

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 2870-2875

Inhibition of IKK-2 by 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides

Dominique Bonafoux,^{a,*} Sheri Bonar,^b Lori Christine,^b Michael Clare,^a Ann Donnelly,^b Julia Guzova,^b Nandini Kishore,^b Patrick Lennon,^a Adam Libby,^a Sumathy Mathialagan,^b William McGhee,^a Sharon Rouw,^b Cindy Sommers,^b Michael Tollefson,^a Catherine Tripp,^{b,†} Richard Weier,^a Serge Wolfson^a and Yao Min^b

^aDepartment of Medicinal Chemistry, Pfizer Inc., 700 Chesterfield Parkway West, St Louis, MO 63017, USA ^bDepartment of Biological Sciences, Pfizer Inc., 700 Chesterfield Parkway West, St Louis, MO 63017, USA

> Received 4 January 2005; revised 21 March 2005; accepted 23 March 2005 Available online 19 April 2005

Abstract—A series of 21 novel 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides were synthesized and evaluated for the inhibition of IKK-2. In spite of their often modest activity on the enzyme, six selected analogs showed significant inhibition of the production of inflammatory cytokine IL-8 in IL-1 β stimulated rheumatoid arthritis-derived synovial fibroblasts, demonstrating their potential usefulness as NF- κ B regulators.

© 2005 Elsevier Ltd. All rights reserved.

Nuclear factor kappa B (NF- κ B) is a transcriptional factor involved in inducing autoimmune and inflammatory responses¹ as well as in regulating apoptosis.² The I κ B inhibitory proteins sequester NF- κ B in the cytoplasm by masking its Rel homology domain. Cell activation by proinflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF- α), triggers the activation of IKK-2 that phosphorylates the I κ B proteins, resulting in their degradation by ubiquitinmediated proteolysis and thus in the release of NF- κ B in the cytoplasm.³ As a result, control of NF- κ B release, through IKK-2 inhibition, could provide an effective treatment of inflammatory diseases.

Even though a variety of structurally distinct molecules inhibit IKK-2,^{4–8} small thiophenecarboxamide based inhibitors have attracted considerable interest in the past few years.^{9–15} One of our early hits, the 4-amino-2,3'-bithiophene-5-carboxamide (**SC-514**), is a poor inhibitor of IKK-2 with an IC₅₀ of 11.2 μ M, but displays a very

attractive selectivity profile with little or no crossover to other kinases.^{16,17} Since the modification of **SC-514**, involving the replacement of the 3-aminothiophene-2carboxamide with a 2-[(aminocarbonyl)amino]-thiophene-3-carboxamide has been shown by others to dramatically improve the potency on IKK-2,¹⁷ we incorporated this modification in our design along with the introduction of an acetylene linker between the two thiophene rings affording 2-[(aminocarbonyl)amino]-3-thiophenecarboxamide **1a**, a novel lead with a 0.420 μ M IC₅₀ on IKK-2 (Fig. 1).

The SAR around new template **1a** was investigated by varying the alkyne at position 5 of the 2-[(aminocarbonyl)amino]-thiophene-3-carboxamide. The resulting 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides¹⁸ were evaluated in vitro on recombinant human IKK-2^{19,20} and showed moderate inhibition

Keywords: 2-[(Aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides; IKK-2 inhibition; NF-κB regulation.

^{*} Corresponding author. Tel.: +1 617 679 2239; fax: +1 617 579 3635; e-mail: dominique.bonafoux@biogenidec.com

[†]Present address: Abbott Bioresearch center, 100 Research drive, Worcester, MA 01605, USA.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2005.03.090

(IC₅₀ (IKK-2) ≥ 0.129 μM). Selected inhibitors with an IC₅₀ (IKK-2) < 0.5 μM were evaluated in a cellular based assay using IL-1β stimulated rheumatoid arthritis-derived synovial fibroblasts (RASF),¹⁶ and showed significant inhibition of the production of inflammatory cytokine IL-8, demonstrating the utility of this template for NF-κB regulation.

