RESEARCH ARTICLE

Synthesis and Biological Evaluation of Some Pyrazole Derivatives, Containing (Thio) Semicarbazide, as Dual Anti-Inflammatory Antimicrobial Agents

Zhaochang Liang¹, Yuping Huang³, Shiben Wang² and Xianqing Deng^{1,*}

¹Medical College, Jinggangshan University, No 28, Xueyuan Road, Ji'an, 343009, Jiangxi, China; ²School of Pharmacy, Liaocheng University, LiaoCheng, 252059, Shandong, China; ³Department of Biochemistry and Molecular Biology, Gannan Medical College, Ganzhou, China

Abstract: *Background*: Several series of pyrazole derivatives containing (thio) semicarbazide (4a-4h, 5a-5l, 6a-6f, 7a-7c) were designed and synthesized to screen dual inflammatory and antimicrobial activities.

ARTICLE HISTORY

Received: October 12, 2018 Revised: February 12, 2019 Accepted: March 8, 2019

DOI: 10.2174/1570180816666190325163117

crobial activities. **Methods:** The products were characterized by¹H NMR, ¹³C NMR and HRMS. In vitro LPS-induced TNF- α model and *in vivo* xylene-induced ear-edema model were used to evaluate their anti-

INF- α model and *in vivo* xylene-induced ear-edema model were used to evaluate their antiinflammatory activity. Their *in vitro* antimicrobial activities were evaluated using a serial dilution method against several gram-positive strains, gram-negative strains and a fungi strain. *Results*: Bioassays indicated that most of the compounds markedly inhibited the expression of TNF-

Results: Bloassays indicated that most of the compounds markedly inhibited the expression of TNFa at the concentration of 20 µg/mL Compounds **5i**, **6b**, and **7b** had comparable *in vivo* antiinflammatory activity to the reference drug dexamethasone at the dose of 50 mg/kg. In addition, several compounds showed antimicrobial activity against different strains, and compounds **5g** and **5h** exhibited potent inhibitory activities with the MIC value of 8 µg/mL against the *Streptococcus pneumoniae CMCC 31968* and *Staphylococcus aureus CMCC 25923*, respectively. Compound **7b**, which exhibited both anti-inflammatory and antimicrobial activities, should be studied as it is or after derivatization.

Conclusion: It can be concluded that pyrazoles, with (thio)-semicarbazone moieties, have the potential to be developed into new anti-inflammatory agents.

Keywords: Anti-inflammatory, antimicrobial, pyrazole, (thio) semicarbazide, TNF- α , dexamethasone.

1. INTRODUCTION

Inflammation is part of the complex biological response of body tissues in response to damage resulting from microbial pathogen infection, chemical stimuli, and physical trauma [1, 2]. Although acute inflammation is required as a defense mechanism, persistent inflammation is harmful and should be suppressed. Dysregulation of inflammation plays a crucial role in chronic inflammation that can contribute to diseases such as arthritis, heart attacks, and Alzheimer's disease [3]. Furthermore, inflammatory responses play vital roles in different stages of tumor development [4].

Recently, the incidence of inflammation due to bacterial infections is on the rise. Many patients with inflammatory conditions require treatment with antimicrobial agents [5]. The co-administration of multiple drugs for the treatment of inflammatory conditions, associated with some microbial infections, may result in additional health problems, espe cially in patients with impaired liver or kidney function [6]. As an alternative, monotherapy using an anti-inflammatory drug with antimicrobial properties would be better from pharmacoeconomics and safety aspects; this will enhance patient compliance and lower the risk of adverse effects.

Pyrazoles are significant double nitrogen, five-membered, heterocyclic compounds. Since the discovery and approval of celecoxib as an anti-inflammatory agent in the 1990s, many medicinal chemists have focused on the design and synthesis of pyrazole derivatives, particularly their anti-inflammatory activity [7-10]. Pyrazoles can form hydrogen bonds and can readily bind with various enzymes and receptors, allowing them to exhibit diverse pharmacological activities such as antimicrobial [11-13], anticancer [14], antide-pressant [15], and anticonvulsant activities [16]. (Thio) semicarbazones have also been extensively investigated for their uses in medicinal chemistry. The compounds containing (thio) semicarbazone were reported to have a broad

^{*}Address correspondence to this author at the Medical College, Jinggangshan University, No 28, xueyuan road, Ji'an, 343009, Jiangxi, P.R. China; E-mail: dengxianqing1121@126.com

Scheme 1. The synthesis route of target compounds 4a-4h, 5a-5l, 6a-6f, and 7a-7c.

application in drug development for the treatment of cancer [17] and bacterial infections [18], especially as antiinflammatory and analgesic agents [19, 20].

Based on these findings, the objective of this study was to combine the (thio) semicarbazide group with the pyrazole moiety to form a skeleton that has the potential to act as a dual anti-inflammatory antimicrobial agent. In this study, twenty-nine 3, 4-substituted pyrazole derivatives were synthesized and their anti-inflammatory and antimicrobial activities were tested.

2. CHEMISTRY

According to the designed structures, twenty-nine pyrazole derivatives were divided into four series, which were prepared from 2 types of intermediates 2 and 3. The compounds were synthesized according to the sequence shown in Scheme 1. Firstly, the synthesis of acetophenonehydrazones (1) was carried out at 50 °C by reacting the substituted acetophenone with semicarbazide hydrochloride, in the presence of NaOAc and alcohol. Under Vilsmeier-Haack (DMF-POCl₃) conditions, compound 1 was transformed into the corresponding 4-carboxaldehyde functionalized pyrazoles (2), which then reacted with semicarbazide, thiosemicarbazide and N-phenylhydrazinecarboxamide to produce compounds **4a-4g**, **4h**, and **5a-51**. On the other hand, compound **2** was alkylated by haloalkane to give the *N*-substituted-4carboxaldehyde pyrazoles (**3**), which was then reacted with semicarbazide, thiosemicarbazide, and *N*-phenylhydrazineca rboxamide to produce compounds **6a-6c**, **6d-6f**, and **7a-7c** (Scheme **1**). The structure of the desired products was confirmed by ¹H NMR, ¹³C NMR, and mass spectrometry.

Compound **4a** was used as an example of the structure conformation. In the ¹H-NMR spectrum, one singlet, due to the NH₂ of semicarbazide, was observed at 6.33 ppm. The aromatic protons of the benzene ring and pyrazole ring revealed peaks in the 7.41-7.94 ppm range. The absorption peak of C-H in imine was found at 8.16 ppm. The absorption peak of NH in the amide was observed at 9.95 ppm as a singlet. The absorption peak in the hydrogen spectrum was in complete conformity with the hydrogen signal in the structure. The ¹³C NMR spectra also gave accurate information about the structure of compound **4a**, which has 10 types of carbons in different chemical environments. Moreover, the high-resolution mass spectrometry of **4a** displayed an [M + H]+ signal at m/z 230.1034, corresponding to its molecular weight of 230.1036.

3. EXPERIMENTAL PROTOCOLS

3.1. Chemistry

Melting points were determined in open capillary-tubes and were uncorrected. ¹H NMR and ¹³C NMR spectra were recorded using an AV-300 spectrometer (Bruker, Switzerland), and all chemical shifts were given in parts per million relative to tetramethylsilane. High resolution mass spectra were measured on an MALDI-TOF/TOF mass spectrometer (Bruker Daltonik, Germany). All the reagents and solvents were purchased from Aladdin (Shanghai, China) or Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China), and were used as received.

