblasts (RASF),16 and showed
significant inhibition of the production of inflammatory
cytokine IL-8, demonstrating the utility of this template
for NF-jB regulation.

The 2-[(aminocarbonyl)amino]-5-bromo-3-thiophenecarb-
oxamide (2)15 proved to be a poor substrate for
Sonogashira couplings when using PdCl2(PhCN)2 or
PdCl2 in combination with 2-(di-t-butylphosphino)-
biphenyl or PPh3 as the catalytic system, leading
almost exclusively to the 2-[(aminocarbonyl)amino]-3-
thiophenecarboxamide and bisacetylenes. After screen-
ing a variety of catalysts, we found that, in most
instances, these side reactions could be minimized when
using the air stable premade or in situ generated
dichloropalladium bis(di-isopropylphosphino)ferrocene
(PdCl2[(i-Pr2PC5H4)2Fe]) as the catalyst, in the presence
of CuI and i-Pr2NEt in a 1/1 mixture of EtOH and
dimethylacetamide (DMA) at 65–75 �C. Using these stan-
dard conditions (STD), the 2-[(aminocarbonyl)amino]-
5-acetylenyl-3-thiophenecarboxamides were obtained
with yields up to 80%.

As illustrated in Scheme 1, functionalized analogs of 1a
were synthesized using the 4-bromo-2-thiophencarbox-
aldehyde (3) as the key intermediate. In contrast to 1a,
Scheme 1. Reagents and conditions: (a) NaBH4; (b) TBDMSCl, imidazole, D

H2O), MeOH, rt, 2 h; (e) 2, PdCl2 [(i-Pr2PC5H4)2Fe], CuI, i-Pr2NEt, EtOH/

Pr2NH, benzene, 97%; (g) RMgBr, THF; (h) TBAF, THF, rt, 32–58%; (i) (
obtained in poor yield (6%) from the Sonogashira cou-
pling of 2-[(aminocarbonyl)amino]-5-bromo-3-thiophene-
carboxamide (2) with 3-ethynylthiophene, the
coupling of 2 with the 5-tert-butyldimethylsilyloxy-
methyl-3-ethynylthiophenes 5, 8, and 9 and with 4-ethy-
nylthiophene-2-carbonitrile 12, afforded 10a–c, and 1e in
good to high yields (10a: R = H, 76%, 10b: R = Et, 49%,
10c: R = i-Pr, 71%, 1e, 37%). Subsequent deprotection
of 10 with TBAF afforded the 5-hydroxymethyl-, 5-(3-
hydroxypropyl)-, and 5-(3-hydroxy-2-methylpropyl)-
analogs 1b,c, and 1d.

The 2-[(aminocarbonyl)amino]-5-phenylethynyl-3-thio-
phenecarboxamides 1f–h were synthesized at the begin-
ning of our study, prior to the optimization of the
catalytic system, by coupling 2 with commercially
available acetylenes. Thus, as illustrated in Table 1,
the couplings were very low yielding. Even when
PdCl2[(i-Pr2PC5H4)2Fe] was used as the catalyst, the
couplings were inefficient unless a 1/1 mixture of EtOH
and DMA was used as the solvent (Table 1, 1i). The
2-[(aminocarbonyl)amino]-5-[(3-hydroxyphenyl)ethynyl]-
thiophene-3-carboxamide (1j), was obtained in 25%
overall yield from the 3-hydroxyphenylacetylene as
shown in Scheme 2.

The 2-[(aminocarbonyl)amino]-5-(cyclopropylethynyl)-
thiophene-3-carboxamide (1k) was synthesized in
26% yield from 2 and cyclopropylacetylene under the
MF; (c) TMSCCH, Pd(PPh3)4, CuI, Et3N, THF, 70%; (d) NaOH (1 M,

DMA, 65–75 �C, 37–76%; (f) TMSCCH, PdCl2(PhCN)2, PPh3, CuI, i-

1) NH2OHÆHCl, Et3N, (2) phthalic anhydride, 99%.