The 2-[(aminocarbonyl)amino]-5-bromo-3-thiophenecarboxamide $(2)^{15}$ proved to be a poor substrate for Sonogashira couplings when using PdCl₂(PhCN)₂ or PdCl₂ in combination with 2-(di-t-butylphosphino)biphenyl or PPh₃ as the catalytic system, leading almost exclusively to the 2-[(aminocarbonyl)amino]-3thiophenecarboxamide and bisacetylenes. After screening a variety of catalysts, we found that, in most instances, these side reactions could be minimized when using the air stable *premade* or in situ generated dichloropalladium bis(di-isopropylphosphino)ferrocene $(PdCl_2[(i-Pr_2PC_5H_4)_2Fe])$ as the catalyst, in the presence of CuI and *i*-Pr₂NEt in a 1/1 mixture of EtOH and dimethylacetamide (DMA) at 65-75 °C. Using these standard conditions (STD), the 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides were obtained with yields up to 80%.

As illustrated in Scheme 1, functionalized analogs of 1a were synthesized using the 4-bromo-2-thiophencarboxaldehyde (3) as the key intermediate. In contrast to 1a, obtained in poor yield (6%) from the Sonogashira coupling of 2-[(aminocarbonyl)amino]-5-bromo-3-thiophenecarboxamide (2) with 3-ethynylthiophene, the coupling of 2 with the 5-*tert*-butyldimethylsilyloxymethyl-3-ethynylthiophenes 5, 8, and 9 and with 4-ethynylthiophene-2-carbonitrile 12, afforded 10a–c, and 1e in good to high yields (10a: R = H, 76%, 10b: R = Et, 49%, 10c: R = i-Pr, 71%, 1e, 37%). Subsequent deprotection of 10 with TBAF afforded the 5-hydroxymethyl-, 5-(3hydroxypropyl)-, and 5-(3-hydroxy-2-methylpropyl)analogs 1b,c, and 1d.

The 2-[(aminocarbonyl)amino]-5-phenylethynyl-3-thiophenecarboxamides 1f-h were synthesized at the beginning of our study, prior to the optimization of the catalytic system, by coupling 2 with commercially available acetylenes. Thus, as illustrated in Table 1, the couplings were very low yielding. Even when PdCl₂[(*i*-Pr₂PC₅H₄)₂Fe] was used as the catalyst, the couplings were inefficient unless a 1/1 mixture of EtOH and DMA was used as the solvent (Table 1, 1i). The 2-[(aminocarbonyl)amino]-5-[(3-hydroxyphenyl)ethynyl]-thiophene-3-carboxamide (1j), was obtained in 25% overall yield from the 3-hydroxyphenylacetylene as shown in Scheme 2.

The 2-[(aminocarbonyl)amino]-5-(cyclopropylethynyl)thiophene-3-carboxamide (1k) was synthesized in 26% yield from 2 and cyclopropylacetylene under the

Scheme 1. Reagents and conditions: (a) NaBH₄; (b) TBDMSCl, imidazole, DMF; (c) TMSCCH, Pd(PPh₃)₄, CuI, Et₃N, THF, 70%; (d) NaOH (1 M, H₂O), MeOH, rt, 2 h; (e) 2, PdCl₂ [(i-Pr₂PC₅H₄)₂Fe], CuI, i-Pr₂NEt, EtOH/DMA, 65–75 °C, 37–76%; (f) TMSCCH, PdCl₂(PhCN)₂, PPh₃, CuI, i-Pr₂NH, benzene, 97%; (g) RMgBr, THF; (h) TBAF, THF, rt, 32–58%; (i) (1) NH₂OH·HCl, Et₃N, (2) phthalic anhydride, 99%.

1 H ₂ Ň						
	R	Conditions	Yield (%)			
1f	$3 - F - C_6 H_4$	PdCl ₂ (PhCN) ₂ , CuI, t-Bu ₂ P(biphenyl), i-Pr ₂ NH, EtOH	16			
1g	$2-F-C_6H_4$	PdCl ₂ [(<i>i</i> -Pr ₂ PC ₅ H ₄) ₂ Fe], CuI, <i>i</i> -Pr ₂ NEt, dioxane	8.6			
1h	$2-Cl-C_6H_4$	PdCl ₂ [(<i>i</i> -Pr ₂ PC ₅ H ₄) ₂ Fe], CuI, <i>i</i> -Pr ₂ NEt, EtOH	14.8			
1i	$2-Me-C_6H_4$	STD	34			