3.1.1. Synthesis of 2-(1-Phenylethylidene) Hydrazine-1-Carboxamides (1)

A solution of semicarbazide hydrochloride (9 mmol) and sodium acetate (18 mmol) in 20 mL of water was heated to 50 °C. After dissolving, 10 mL of alcohol solution containing acetophenone (9 mmol) was added dropwise, and then stirred at 50 °C for 3-8 h until the reaction completed. After cooling the mixture, the deposit was filtered and recrystallized in ethanol to obtain compounds 1.

3.1.2. Synthesis of 3-Phenyl-1H-Pyrazole-4-Carbaldehydes (2)

To a cooled $(0-5^{\circ}C)$ solution of dimethyl formamide (55 mmol), POCl₃ (18 mmol)was added dropwise and stirred for 5 min. Then compound 1 (4.5 mmol) was added in six portions at intervals and stirred at 70°C for 5 h. The resulting mixture was poured into 20 mL of ice-water and then adjusted to PH of 6-7 using 20% aqueous sodium hydroxide. After staying over-night below 5°C, precipitates were formed, filtered, and dried to yield compounds 2.

3.1.3. Synthesis of N-Substituted-3-Phenyl-1H-Pyrazole-4-Carbaldehydes (3)

To a solution of compound **2** (5mmol) in 20 mL of acetonitrile, K_2CO_3 (6mmol) and dimethyl sulphate or bromopropane or benzyl chloride (6 mmol) was added. The mixture was stirred and refluxed for 3-5 h. Upon completion, the solvent was removed, and the residue was extracted with dichloromethane (30 mL × 3). The combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuo to obtain a white crude solid of **3**, which was directly used in the next step without purification.

3.1.4. Synthesis of 2-((3-Phenyl-1H-Pyrazol-4-yl) Methylene) Hydrazine-1-Carboxamides (4a-4g)

To a solution of compound 2 (0.03 mol) in 10mL of 50% alcohol, hydrazinecarboxamide hydrochloride (0.03 mol) was added and then refluxed for 1 h. After cooling, the precipitation was filtered and recrystallized with 50% ethanol to give the pure compounds **4a-4g**.

3.1.5. Synthesis of 2-((3-Phenyl-1H-Pyrazol-4-yl) Methylene) Hydrazine-1-Carboxamide (4h)

To a solution of compound **2** ($R_1 = H$, 0.03 mol) in 10mL absolute alcohol, thiosemicarbazide (0.03 mol) was added and stirred for 2 h at room temperature. After cooling, the

precipitation was filtered and recrystallized with ethanol to give the compound **4h**.

3.1.6. Synthesis of N-Phenyl-2-((3-Phenyl-1H-Pyrazol-4-yl) Methylene) Hydrazine-1- Carboxamides(5a-5l)

To a solution of compound 2 (0.03 mol) in 10mL absolute alcohol, *N*-phenylhydrazinecarboxamide (0.03 mol) was added and refluxed for 2 h. After cooling, the precipitation was filtered and recrystallized with ethanol to give the compound **5a-5l**.

3.1.7. Synthesis of 2-((1-Substituted-3-Phenyl-1H-Pyrazol-4-yl) Methylene) Hydrazine-1- Carboxamides (6a-6c)

To a solution of compound **3** (0.01 mol) in 10mL of 50% alcohol, hydrazinecarboxamide hydrochloride (0.01 mol) was added and then refluxed for 1 h. After cooling, the solvent was evaporated in *vacu*o, followed by the purification of the resulting residue by silica gel column chromatography (dichloromethane/methanol = 60/1) to generate a pure solid **6a-6c**.

3.1.8. Synthesis of 2-((1-Methyl-3-Phenyl-1H-Pyrazol-4-yl) Methylene) Hydrazine-1- Carbothioamides(6d-6f)

To a solution of compound **3** ($R_1 = H$, 0.01 mol) in 10mL absolute alcohol, thiosemicarbazide (0.01 mol) was added and stirred for 4 h at room temperature. After cooling, the precipitation was filtered and recrystallized with ethanol to give the compound **6q-6f**.

3.1.9. Synthesis of 2-((1-Substituted-3-Phenyl-1H-Pyrazol-4yl) Methylene)-N-Phenylhydrazine-1-Carboxamides (7a-7c)

To a solution of compound **3** (0.01 mol) in 10mL absolute alcohol, *N*-phenylhydrazinecarboxamide (0.01 mol) was added and refluxed for 2 h. After cooling, the precipitation was filtered and recrystallized with ethanol to give the compound 7a-7c.

<u>3.1.9.1. 1-((3-Phenyl-1H-Pyrazol-4-yl) Methylidene) Semi-</u> carbazide (4a)

Mp 216-218°C, yield 82.1%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 6.33 (s, 2H, NH₂), 7.41-7.57 (m, 6H, Ph-H, N-NH), 7.94 (s, 1H, N-CH), 8.16 (s, 1H, CH=N), 9.95 (s, 1H, CONH). ¹³C-NMR (DMSO- d_6 , 75MHz): δ 157.19, 145.19, 134.25, 133.54, 131.38, 129.23, 128.73, 128.47, 114.92. ESI-HRMS calcd for C11H12N5O⁺ ([M + H]⁺): 230.1036; found: 230.1034.

3.1.9.2. 1-((3-(4-Fluorophenyl)-1H-Pyrazol-4-yl) Methylidene) Semicarbazide (4b)

Mp 196-200 °C, yield 53.7%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 6.58 (s, 2H, NH₂), 7.29-7.62 (m, 4H, Ph-H), 7.92 (s, 1H, N-CH), 8.17 (s, 1H, CH=N), 10.00 (s, 1H, CONH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 162.51 (d, ¹ J_{c-f} = 243.8 Hz), 157.28, 144.80, 133.60, 130.61 (d, ³ J_{c-f} = 8.3 Hz), 128.24, 128.21, 116.11 (d, ² J_{c-f} = 21.5 Hz), 114.87. ESI-HRMS calcd for C11H11FN5O⁺ ([M + H]⁺): 248.0942; found: 248.0935.

<u>3.1.9.3.</u> <u>1-((3-(4-Chlorophenyl)-1H-Pyrazol-4-yl)</u> <u>Methyli-</u> <u>dene)</u> Semicarbazide (4c)</u>

Mp 178-181°C, yield 66.8%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 5.09 (s, 2H, NH₂), 7.57 (q, 4H, J = 8.6 Hz,

Table 1. Inhibitory activity (MIC, µg/mL) of compounds 4a-4h, 5a-5l, 6a-6f, 7a-7c against different bacterial and fungal strains.