Table 1. Yields of 2-[(aminocarbonyl)amino]-5-phenylenyl-3-thiophenecarboxamides (1f–i)

R Conditions Yield (%)

1f 3-F–C6H4 PdCl2(PhCN)2, CuI, t-Bu2P(biphenyl), i-Pr2NH, EtOH 16

1g 2-F–C6H4 PdCl2[(i-Pr2PC5H4)2Fe], CuI, i-Pr2NEt, dioxane 8.6

1h 2-Cl–C6H4 PdCl2[(i-Pr2PC5H4)2Fe], CuI, i-Pr2NEt, EtOH 14.8

1i 2-Me–C6H4 STD 34

Scheme 2. Reagents and conditions: (a) TBDMSCl, imidazole, DMF, rt, 86%; (b) 2, PdCl2[(i-Pr2PC5H4)2Fe], CuI, i-Pr2NEt, EtOH/DMA, 75 �C,
70%; (c) TBAF, THF, rt, 42%.
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standard conditions using EtOH as the solvent. The
2-[(aminocarbonyl)amino]-5-[(3-aminophenyl)ethynyl]-
thiophene-3-carboxamide (1l) was obtained in 17% yield
from the coupling of 2 with 3-ethynylaniline and was
subsequently reacted with a variety of acids to afford
the corresponding amides 1m–t (Scheme 3). In addition,
the 2-[(aminocarbonyl)amino]-5-({3-[(methylsulfonyl)ami-
no]-phenyl}ethynyl)thiophene-3-carboxamide (1u) was
synthesized with an 85% yield by reacting 1l with meth-
anesulfonyl chloride in the presence of pyridine at 0 �C
in THF.

Our inhibitors were evaluated in vitro using a high
throughput screen on human recombinant IKK-2
(IC50 (IKK-2)).19,20 Selected inhibitors with IC50

(IKK-2) < 0.5 lM were then tested in rheumatoid
arthritis-derived synovial fibroblasts (RASF) that were
submitted to two sequential experiments. In the first
experiment, they were stimulated with IL-1b, in the pres-
Scheme 3. Reagents and conditions: (a) 2, PdCl2(PhCN)2, (i-Pr2)2Fc, CuI, i-P

rt, 62–93%.
ence of the inhibitor, to determine the efficiency of the
inhibition of cytokine IL-8 production, which was mea-
sured by ELISA (IC50 (RASF)).16,21 In a second experi-
ment, after removing the media used for the ELISA,
they were treated with the Alamar Blue Reagent, a dye
commonly used as indicator of cell death. The viable
cells cause a change in the oxidation state of the dye
from an oxidized form (blue) to a reduced fluorescent
form (red). The fluorescence was measured with a Victor
multilable counter to evaluate the LC50 (AB) and thus
the potential cell toxicity of our inhibitors.22

Most of the inhibitors synthesized in this study (16/21)
showed modest activity with IC50 values ranging from
1 to 0.195 lM. As shown in Table 2, structural modifi-
cation of the alkyne substituent did not, in most
instances, significantly impact the potency of the
2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarb-
oxamides and only 1b,e,f,j, and 1k showed improved
r2NEt, EtOH/DMA, 75 �C, 17%; (b) RCO2H, Me2EtN, HBTU, DMF,



Table 2. Inhibition of IKK-2 by 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides 1

R IC50 (IKK-2) (lM)a R IC50 (IKK-2) (lM)a

1a 0.420 1d 0.563

1b 0.195 1e 0.333

1c 0.465

1f 3-F–C6H4 0.331 1j 3-HO–C6H4 0.303

1g 2-F–C6H4 0.62 1k Cyclopropyl 0.273

1h 2-Cl–C6H4 1.01 1l 3-H2N–C6H4 0.709

1i 2-Me–C6H4 0.716

1m >20 1r 3-CF3CONHC6H4 0.980

1n 0.557 1s 1.88

1o 1.85 1t 4.4

1p 3-PhCONHC6H4 0.704 1u 3-MeSO2NH–C6H4 0.454

1q 3-MeCONHC6H4 0.964

a Averaged IC50 (IKK-2) from n = 3.
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activity compared to early lead 1a. The most noticeable
effect resulted from the introduction of a hydroxymethyl
group at position 5 of the thiophen-3-yl substituent (1b),
which led to a 2-fold improvement in potency compared
to 1a. In contrast, the introduction of bulkier 5-(3-
hydroxypropyl)- or 5-(3-hydroxy-2-methylpropyl)-group
(1c,d) led to a gradual decrease in potency. It is notewor-
thy that a cyano group was well tolerated at position 5
of the thiophen-3-yl (1e) with an IC50 of 0.333 lM.