Scheme 2. Reagents and conditions: (a) TBDMSCl, imidazole, DMF, rt, 86%; (b) 2, $PdCl_2[(i-Pr_2PC_5H_4)_2Fe]$, CuI, *i*-Pr₂NEt, EtOH/DMA, 75 °C, 70%; (c) TBAF, THF, rt, 42%.

standard conditions using EtOH as the solvent. The 2-[(aminocarbonyl)amino]-5-[(3-aminophenyl)ethynyl]-thiophene-3-carboxamide (11) was obtained in 17% yield from the coupling of 2 with 3-ethynylaniline and was subsequently reacted with a variety of acids to afford the corresponding amides 1m-t (Scheme 3). In addition, the 2-[(aminocarbonyl)amino]-5-({3-[(methylsulfonyl)amino]-phenyl}ethynyl)thiophene-3-carboxamide (1u) was synthesized with an 85% yield by reacting 11 with methanesulfonyl chloride in the presence of pyridine at 0 °C in THF.

Our inhibitors were evaluated in vitro using a high throughput screen on human recombinant IKK-2 (IC₅₀ (IKK-2)).^{19,20} Selected inhibitors with IC₅₀ (IKK-2) < 0.5 μ M were then tested in rheumatoid arthritis-derived synovial fibroblasts (RASF) that were submitted to two sequential experiments. In the first experiment, they were stimulated with IL-1 β , in the pres-

ence of the inhibitor, to determine the efficiency of the inhibition of cytokine IL-8 production, which was measured by ELISA (IC₅₀ (RASF)).^{16,21} In a second experiment, after removing the media used for the ELISA, they were treated with the Alamar Blue Reagent, a dye commonly used as indicator of cell death. The viable cells cause a change in the oxidation state of the dye from an oxidized form (blue) to a reduced fluorescent form (red). The fluorescence was measured with a Victor multilable counter to evaluate the LC₅₀ (AB) and thus the potential cell toxicity of our inhibitors.²²

Most of the inhibitors synthesized in this study (16/21) showed modest activity with IC_{50} values ranging from 1 to 0.195 μ M. As shown in Table 2, structural modification of the alkyne substituent did not, in most instances, significantly impact the potency of the 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides and only **1b**,e,f,j, and **1k** showed improved

Scheme 3. Reagents and conditions: (a) 2, PdCl₂(PhCN)₂, (*i*-Pr₂)₂Fc, CuI, *i*-Pr₂NEt, EtOH/DMA, 75 °C, 17%; (b) RCO₂H, Me₂EtN, HBTU, DMF, rt, 62–93%.

 Table 2. Inhibition of IKK-2 by 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides 1

	R	IC ₅₀ (IKK-2) (µM) ^a		R	$IC_{50} (IKK-2) (\mu M)^{a}$
1a	S OH	0.420	1d	i-Pr S NC	0.563
10	S S S S S S S S S S S S S S S S S S S	0.465	16	S s	0.555
1f 1g 1h	3-F-C ₆ H ₄ 2-F-C ₆ H ₄ 2-CI-C ₆ H ₄	0.331 0.62 1.01	1j 1k 11	3-HO–C ₆ H ₄ Cyclopropyl 3-H ₂ N–C ₆ H ₄	0.303 0.273 0.709
1i 1m	2-Me-C ₆ H ₄ N HN O	>20	lr	3-CF ₃ CONHC ₆ H ₄	0.980
1n		0.557	1s		1.88
10		1.85	1t	MeO ₂ C ^H HN HN	4.4
1p 1q	3-PhCONHC ₆ H ₄ 3-MeCONHC ₆ H ₄	0.704 0.964	1u	3-MeSO ₂ NH–C ₆ H ₄	0.454

^a Averaged IC₅₀ (IKK-2) from n = 3.

activity compared to early lead **1a**. The most noticeable effect resulted from the introduction of a hydroxymethyl group at position 5 of the thiophen-3-yl substituent (**1b**), which led to a 2-fold improvement in potency compared to **1a**. In contrast, the introduction of bulkier 5-(3-hydroxypropyl)- or 5-(3-hydroxy-2-methylpropyl)-group (**1c,d**) led to a gradual decrease in potency. It is noteworthy that a cyano group was well tolerated at position 5 of the thiophen-3-yl (**1e**) with an IC₅₀ of 0.333 μ M.