Compound	R ₁ -	R ₂ -	R 3-	Gram-positive Strains							Gram-negative Strains			
				26003 ^a	25923 ^b	32067 ^c	31968 ^d	29212 ^e	63501 ^f	25922 ^g	44568 ^h	27853 ⁱ	10104 ^j	98001 ^k
4a	Н	_	_	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
4b	F		_	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
4c	Cl		_	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
4d	Br		_	128	64	>128	>128	128	128	>128	>128	>128	>128	>128
4e	CH ₃			>128	128	>128	>128	>128	128	>128	>128	>128	>128	>128
4f	OCH ₃			>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
4g	ОН		_	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
4h	Н		_	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
5a	Н	Н	_	128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
5b	F	Н	_	128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
5c	Cl	Н	_	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
5d	Br	Н	_	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
5e	CH ₃	Н	_	128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
5f	OCH ₃	Н	_	128	64	>128	>128	>128	>128	>128	>128	>128	>128	>128
5g	OH	Н		>128	>128	>128	8	>128	>128	>128	>128	>128	>128	>128
5h	2,4-2Cl	Н	_	128	8	32	>128	32	128	>128	>128	>128	>128	>128
5i	NO ₂	Н	_	128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
5j	Н	F	_	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
5k	Н	Cl	_	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
51	Н	OCH ₃	_	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
6a	Н	_	CH ₃	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
6b	Н	_	C_3H_7	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
6c	Н	_	PhCH ₂ -	128	128	>128	>128	>128	128	>128	>128	>128	>128	>128
6d	Н	_	CH ₃	128	64	>128	128	>128	128	>128	128	128	64	>128
6e	Н	—	C_3H_7	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
6f	Н	_	PhCH ₂ -	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
7a	Н	_	CH ₃	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
7b	Н	_	C_3H_7	128	64	>128	>128	64	128	128	128	128	64	64

(Table 1) contd...

Compound	R1-	R ₂ -	R3-	Gram-positive Strains							Gram-negative Strains				
				26003 ^a	25923 ^b	32067 ^c	31968 ^d	29212 ^e	63501 ^f	25922 ^g	44568 ^h	27853 ⁱ	10104 ^j	98001 ^k	
7c	Н		PhCH ₂ -	128	64	>128	>128	128	128	>128	>128	128	128	128	
Penicillin				0.25	0.25	>128	>128	128	128	128	>128	>128	32	16	
Norfloxacin	_			0.25	0.25	>128	>128	1	2	0.25	0.25	2	4	1	
Gatifloxacin				0.25	0.25	>128	>128	1	2	0.25	0.25	2	2	1	
Moxifloxacin	_			0.25	0.25	>128	>128	1	2	0.25	0.25	2	4	0.5	
Oxacillin	_			0.25	0.25	>128	>128	128	>128	128	>128	>128	128	128	

^aStaphylococcus aureus CMCC(B)26003; ^bStaphylococcus aureus CMCC 25923; ^c Streptococcus pyogenes CMCC 32067; ^dStreptococcus pneumoniae CMCC 31968 ^eEnterococcus faecalis CMCC 29212; ^tBacillus subtilis CMCC 63501; ^gEscherichia coli CMCC 25922; ^hEscherichia coli CMCC 44568; ⁱPseudomonas aeruginosa CMCC 27853; ^jPseudomonas aeruginosa CMCC 10104; ^kCandida albicans CMCC 98001.

Ph-H), 7.94 (s, 1H, N-CH), 8.18 (s, 1H, CH=N), 9.97 (s, 1H, CONH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 157.20, 144.76, 133.46, 133.39, 133.33, 130.77, 130.20, 129.19, 115.09. ESI-HRMS calcd for C11H11ClN5O⁺ ([M + H]⁺): 264.0647; found: 264.0642.

3.1.9.4. 1-((3-(4-Bromophenyl)-1H-Pyrazol-4-yl) Methylidene) Semicarbazide (4d)

Mp 200-203°C, yield 54.3%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 5.04 (s, 2H, NH₂), 7.53 (d, 2H, J = 8.5 Hz, Ph-H), 7.68 (d, 2H, J = 8.5 Hz, Ph-H), 7.94 (s, 1H, N-CH), 8.18 (s, 1H, CH=N), 9.94 (s, 1H, CONH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 157.17, 144.83, 133.39, 133.27, 132.11, 131.14, 130.47, 121.99, 115.10. ESI-HRMS calcd for C11H11BrN50⁺ ([M + H]⁺): 308.0141; found: 308.0132.

<u>3.1.9.5.</u> 1-((3-(4-Methylphenyl)-1H-pyrazol-4-yl) Methylidene) Semicarbazide (4e)

Mp 243-246°C, yield 44.2%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 2.37 (s, 3H, CH₃), 6.29 (s, 2H, NH₂), 7.30 (d, 2H, J = 7.9 Hz, Ph-H), 7.44 (d, 2H, J = 7.9 Hz, Ph-H), 7.93 (s, 1H, N-CH), 8.12 (s, 1H, CH=N), 9.91 (s, 1H, CONH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 157.21, 138.26, 133.70, 129.80, 129.73, 128.96, 128.33, 120.13, 114.70, 21.27. ESI-HRMS calcd for C12H14N5O⁺ ([M + H]⁺): 244.1193; found: 244.1199.

<u>3.1.9.6.</u> <u>1-((3-(4-Methoxylphenyl)-1H-Pyrazol-4-yl) Me-</u> thylidene) Semicarbazide (4f)

Mp 239-241°C, yield 67.8%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 3.82 (s, 3H, OCH₃), 6.25 (s, 2H, NH₂), 7.06 (d, 2H, J = 8.4 Hz, Ph-H), 7.49 (d, 2H, J = 8.4 Hz, Ph-H), 7.92 (s, 1H, N-CH), 8.09 (s, 1H, CH=N), 9.90 (s, 1H, CONH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 159.84, 157.23, 144.51, 134.77, 133.80, 129.79, 123.49, 114.70, 114.44, 55.73. ESI-HRMS calcd for C12H14N5O2⁺ ([M + H]⁺): 260.1142; found: 260.1134.

3.1.9.7. 1-((3-(4-Hydroxyphenyl)-1H-Pyrazol-4-yl) Methylidene) Semicarbazide (4g)

Mp 266-272°C, yield 54.2%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 6.32 (s, 2H, NH₂), 6.89 (d, 2H, J = 8.5 Hz, Ph-

H), 7.36 (d, 2H, J = 8.5 Hz, Ph-H), 7.90 (s, 1H, N-CH), 8.06 (s, 1H, CH=N), 9.91 (s, 1H, CONH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 158.23, 157.28, 144.54, 135.12, 134.07, 129.81, 121.55, 116.07, 114.14. ESI-HRMS calcd for C11H12N5O2⁺ ([M + H]⁺): 246.0986; found: 246.0995.

<u>3.1.9.8. 1-((3-Phenyl-1H-Pyrazol-4-yl) Methylidene) Thi-</u> osemicarbazide (4h)

Mp 216-219°C, yield 64.4%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 7.43-7.56 (m, 6H, Ph-H, N-NH), 7.67 (s, 1H, NH₂), 7.97 (s, 1H, NH₂), 8.18 (s, 1H, N-CH), 8.23 (s, 1H, CH=N), 11.16 (s, 1H, NH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 177.54, 137.14, 134.70, 130.90, 129.34, 129.23, 129.04, 128.49, 114.27. ESI-HRMS calcd for C11H12N5S⁺ ([M + H]⁺): 246.0808; found: 246.0815.

3.1.9.9. N-Phenyl-2-((3-Phenyl-1H-Pyrazol-4-yl) Methylene) Hydrazinecarboxamide (5a)

Mp 200-223°C, yield 54%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 6.99-7.63 (m, 10H, Ph-H), 8.05 (s, 1H, N-CH), 8.37 (s, 1H, CONH), 8.63 (s, 1H, CH=N), 10.45 (s, 1H, CONH), 13.28 (s, 1H, pyrazol-NH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 153.34, 139.58, 135.02, 133.99, 133.64,129.28, 128.96, 128.83, 128.82, 128.58, 122.77, 119.89, 114.53. ESI-HRMS calcd for C17H16N5O⁺ ([M + H]⁺): 306.1349; found: 306.1345.