2-[(Aminocarbonyl)amino]-5-phenylenyl-3-thiophenecarb-
oxamides 1f and 1j, respectively, bearing a 3-fluoro- and
3-hydroxy-substituent on the phenyl ring led to a slight
improvement in potency compared to 1a. In contrast
substitution at position 2 of the phenyl ring led to
modest inhibitors (1g–1i). While fluoro- and hydroxyl-
substituents are well tolerated, the introduction of an
amino- group at position 3 of the phenyl ring (1l) led
to a loss of potency. Decreased potency was also ob-
served with carboxamides at position 3 of the phenyl
ring regardless of their size (1n–t). It is noteworthy that,
while carboxamides 1n–t exhibited IC50 values ranging
from 0.55 to 4.4 lM, the 2-pyridinyl analog (1m)
showed no activity at all. This lack of activity could be
due to the formation of an intramolecular hydrogen
bond involving the nitrogen of the 2-pyridinyl group
and the NH of the carboxamide forcing 1m to adopt
an unfavorable conformation.

Preliminary results indicate that the replacement of the
arylethynyl- and thienylethynyl-substituents with an
alkylethynyl-substituent is tolerated as illustrated with
the 2-[(aminocarbonyl)amino]-5-cyclopropylethynyl-3-
thiophenecarboxamide (1k) with an IC50 of 0.273 lM.

In spite of their often modest potency on IKK-2, seven
selected 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thio-
phenecarboxamides were tested in RASF in order to



Table 3. Inhibition of IL-8 production and cellular toxicity of 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides 1

R IC50 (IKK-2) (lM)a IC50 (RASF) (lM)b IC50 (RASF)/IC50 (IKK-2) LC50 (AB) (lM)

1a 0.420 1.18 2.8 · >30

1b 0.195 1.13 5.8 · >30

1e 0.333 0.832 2.5 · >30

1f 3-F–C6H4 0.331 1.65 5 · >30

1j 3-HO–C6H4 0.303 0.576 1.9 · 2.72

1k Cyclopropyl 0.273 3.06 11 · >30

1u 3-MeSO2NH–C6H4 0.454 12.9 28 · >30

a Averaged IC50 (IKK-2) from n = 3.
b Averaged IC50 (RASF) from n = 2.
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evaluate whether they would possess cellular activity. As
illustrated in Table 3, all the compounds that were tested
were found not to be lethal to cells with LC50s >30 lM
with the exception of the 3-hydroxyphenylethynyl ana-
log 1j. In contrast to the 3-fluorophenylethynyl-analog
1f that showed efficacy in the RASF assay (IC50

(RASF) = 1.65 lM) with no detectable cell damage
(LC50 (AB) > 30lM), 1j caused severe cell toxicity
(LC50 (AB) = 2.72). All the compounds tested showed
significant inhibition of IL-8 production except for the
cyclopropylethynyl-analog 1k and the 3-methylsulfon-
amide 1u that both exhibited over a 10-fold difference
between their IC50 on IKK-2 and their cellular activity.
Out of the four analogs, 1a,b,e, and 1f, with significant
inhibition of IL-8 production and no cell toxicity, the
cyanothiophenylethynyl-analog 1e stood out with the
strongest inhibition of IL-8 production and thus demon-
strated the potential usefulness of 2-[(aminocarb-
onyl)amino]-5-thiophenethynyl-3-thiophenecarboxamides
for the regulation of NF-jB release through IKK-2
inhibition.

In spite of their often modest activity on IKK-2, we were
able to identify several novel 2-[(aminocarbonyl)amino]-
5-acetylenyl-3-thiophenecarboxamides 1a,b,e, and 1f
that demonstrated reasonable inhibition of IKK-2 and
significant reduction of IL-8 production in IL-1b stimu-
lated RASF without causing noticeable cell toxicity. The
comparable levels of inhibition of IKK-2 and IL-8 pro-
duction by these compounds, especially 1e,23 shows the
potential usefulness of 2-[(aminocarbonyl)amino]-5-
acetylenyl-3-thiophenecarboxamides as regulators of
NF-jB.
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