2-[(Aminocarbonyl)amino]-5-phenylenyl-3-thiophenecarboxamides 1f and 1j, respectively, bearing a 3-fluoro- and 3-hydroxy-substituent on the phenyl ring led to a slight improvement in potency compared to 1a. In contrast substitution at position 2 of the phenyl ring led to modest inhibitors (1g-1i). While fluoro- and hydroxylsubstituents are well tolerated, the introduction of an amino- group at position 3 of the phenyl ring (11) led to a loss of potency. Decreased potency was also observed with carboxamides at position 3 of the phenyl ring regardless of their size (**1n**–t). It is noteworthy that, while carboxamides **1n**–t exhibited IC₅₀ values ranging from 0.55 to 4.4 μ M, the 2-pyridinyl analog (**1m**) showed no activity at all. This lack of activity could be due to the formation of an intramolecular hydrogen bond involving the nitrogen of the 2-pyridinyl group and the NH of the carboxamide forcing **1m** to adopt an unfavorable conformation.

Preliminary results indicate that the replacement of the arylethynyl- and thienylethynyl-substituents with an alkylethynyl-substituent is tolerated as illustrated with the 2-[(aminocarbonyl)amino]-5-cyclopropylethynyl-3-thiophenecarboxamide (**1k**) with an IC₅₀ of 0.273 μ M.

In spite of their often modest potency on IKK-2, seven selected 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thio-phenecarboxamides were tested in RASF in order to

Table 3.	Inhibition of IL-8	production and o	cellular toxicity	of 2-	(aminocarbonvl)amino	l-5-acetvlenvl-3-thio	phenecarboxamides 1
							p

	R	$IC_{50} (IKK-2) (\mu M)^{a}$	$IC_{50} \left(RASF\right) \left(\mu M\right)^{b}$	IC ₅₀ (RASF)/IC ₅₀ (IKK-2)	LC ₅₀ (AB) (µM)
1a	S	0.420	1.18	2.8×	>30
1b	OH S	0.195	1.13	5.8 ×	>30
1e	NC S	0.333	0.832	2.5 ×	>30
1f	$3-F-C_6H_4$	0.331	1.65	5 ×	>30
1j	$3-HO-C_6H_4$	0.303	0.576	$1.9 \times$	2.72
1k	Cyclopropyl	0.273	3.06	$11 \times$	>30
1u	3-MeSO ₂ NH-C ₆ H ₄	0.454	12.9	$28 \times$	>30

^a Averaged IC₅₀ (IKK-2) from n = 3.

^b Averaged IC₅₀ (RASF) from n = 2.

evaluate whether they would possess cellular activity. As illustrated in Table 3, all the compounds that were tested were found not to be lethal to cells with $LC_{50}s > 30 \mu M$ with the exception of the 3-hydroxyphenylethynyl analog 1j. In contrast to the 3-fluorophenylethynyl-analog 1f that showed efficacy in the RASF assay (IC₅₀ $(RASF) = 1.65 \mu M$ with no detectable cell damage $(LC_{50} (AB) > 30\mu M)$, 1j caused severe cell toxicity $(LC_{50} (AB) = 2.72)$. All the compounds tested showed significant inhibition of IL-8 production except for the cyclopropylethynyl-analog 1k and the 3-methylsulfonamide 1u that both exhibited over a 10-fold difference between their IC₅₀ on IKK-2 and their cellular activity. Out of the four analogs, 1a,b,e, and 1f, with significant inhibition of IL-8 production and no cell toxicity, the cyanothiophenylethynyl-analog 1e stood out with the strongest inhibition of IL-8 production and thus demonstrated the potential usefulness of 2-[(aminocarbonyl)amino]-5-thiophenethynyl-3-thiophenecarboxamides for the regulation of NF-kB release through IKK-2 inhibition.

In spite of their often modest activity on IKK-2, we were able to identify several novel 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides **1a,b,e**, and **1f** that demonstrated reasonable inhibition of IKK-2 and significant reduction of IL-8 production in IL-1 β stimulated RASF without causing noticeable cell toxicity. The comparable levels of inhibition of IKK-2 and IL-8 production by these compounds, especially **1e**,²³ shows the potential usefulness of 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides as regulators of NF- κ B.

References and notes

- (a) Roshak, A. K.; Callahan, J. F.; Blake, S. M. Curr. Opin. Pharmacol. 2002, 2, 316–321; (b) Tak, P. P.; Firestein, G. S. J. Clin. Invest. 2001, 107, 7–11.
- (a) Beg, A. A.; Baltimore, D. Science 1996, 274, 782–784; (b) Foo, S. Y.; Nolan, G. P. Trends Genet. 1999, 15, 229–235.