3.1.9.10. N-Phenyl-2-((3-(4-Fluorophenyl)-1H-Pyrazol-4yl) Methylene)Hydrazinecarboxamide(5b)

Mp 226-230°C, yield 60.8%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 6.99-7.67 (m, 9H, Ph-H), 8.03 (s, 1H, N-CH), 8.34 (s, 1H, CONH), 8.55 (s, 1H, CH=N), 10.39 (s, 1H, CONH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 162.58 (d, ¹ J_{c-f} = 244.1 Hz), 153.32, 139.56, 135.54, 134.88, 134.08, 130.72 (${}^{3}J_{c-f}$ = 8.3 Hz), 128.97, 128.35, 122.78, 119.85, 116.16 (${}^{2}J_{c-f}$ = 21.5 Hz), 114.54. ESI-HRMS calcd for C17H15FN5O⁺ ([M + H]⁺): 324.1255; found: 324.1265.

3.1.9.11. N-Phenyl-2-((3-(4-Chlorophenyl)-1H-Pyrazol-4yl) Methylene) Hydrazinecarboxamide(5c)

Mp 207-210°C, yield 79.1%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 7.00 (t, 1H, J = 7.3 Hz, Ph-H), 7.29 (t, 2H, J =

7.9 Hz, Ph-H), 7.55-7.65 (m, 6H, Ph-H), 8.05 (s, 1H, N-CH), 8.36 (s, 1H, CONH), 8.57 (s, 1H, CH=N), 10.49 (s, 1H, CONH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 153.28, 139.55, 134.83, 133.87, 133.46, 130.35, 129.21, 129.17, 128.99, 128.92, 122.75, 119.74, 114.68. ESI-HRMS calcd for C17H15ClN5O⁺ ([M + H]⁺): 340.0960; found: 340.0953.

3.1.9.12. N-Phenyl-2-((3-(4-Bromophenyl)-1H-Pyrazol-4yl) Methylene) Hydrazinecarboxamide (5d)

Mp 220-223°C, yield 46.4%. ¹H-NMR (DMSO-*d*₆, 300MHz): δ 7.01 (t, 1H, J = 7.3 Hz, Ph-H), 7.30 (t, 2H, J = 7.8 Hz, Ph-H), 7.55-7.73 (m, 6H, Ph-H), 8.03 (s, 1H, N-CH), 8.37 (s, 1H, CONH), 8.52 (s, 1H, CH=N), 10.45 (s, 1H, CONH), 13.31 (s, 1H, pyrazol-NH). ¹³C-NMR (DMSO-*d*₆,75MHz): δ 153.29, 139.49, 134.75, 132.14, 130.66, 129.09, 129.02, 122.80, 122.13, 121.83, 119.77, 118.58, 114.69. ESI-HRMS calcd for C17H15BrN5O⁺ ([M + H]⁺): 384.0454; found: 384.0467.

3.1.9.13. N-Phenyl-2-((3-(4-Methylphenyl)-1H-Pyrazol-4yl) Methylene) Hydrazinecarboxamide(5e)

Mp 200-201°C, yield 30.9%. ¹H-NMR (DMSO- d_6 , 300MHz): $\delta 2.38$ (s, 3H, CH₃), 7.01 (t, 1H, J = 7.3 Hz, Ph-H), 7.27-7.60 (m, 8H, Ph-H), 8.04 (s, 1H, N-CH), 8.30 (s, 1H, CONH), 8.56 (s, 1H, CH=N), 10.41 (s, 1H, CONH), 13.25 (s, 1H, pyrazol-NH). ¹³C-NMR (DMSO- d_6 ,75MHz): $\delta 153.35$, 139.56, 135.11, 129.85, 129.83, 129.02, 128.97, 128.49, 128.42, 122.76, 119.82, 118.59, 114.33, 21.29. ESI-HRMS calcd for C18H18N50⁺ ([M + H]⁺): 320.1506; found: 320.1497.

<u>3.1.9.14.</u> N-Phenyl-2-((3-(4-Methoxylphenyl)-1H-Pyrazol-4-yl) Methylene) Hydrazinecarboxamide(5f)

Mp 193°C, yield 72.3%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 3.82 (s, 3H, CH₃), 7.01 (t, 1H, J = 7.3 Hz, Ph-H), 7.08 (d, 2H, J = 8.6 Hz, Ph-H), 7.29 (t, 2H, J = 7.8 Hz, Ph-H), 7.52 (d, 2H, J = 8.6 Hz, Ph-H), 7.59 (d, 2H, J = 8.2 Hz, Ph-H), 8.02 (s, 1H, N-CH), 8.27 (s, 1H, CONH), 8.55 (s, 1H, CH=N), 10.38 (s, 1H, CONH). ¹³C-NMR (DMSO d_6 ,75MHz): δ 159.90, 153.35, 139.57, 135.29, 135.22, 129.99, 129.93, 129.08, 128.96, 122.76, 119.83, 114.72, 114.07, 55.73. ESI-HRMS calcd for C18H18N5O2⁺ ([M + H]⁺): 336.1455; found: 336.1459.

3.1.9.15. N-Phenyl-2-((3-(4-Hydroxyphenyl)-1H-Pyrazol-4yl) Methylene) Hydrazinecarboxamide(5g)

Mp 237-240°C, yield 63.5%. ¹H-NMR (DMSO-*d*₆, 300MHz): δ 6.91 (d, 2H, J = 8.2 Hz, Ph-H), 7.00 (t, 1H, J = 7.3 Hz, Ph-H), 7.29 (t, 2H, J = 7.6 Hz, Ph-H), 7.40 (d, 2H, J = 8.2 Hz, Ph-H), 7.62 (d, 2H, J = 7.9 Hz, Ph-H), 8.01 (s, 1H, N-CH), 8.26 (s, 1H, CONH), 8.61 (s, 1H, CH=N), 9.87 (s, 1H, OH), 10.39 (s, 1H, CONH), 13.16 (s, 1H, pyrazol-NH). ¹³C-NMR (DMSO-*d*₆,75MHz): δ 158.31, 153.38, 139.60, 135.44, 135.38, 129.94, 129.82, 128.97, 122.74, 122.66, 119.86, 116.09, 113.81. ESI-HRMS calcd for C17H16N5O2⁺ ([M + H]⁺): 322.1299; found: 322.1304.

3.1.9.16. N-Phenyl-2-((3-(2,4-Dichlorophenyl)-1H-Pyrazol-4-yl) Methylene) Hydrazinecarboxamide(5h)

Mp 198-201°C, yield 50.4%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 7.01 (t, 1H, J = 7.0 Hz, Ph-H), 7.29 (t, 2H, J =

7.7 Hz, Ph-H), 7.43-7.79 (m, 6H, Ph-H, N-CH), 7.99 (s, 1H, CONH), 8.39 (s, 1H, CH=N), 10.45 (s, 1H, CONH), 13.39 (s, 1H, pyrazol-NH). ¹³C-NMR (DMSO- d_{6} ,75MHz): δ 153.10, 146.41, 146.34, 139.20, 134.58, 134.52, 134.43, 134.00, 130.00, 129.46, 129.11, 127.87, 122.86, 119.51, 115.93. ESI-HRMS calcd for C17H14Cl2N5O⁺ ([M + H]⁺): 374.0570; found: 374.0566.

3.1.9.17. N-Phenyl-2-((3-(4-Nitrophenyl)-1H-Pyrazol-4-yl) Methylene) Hydrazinecarboxamide(5i)

Mp 233-236°C, yield 45%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 7.01 (t, 1H, J = 7.2 Hz, Ph-H), 7.28 (t, 2H, J = 7.7 Hz, Ph-H), 7.56 (d, 2H, J = 8.0 Hz, Ph-H), 7.93 (d, 2H, J = 8.5 Hz, Ph-H), 8.11 (s, 1H, N-CH), 8.34 (d, 2H, J = 8.5 Hz, Ph-H), 8.48 (s, 1H, CONH), 8.57 (s, 1H, CH=N), 10.54 (s, 1H, CONH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 153.26, 147.31, 139.48, 139.34, 134.42, 129.53, 129.04, 128.98, 124.32, 124.24, 122.83, 119.79, 115.59. ESI-HRMS calcd for C17H15N6O3⁺ ([M + H]⁺): 351.1200; found: 351.1200.

<u>3.1.9.18.</u> N-(4-Fluorophenyl)-2-((3-Phenyl-1H-Pyrazol-4yl) Methylene) Hydrazinecarboxamide (5j)

Mp 236-240°C, yield 41.4%. ¹H-NMR (DMSO-*d*₆, 300MHz): δ 7.13 (t, 2H, J = 8.9 Hz, Ph-H), 7.45-7.65 (m, 7H, Ph-H), 8.01 (s, 1H, N-CH), 8.35 (s, 1H, CONH), 8.69 (s, 1H, CH=N), 10.42 (s, 1H, CONH), 13.18 (s, 1H, pyrazol-NH). ¹³C-NMR (DMSO-*d*₆,75MHz): δ 158.15 (d, ¹*J*_{c-f} = 237.0 Hz), 153.48, 135.96 (⁴*J*_{c-f} = 2.3 Hz), 135.05, 129.29, 128.84, 128.80, 128.55, 128.49, 121.79 (³*J*_{c-f} = 7.7 Hz), 121.42, 115.43 (²*J*_{c-f} = 22.0 Hz), 114.56. ESI-HRMS calcd for C17H15FN50⁺ ([M + H]⁺): 324.1255; found: 324.1259.

<u>3.1.9.19.</u> N-(4-Chlorophenyl)-2-((3-Phenyl-1H-Pyrazol-4yl) Methylene) Hydrazinecarboxamide (5k)

Mp 237-240°C, yield 78.2%. ¹H-NMR (DMSO-*d*₆, 300MHz): δ 7.34 (t, 2H, J = 8.7 Hz, Ph-H), 7.48-7.59 (m, 5H, Ph-H), 7.67 (t, 2H, J = 8.8 Hz, Ph-H), 8.05 (s, 1H, N-CH), 8.36 (s, 1H, CONH), 8.78 (s, 1H, CH=N), 10.50 (s, 1H, CONH), 13.43 (s, 1H, pyrazol-NH). ¹³C-NMR (DMSO-*d*₆,75MHz): δ 153.28, 138.68, 135.30, 129.36, 129.30, 128.85, 128.79, 128.74, 128.56, 128.50, 126.34, 121.42, 114.49. ESI-HRMS calcd for C17H15CIN5O⁺ ([M + H]⁺): 340.0960; found: 340.0952.

<u>3.1.9.20 N-(4-Methoxyphenyl)-2-((3-Phenyl-1H-Pyrazol-4-yl) Methylene) Hydrazinecarboxamide (51)</u>

Mp 210-212°C, yield 61.6%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 3.74 (s, 3H, CH₃), 6.88 (d, 2H, J = 8.9 Hz, Ph-H), 7.45-7.61 (m, 7H, Ph-H), 8.05 (s, 1H, N-CH), 8.34 (s, 1H, CONH), 8.49 (s, 1H, CH=N), 10.33 (s, 1H, CONH), 13.05 (s, 1H, pyrazol-NH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 155.29, 153.59, 134.68, 132.61, 131.45, 129.27, 129.18, 128.87, 128.81, 128.56, 121.81, 114.63, 114.15, 55.64. ESI-HRMS calcd for C18H18N5O2⁺ ([M + H]⁺): 336.1455; found: 336.1451.

<u>3.1.9.21. 1-((1-Methyl-3-Phenyl-1H-Pyrazol-4-yl) Methyli-</u> <u>dene) Semicarbazide (6a)</u>

Mp 221-222°C, yield 46.2%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 3.72 (s, 3H, NCH₃), 6.23 (s, 2H, NH₂), 7.44-7.56

(m, 5H, Ph-H), 7.57 (s, 1H, N-CH), 7.99 (s, 1H, CH=N), 9.83 (s, 1H, NH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 156.01, 140.87, 135.49, 131.84, 129.24, 128.47, 128.27, 127.93, 115.72, 36.39. ESI-HRMS calcd for C12H14N5O⁺ ([M + H]⁺): 244.1193; found: 244.1189.

3.1.9.22. 1-((3-Phenyl-1-Propyl-1H-Pyrazol-4-yl) Methylidene) Semicarbazide (6b)

Mp156-161°C, yield 56.3%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 0.89 (t, 3H, J = 7.3 Hz, CH₃), 1.82-1.89 (m, 2H, CH₂), 4.11 (t, 2H, J = 6.7 Hz, NCH₂), 6.27 (s, 2H, NH₂), 7.39-7.58 (m, 5H, Ph-H), 7.94 (s, 1H, N-CH), 8.27 (s, 1H, CH=N), 9.93 (s, 1H, NH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 157.19, 149.37, 133.55, 133.47, 130.22, 128.98, 128.42, 128.26, 115.29, 53.76, 23.46, 11.43. ESI-HRMS calcd for C14H18N50⁺ ([M + H]⁺): 272.1506; found: 272.1498.

3.1.9.23. 1-((1-Benzyl-3-Phenyl-1H-Pyrazol-4-yl) Methylidene) Semicarbazide (6c)

Mp 143-144°C, yield 66.0%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 5.39 (s, 2H, CH₂), 5.77 (s, 2H, NH₂), 7.32-7.57 (m, 10H, Ph-H), 7.92 (s, 1H, N-CH), 8.37 (s, 1H, CH=N), 9.96 (s, 1H, NH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 157.15, 149.85, 137.44, 133.42, 133.32, 130.54, 129.12, 129.02, 128.48, 128.39, 128.31, 128.20, 115.95, 55.78. ESI-HRMS calcd for C18H18N5O⁺ ([M + H]⁺): 320.1506; found: 320.1511.

3.1.9.24. 1-((1-Methyl-3-Phenyl-1H-Pyrazol-4-yl) Methylidene) Thiosemicarbazide (6d)

Mp 168°C, yield 45.2%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 3.90 (s, 3H, CH₃), 7.40-7.57 (m, 5H, Ph-H), 7.61 (s, 1H, NH₂), 8.07 (s, 1H, NH₂), 8.17 (s, 1H, N-CH), 8.32 (s, 1H, CH=N), 11.19 (s, 1H, NH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 177.74, 150.33, 136.71, 133.12, 131.64, 129.06, 128.47, 128.41, 115.03, 55.87.ESI-HRMS calcd for C12H14N5S⁺ ([M + H]⁺): 260.0964; found: 260.0960.