- 3. Senftleben, U.; Karin, M. Crit. Care Med. 2002, 30, S18-S26.
- Murata, T.; Shimada, M.; Sakakibara, S.; Yoshino, T.; Masuda, T.; Shintani, T.; Sato, H.; Koriyama, Y.; Fukushima, K.; Nunami, N.; Yamauchi, M.; Fuchikami, K.; Komura, H.; Watanabe, A.; Ziegelbauer, K. B.; Bacon, K. B.; Lowinger, T. B. *Bioorg. Med. Chem. Lett.* 2004, 14, 4019–4022.
- Murata, T.; Shimada, M.; Kadono, H.; Sakakibara, S.; Yoshino, T.; Masuda, T.; Shimazaki, M.; Shintani, T.; Fuchikami, K.; Bacon, K. B.; Ziegelbauer, K. B.; Lowinger, T. B. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 4013– 4017.
- Murata, T.; Shimada, M.; Sakakibara, S.; Yoshino, T.; Kadono, H.; Masuda, T.; Shimazaki, M.; Shintani, T.; Fuchikami, K.; Sakai, K.; Inbe, H.; Takeshita, K.; Niki, T.; Umeda, M.; Bacon, K. B.; Ziegelbauer, K. B.; Lowinger, T. B. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 913– 918.
- Castro, A. C.; Dang, L. C.; Soucy, F.; Grenier, L.; Mazdiyasni, H.; Hottelet, M.; Parent, L.; Pien, C.; Palombella, V.; Adams, J. *Bioorg. Med. Chem. Lett.* 2003, 13, 2419–2422.
- Bingham, A. H.; Davenport, R. J.; Gowers, L.; Knight, R. L.; Lowe, C.; Owen, D. A.; Parry, M. P.; Pitt, W. R. *Bioorg. Med. Chem. Lett.* 2004, 14, 409–412.
- Faull, A. W.; Johnstone, C.; Morley, A. D.; Poyser, J. P. WO 04063186 A1, 2004.
- 10. Morley, A. D.; Poyser, J. P. WO 04063185 A1, 2004.
- Baxter, A.; Brough, S.; Cooper, A.; Floettmann, E.; Foster, S.; Harting, C.; Kettle, J.; McInally, T.; Martin, C.; Mobbs, M.; Needham, M.; Newham, P.; Paine, S.; St-Gallay, S.; Salter, S.; Unitt, J.; Xue, Y. *Bioorg. Med. Chem. Lett.* 2004, 14, 2817–2822.
- 12. Callahan, J. F.; Li, Y. H. WO 03104218 A1, 2003.
- 13. Griffiths, D.; Johnstone, C. WO 0310163 A1, 2003.
- 14. Griffiths, D.; Johnstone, C. WO 0310158 A1, 2003.
- Baxter, A.; Brough, S., Faull; A., Johnstone; C., Mcinally, T., PCT Int. Appl., WO 0158890 A1, 2001.
- Kishore, N.; Sommers, C.; Marthialagan, S.; Guzova, J.; Yao, M.; Hauser, S.; Huynh, K.; Mielke, C.; Albee, L.; Weier, R.; Graneto, M.; Hanau, C.; Perry, T.; Tripp, C. S. *J. Biol. Chem.* **2003**, *278*, 32861–32871.
- 17. Recently a team at AstraZeneca reported independent data on SC-514 (IC₅₀ = $1.6 \,\mu$ M on IKK-2), see Ref. 11.