<u>3.1.9.25. 1-((3-Phenyl-1-Propyl-1H-Pyrazol-4-yl) Methyli-</u> dene) Thiosemicarbazide (6e)

Mp 179-180°C, yield 60.3%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 0.88 (t, 3H, J = 7.3 Hz, CH₃), 1.82-1.89 (m, 2H, CH₂), 4.11 (t, 2H, J = 6.8 Hz, NCH₂), 7.40-7.58 (m, 5H, Ph-H), 7.65 (s, 1H, NH₂), 8.09 (s, 1H, NH₂), 8.19 (s, 1H, N-CH), 8.38 (s, 1H, CH=N), 11.20 (s, 1H, NH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 177.74, 150.19, 136.74, 133.24, 130.75, 129.04, 128.54, 128.43, 114.78, 53.89, 23.40, 11.43. ESI-HRMS calcd for C14H18N5S⁺ ([M + H]⁺): 288.1277; found: 288.1273.

3.1.9.26. 1-((1-Benzyl-3-Phenyl-1H-Pyrazol-4-yl) Methylidene) Thiosemicarbazide (6f)

Mp 146-147°C, yield 46.5%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 5.40 (s, 2H, CH₂), 7.68 (s, 1H, NH₂), 7.33-7.58 (m, 10H, Ph-H), 8.10 (s, 1H, NH₂), 8.18 (s, 1H, N-CH), 8.47 (s, 1H, CH=N), 11.21 (s, 1H, NH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 177.77, 150.62, 137.27, 136.61, 133.01,

131.05, 129.15, 129.07, 128.56, 128.49, 128.37, 128.23, 115.43, 55.90. ESI-HRMS calcd for C18H18N5S⁺ ([M + H]⁺): 336.1277; found: 336.1274.

<u>3.1.9.27.</u> N-Phenyl-2-((1-Methyl-3-Phenyl-1H-Pyrazol-4yl) Methylene) Hydrazinecarboxamide (7a)

Mp 187-191°C, yield 68.2%. ¹H-NMR (DMSO- d_6 , 300MHz): δ 3.94 (s, 3H, NCH₃), 7.01 (t, 1H, J = 7.2 Hz, Ph-H), 7.30 (t, 2H, J = 7.5 Hz, Ph-H), 7.42-7.60 (m, 7H, Ph-H), 8.03 (s, 1H, N-CH), 8.40 (s, 1H, CONH), 8.55 (s, 1H, CH=N), 10.43 (s, 1H, CONH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 153.30, 149.83, 139.53, 134.83, 133.40, 131.70, 129.06, 129.00, 128.50, 128.40, 122.80, 119.79, 115.19, 55.36.ESI-HRMS calcd for C18H18N5O⁺ ([M + H]⁺): 320.1506; found: 320.1510.

3.1.9.28. N-Phenyl-2-((1-Propyl-3-Phenyl-1H-Pyrazol-4-yl) Methylene) Hydrazinecarboxamide (7b)

Mp 163-164°C, yield 57.2%. ¹H-NMR (DMSO-*d*₆, 300MHz): δ 0.91 (t, 3H, J = 7.3 Hz, CH₃), 1.82-1.92 (m, 2H, CH₂), 4.14 (t, 2H, J = 6.9 Hz, NCH₂), 7.01 (t, 1H, J = 7.3 Hz, Ph-H), 7.27-7.61 (m, 9H, Ph-H), 8.04 (s, 1H, N-CH), 8.44 (s, 1H, CONH), 8.58 (s, 1H, CH=N), 10.45 (s, 1H, CONH). ¹³C-NMR (DMSO-*d*₆,75MHz): δ 153.32, 149.76, 139.52, 134.95, 133.49, 130.81, 129.05, 129.00, 128.54, 128.38, 122.81, 119.83, 114.88, 53.84, 23.55, 11.44. ESI-HRMS calcd for C20H22N5O⁺ ([M + H]⁺): 348.1819; found: 348.1814.

3.1.9.29. N-Phenyl-1-((1-Benzyl-3-Phenyl-1H-Pyrazol-4-yl) Methylidene) Semicarbazide (7c)

Mp 201-203°C, yield 56.5 %. ¹H-NMR (DMSO- d_6 , 300MHz): δ 5.43 (s, 2H, NCH₂), 7.01 (t, 1H, J = 6.5 Hz, Ph-H), 7.30-7.59 (m, 14H, Ph-H), 8.05 (s, 1H, N-CH), 8.54 (s, 1H, CONH), 8.59 (s, 1H, CH=N), 10.46 (s, 1H, CONH). ¹³C-NMR (DMSO- d_6 ,75MHz): δ 153.31, 150.23, 139.51, 137.44, 134.80, 133.26, 131.18, 129.14, 129.08, 128.99, 128.60, 128.51, 128.32, 128.14, 122.82, 119.87, 115.52, 55.81. ESI-HRMS calcd for C24H22N50⁺ ([M + H]⁺): 396.1819; found: 396.1819.

3.2. Pharmacology

3.2.1. Cell Line and Reagents

Mouse RAW264.7 macrophage cell line was obtained from the China Cell Bank (Beijing, China). Fetal bovine serum was purchasedfrom Biological Industries (Kibbutz Beit-Haemek, Israel). LPS waspurchased from Sigma (St. Louis, MO, USA), and was dissolved in PBS. DXMS and compounds were dissolved in DMSO for *in vitro* experiments.

3.2.2. Cell Treatment and ELISA Assay (TNF-a)

Mouse RAW264.7 macrophages were cultured in RPMI 1640 medium (Zhejiang Tianhang Biotechnology Co.,Ltd.) supplemented with 10% FBS, 100 U/mL penicillin, and 100 μ g/mL streptomycin at 37 C with 5% CO₂. Cells were pre-treated with test compounds (20 μ g/mL), DXMS (20 μ g/mL) or vehicle control for 4 h, then treated with LPS (1 μ g/ml) for 24 h. After treatment, the supernatant was separated and used

for the determination of levels of TNF- α by ELISA using mouse TNF- α ELISA Kits Biolegend (San diego, CA, USA).

3.2.3. Xylene-induced Ear-edema Model

In this screening, selected compounds were evaluated to evaluate their anti-inflammatory activity via in vivo inhibition assay of xylene-induced ear edema in mice [21, 22]. Compounds and DXMS were dissolved in DMSO and administered to mice intraperitoneally at a dose of 50 mg/kg (0.05 mL/20 g body weight). Control group received vehicle only. Thirty minutes after administration, mice were used in the xylene-induced ear-edema test (20 µL xylene was daubed by a micropipette on the surface of the right ear of each mouse). After 30 min, mice were sacrificed, and a cylindrical tissue plug (7 mm diameter) was excised from both ears of mice. Edema was quantified by measuring the difference in weight between the plugs from the right and left ears. Antiinflammatory activity was expressed as the percent reduction in edema in comparison with the control group. The DXMS was tested in parallel as a reference drug.

3.2.4. Evaluation of Anti-bacterial Activity In Vitro

The anti-bacterial activity *in vitro* against six grampositive strains (*S. aureus* (CMCC(B) 26003 and CMCC 25923), *S. pyogenes* CMCC 32067, *S. pneumoniae* CMCC 31968, *Enterococcusfaecalis* CMCC 29212, and Bacillus subtilis CMCC 63501), four gram-negative strains (*E. coli* (CMCC 25922 and CMCC 44568) and *P. aeruginosa* (CMCC 27853 and CMCC 10104)), and a Fungistrain (Candida albicans CMCC 98001) was evaluated using a two-fold serial dilution technique [23]. Test bacteria were grown to mid-log phase in Mueller-Hinton broth (MHB) or Tryptone Soya Broth (TSB) and diluted 1000-fold in the same medium. The bacteria of 10^5 CFU/mL were inoculated into MHB or TSB and dispensed at 200 µL/well in a 96-well microtiter

plate. Penicillin, norfloxacin, gatifloxacin, moxifloxacin, and oxacillin were used as positive controls. The inhibition activities of test compounds and positive drugs were expressed as MIC value, which was defined as the concentration of a test sample that completely inhibited bacteria growth during 24 h incubation at 37 °C. Bacteria growth was determined by measuring the absorption at 630 nm using a microtiter enzyme-linked immunosorbent assay (ELISA) reader. All experiments were carried out three times in parallel.