- While this manuscript was in preparation, a patent was issued to Glaxosmithkline, describing various 2-[(aminocarbonyl)amino]-3-thiophenecarboxamides in which they report the synthesis of 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides (1) where R = Ph, 4-F-C₆H₄, 4-Et-C₆H₄, 4-MeO-C₆H₄, 4-Cl-C₆H₄, 4-CF₃-C₆H₄, and 3-CF₃-C₆H₄, see Ref. 12.
- Kishore, N.; Huynh, Q. K.; Mathialagan, S.; Hall, T.; Rouw, R.; Creely, D.; Lange, G.; Caroll, J.; Reitz, B.; Donnelly, A.; Boddupalli, H.; Combs, R. G.; Kretzmer, K.; Tripp, C. S. J. Biol. Chem. 2002, 277, 13840–13847.
- 20. Enzyme assay: Kinase activity was measured using a biotinylated IkBa peptide (Gly-Leu-Lys-Lys-Glu-Arg-Leu-Leu-Asp-Asp-Arg-His-Asp-Ser32-Gly-Leu-Asp-Ser36-Met-Lys-Asp-Glu-Glu). The standard reaction mixture for rhIKK2 assay contained 5 µM biotinylated IkBa peptide, $1 \mu M (\gamma^{-33}P)ATP$ (about $1 \times 10^5 \text{ CPM}$), 1 mM DTT, 2 mM MgCl₂, 2 mM MnCl₂, 10 mM NaF, 25 mM HEPES buffer, pH 7.6, and increasing doses of inhibitors (sevenpoint IC₅₀ curve) and an enzyme solution of $0.2 \,\mu g$ in a final volume of 50 µL reaction. After incubation at 25 °C for 30 min, the reaction was stopped by the addition of 150 µL of AG1XB resin in 900 mM sodium formate buffer, pH 3 (the resin is in slurry of one volume of resin and 3 vol of sodium formate buffer). The resin was allowed to settle and 150 µL of supernatant was transferred to a top count plate followed by the addition of 150 µL of Microscint 40, mixed well, and incorporation of $(\gamma^{-33}P)ATP$ was measured using a Top count NXT (Packard Instrument Co). IC₅₀ validation was done using 96-well streptavidin Promega plate, and a vacuum system as described previously (Ref. 19). The reaction mixture (25 µL) described above was added to a 96-well Promega plate. Each well was then washed successively with 800 µL of 2 M NaCl, 1.2 mL of NaCl containing 1% H_3PO_4 , 400 µL of H_2O , and 200 µL of 95% ethanol. The plate was allowed to dry in the hood for about an hour and then 25 µL of Microscint 20 was added and the plate was counted using Top count.
- 21. Cellular assay: Adherent RASF cells were isolated via enzymatic digestions from primary synovial tissue isolated after knee synovectomy and were cultured in DMEM High glucose, containing 15% defined bovine serum (Hyclone) and 50 µg/mL gentamicin. For cytokine release determination, 1.5×10^4 cells/well were plated in a 96-well plate and allowed to attach overnight. The growth media were replaced with fresh DMEM containing 1% serum, and the cells were pre-treated with increasing doses (sevenpoint IC₅₀ curve) of inhibitors in 0.2% Me₂SO media for 1 h prior to an overnight stimulation with 1 ng/mL IL-1 β . The supernatant were collected and the amount of cytokine (IL-8) secreted into the culture media was measured by ELISA.
- 22. Alamar Blue Assay: After removing the supernatant from the cellular assay, the Alamar Blue Reagent (10 μ L/ well) was added to all the wells. The mixtures were incubated for 2.5 h at 37 °C in the presence of 5% CO₂ and the fluorescence was read with a Victor multilable counter.
- 23. Compound 1e was synthesized by adding PdCl₂ [((i- $Pr_{2}P_{2}Fc$ (0.043 g) to a degassed mixture of 2 (0.54 g, 2 mmol), *i*-Pr₂NEt (0.8 g, 1.09 mL, 6.2 mmol), 4-ethynylthiophene-2-carbonitrile (12) (0.5 g, 3.7 mmol), and CuI (0.109 g, 0.57 mmol) in 30 mL DMA/EtOH (1/1). The reaction mixture was stirred overnight at 65 °C. After cooling to room temperature, the crude reaction mixture was filtered through Celite[®] and the filtrate concentrated before being partitioned between brine and EtOAc. The organic phase was dried over MgSO₄. Purification by reverse phase preparative HPLC afforded the title compound as a pale yellow solid, yield 37%. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.07 (br s, 2H), 7.36 (br s, 1H), 7.62 (s, 1H), 7.69 (br s, 1H), 8.08 (s, 1H), 8.25 (s, 1H), 11.13 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆): δ 68.3, 69.4, 92.6, 93.6, 96.6, 98.0, 106.3, 113.8, 121.2, 124.8, 134.8, 138.8, 150.4. HRMS calcd for C13H9N4O2S2 317.0161. Found 317.0196.