4. RESULTS AND DISCUSSION

4.1. Anti-inflammatory Activity

4.1.1. In Vitro Inhibition LPS-induced TNF-a Release

Lipopolysaccharide (LPS), an endotoxin of gramnegative bacterial cell walls, is thought to be a major risk factor in initiating the inflammatory processes by stimulating the release of inflammatory cytokines, such as tumor necrosis factor (TNF- α) [24]. The LPS-induced TNF- α release model was considered to be the effective screening method for new anti-inflammatory agents in vitro. In the current study, compounds (4a-4h, 5a-5l, 6a-f, and 7a-7c) were evaluated for their anti-inflammatory activity based on their ability to inhibit TNF-a release in LPS-stimulated RAW264.7 mouse macrophages. The cells were seeded and pretreated with the test compounds or dexamethasone (DXMS) at a concentration 20 µg/mL for 4 h before treatment with LPS (1 µg/mL) for 24 h at 37 °C. Cell-free supernatants were collected and analyzed for levels of TNF- α using an ELISA kit. The screen results of target compounds and positive control DXMS are shown in Fig. (1).

As shown in Fig. (1), most of the tested compounds significantly inhibited LPS-induced TNF- α generation *in vitro*.

Fig. (1). Anti-inflammatory activities of the compounds 4a-4h, 5a-5l, 6a-f, and 7a-7c in the LPS-induced TNF-a release test in RAW264.7 macrophage. The results are expressed as the level of TNF- α . Each bar represents mean \pm SEM of three parallel experiments. Values are significant at *p < 0.05, **p < 0.01, ***p < 0.001 as compared to the LPS group (all comparisons were made by ANOVA followed by Dunnett's test).

Fig. (2). Anti-inflammatory activities of the compounds 4g, 5i, 6b, and 7b in the xylene-induced ear-edema test in mice. The test compounds and DXMS were administered *i.e.* at a dose of 50 mg/kg, and edema was quantified after30 min. ** p<0.01 and *** p<0.001 compared with the control group (all comparisons were made by ANOVA followed by Dunnett's test).

Among these compounds, 4g, 5a, 5b, 5g, 5i, 6b, 6d, 6e, 7a, 7b, and 7c exhibited strong inhibition (inhibitory rates>50%). Compounds 4g, 5i, 6b, and 7b showed 66.6%, 64.3%, 65.2%, and 65.2% inhibition, respectively. The positive control drug DXMS exhibited an inhibition rate of 77.2% at the same concentration (20 μ g/mL).

The series of compounds 4a-4g showed relatively weaker anti-inflammatory activity than the other three series of compounds. SARs of this series indicated that the fluorine and hydroxyl moieties could significantly increase the cytokineinhibitory ability but other substituents such as Cl, Br, CH₃, and OCH₃ groups markedly decrease the inhibitory ability. The replacement of =O with =S in compound 4ayielded compound 4h, which did not show markedly improved cytokineinhibitory ability. The introduction of aryl groups at the terminal N atom in series 4 produced compounds 5a-51. In this series, compounds 5a, 5b, 5g, and 5i, containing hydrogen, fluorine, hydroxyl, and nitro groups, respectively, exhibited better inhibitory ability compared to the others. This was similar to the results obtained for series 4. In addition, the introduction of substituents at the R₂ position lowered the anti-inflammatory activity, such as in compounds 5j-5l. The introduction of alkyl groups to the pyrazole ring in the compounds 4a and 4h produced compounds 6a-6c and 6d-6f, respectively. From scheme 1, it can be observed that this modification enhanced the cytokine-inhibitory ability, and the compounds with methyl and propyl groups (6a, 6b, 6d, 6e) showed better inhibitory activity than the benzylsubstituted compounds (6c and 6f). Similarly, the introduction of alkyl groups at the pyrazole ring in compound 5a gave compounds 7a-7c, in which compound 7b, with a propyl group, exhibited the best activity.

4.1.2. In Vivo Inhibition of Xylene-induced Ear Edema

Xylene-induced edema leads to an acute inflammatory response and is known to cause severe vasodilation and edematousskin changes, partially associated with phospholipase A2 (PLA2) [25, 26]. Xylene treatment in mice increases the release of inflammatory mediators, such as histamine, serotonin, bradykinin, and TNF- α . Based on the *in vitro* inhibitory effects of our test compounds toward TNF- α expression, the in vivo anti-inflammatory activity of four compounds, 4g, 5i, 6b, and 7b, were evaluated using thexyleneinduced ear edema mouse model. In this test, dimethyl sulfoxide (DMSO) was used as the vehicle, and DXMS was used as the positive control. Anti-inflammatory activity was defined by the ability of each compound to prevent edema. As shown in Fig. (2), all four tested compounds and DXMS inhibited the ear edema, though the edema after treatment with compound 4g was not significantly different from that in the control group. Compound 7b inhibited edema by 48.63 %, which was more effective than DXMS at inhibiting xylene-induced ear edema (44.86 %). The in vivo activities of the tested compounds did not correlate with previous in vitro data. This may be due to the different bioavailability and pharmacokinetic profiles of these compounds. Compound 7b, which has more lipophilic groups, showed better membrane permeability and higher in vivo activity.

4.2. Antimicrobial Activity

All test target compounds were evaluated for their *in vitro* anti-bacterial activity using a serial dilution method to obtain the minimum inhibitory concentration (MIC) against several gram-positive and gram-negative bacterial and fungal strains and fungi strain. Penicillin, Norfloxacin, Gatifloxacin, Moxifloxacin, and Oxacillin were used as positive control drugs.

The results of antimicrobial screening are described as MIC values and listed in Table 1. Eleven of the tested compounds showed antimicrobial activity against different strains with MIC values ranging from 8 to 128 µg/mL.Compounds 4d, 5a, 5b, 5e, 5f, 5g, 5h, 6c, and 6d exhibited moderate inhibition activity against gram-positive strains. Compounds 5g and 5h exhibited the most potent inhibitory activities, with an MIC value of 8 µg/mL against the *Streptococcus pneumoniae CMCC 31968* and *Staphylococcus aureus CMCC 25923*, respectively. Compounds 6d, 7b and 7c inhibited more than seven bacterial strains, including gram-negative

strains, and were considered as broad-spectrum antimicrobial compounds. Additionally, compounds **7b** and **7c** showed inhibitory activities against the fungi *Candida albicans CMCC 98001*.

CONCLUSION

It can be concluded that pyrazoles, with (thio)semicarbazone moieties, have the potential to be developed into new anti-inflammatory agents. A majority of synthesized compounds exhibited potent TNF- α inhibitory activity, and **5i**, **6b**, and **7b** were shown to have comparable *in vivo* anti-inflammatory activity to the reference drug, DXMS. On the other hand, compounds **6d**, **7b**, and **7c** displayed broadspectrum antimicrobial activity against several gram-positive and gram-negative bacteria. Compound **7b** is worth investigating further because it exhibited both anti-inflammatory and antimicrobial activities and can be used as a lead compound for the development of a new class of dual antiinflammatory-antimicrobial agents.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

After review of the procedure and aim of this study, local ethical committee approval was obtained.

HUMAN AND ANIMAL RIGHTS

No humans were used in this study. All Procedures involving animals and their care were conducted in accordance with the Guide for the Care and Use of Laboratory Animals, 8th Edition, National Academies Press, Washington DC.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

The data that support the findings of this study are available from the corresponding author, [A.L. Pereora-Suarez], upon reasonable request.

FUNDING

This work was supported by the National Natural Science Foundation of China (No. 21562028, No.81560561) and the Doctoral Foundation of Jinggangshan University (No. JZB1316).

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

 Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1beta generation. *Clin. Exp. Immunol.*, 2007, 147, 227-235.

- [2] Tilg, H.; Moschen, A.R. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. *Nat. Rev. Immunol.*, 2006, 6, 772-783.
- [3] Philip, M.D.A.; Rowley, H.; Schreiber, H. Inflammation as a tumor promoter in cancer induction. *Semin. Cancer Biol.*, 2004, 14, 433-439.
- [4] Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. *Cell*, 2010, 140, 883-899.
- [5] Duncan, S.A.; Baganizi, D.R.; Sahu, R.; Singh, S.R.; Dennis, V.A. SOCS proteins as regulators of inflammatory responses induced by bacterial infections: A review. *Front Microbiol.*, 2017, 8, 2431.
- [6] Bekhit, A.A.; Abdel-Aziem, T. Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatoryantimicrobial agents. *Bioorg. Med. Chem.*, 2004, 12, 1935-1945.
- [7] Palomer, A.; Cabré, F.; Pascual, J.; Campos, J.; Trujillo, M.A.; Entrena, A.; Gallo, M.A.; García, L.; Mauleón, D.; Espinosa, A. Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models. J. Med. Chem., 2002, 45, 1402-1411.
- [8] Mandour, A.H.; El-Sawy, E.R.; Shaker, K.H.; Mustafa, M.A. Synthesis, anti-inflammatory, analgesic and anticonvulsant activities of 1,8-dihydro-1-ary1-8-alkyl pyrazolo(3,4-b)indoles. *Acta. Pharm.*, 2010, 60, 73-88.
- [9] Tageldin, G.N.; Fahmy, S.M.; Ashour, H.M.; Khalil, M.A.; Nassra, R.A.; Labouta, I.M. Design, synthesis and evaluation of some pyrazolo[3,4-d] pyrimidines as anti-inflammatory agents. *Bioorg. Chem.*, 2018, 78, 358-371.
- [10] Gupta, S.K.; Khanal, P.; Kumar, A.; Kumar, A.; Srivastava, N.; Yogi, B.; Sinha, A. Synthesis, characterization of ethyl 5-(substituted)-1H-pyrazole-3-carboxylate derivative as potent antiinflammatory agents. *Anti-Inflamm. Anti-Allergy Agents Med. Chem.*, 2018, 17, 32-38.
- [11] Song, M.X.; Zheng, C.J.; Deng, X.Q.; Sun, L.P.; Wu, Y.; Hong, L.; Li, Y.J.; Liu, Y.; Wei, Z.; Jin, M.J.; Piao, H.R. Synthesis and antibacterial evaluation of rhodanine-based 5-aryloxy pyrazoles against selected methicillin resistant and quinolone-resistant *Staphylococcus aureus* (MRSA and QRSA). *Eur. J. Med. Chem.*, **2013**, *60*, 376-385.
- [12] Barakat, A.; Al-Majid, A.M.; Al-Qahtany, B.M.; Ali, M.; Teleb, M.; Al-Agamy, M.H.; Naz, S.; Ul-Haq, Z. Synthesis, antimicrobial activity, pharmacophore modeling and molecular docking studies of new pyrazole-dimedone hybrid architectures. *Chem. Cent. J.*, 2018, 12, 29.
- [13] Bhat, M.; Poojary, B.; Kalal, B.S.; Gurubasavaraja-Swamy, P.M.; Kabilan, S.; Kumar, V.; Shruthi, N.; Alias Anand, S.A.; Pai, V.R. Synthesis and evaluation of thiazolidinone-pyrazole conjugates as anticancer and antimicrobial agents. *Future Med. Chem.*, **2018**, *10*, 1017-1036.
- [14] Abdellatif, K.R.A.; Bakr, R.B. New advances in synthesis and clinical aspects of pyrazolo[3,4-d] pyrimidine scaffolds. *Bioorg. Chem.*, 2018, 78, 341-357.
- [15] Mathew, B.; Suresh, J.; Anbazhagan, S.; Dev, S. Molecular Docking Studies of Some Novel Antidepressant 5-Substituted Phenyl-3-(Thiophen-2-yl)-4, 5-Dihydro-1h-Pyrazole-1-Carboxamides Against Monoamine Oxidase Isoforms. *Cent. Nerv. Syst. Agents Med. Chem.*, 2016, 16, 75-80.
- [16] Wu, Y.; Huang, Y.P.; Zhou, S.C.; Tan, Y.Q.; Xu, B.G.; Liang, Z.; Deng, X.Q. Synthesis of 1,3-diaryl pyrazole derivatives and evaluation of anticonvulsant and antimicrobial activities. *Lat. Am. J. Pharm.*, 2018, 37, 1017-1027.
- [17] Wang, Y.; Gu, W.; Shan, Y.; Liu, F.; Xu, X.; Yang, Y.; Zhang, Q.; Zhang, Y.; Kuang, H.; Wang, Z.; Wang, S. Design, synthesis and anticancer activity of novel nopinone-based thiosemicarbazone derivatives. *Bioorg. Med. Chem. Lett.*, **2017**, *27*, 2360-2363.
- [18] Hariri, E.; Mahboubi, A.; Fathi, M.; Rahmani, P.; Mohammad E.T.K.; Babaeian, M.; Mashayekhi, V.; Kobarfard, F. Synthesis and antibacterial activity of novel hydroxysemicarbazone derivatives. *Iran J. Pharm. Res.*, **2016**, *15(Suppl)*, 29-35.
- [19] Mohsin, A.S.M.; Jesmin, M.; Abul-Kalam A.M.; Khairul Islam, M.; Zahan, R. Anti-inflammatory and analgesic activities of acetophenonesemicarbazone and benzophenone semicarbazone. *Asian Pac. J. Trop. Biomed.*, 2012, *2*, S1036-S1039.
- [20] Subhashree, G.R.; Haribabu, J.; Saranya, S.; Yuvaraj, P.; Anantha-Krishnan, D.; Karvembu, R.; Gayathri, D. *In vitro* antioxidant, antiinflammatory and *in silico* molecular docking studies of thiosemicarbazones. J. Mol. Struct., 2017, 1145, 160-169.

- [21] Wang, Y.; Chen, P.; Tang, C.; Wang, Y.; Li, Y.; Zhang, H. Antinociceptive and anti-inflammatory activities of extract and two isolated flavonoids of Carthamustinctorius L. J. Ethnopharmacol., 2014, 151, 944-950.
- [22] Wen, X.; Wang, S.B.; Liu, D.C.; Gong, G.H.; Quan, Z.S. Synthesis and evaluation of the anti-inflammatory activity of quinoline derivatives. *Med. Chem. Res.*, 2015, 24, 2591-2603.
- [23] Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard M7-A6; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2003.
- [24] Waseem, T.; Duxbury, M.; Ito, H.; Ashley, S.W.; Robinson, M.K. Exogenous ghrelin modulates release of pro-inflammatory and antiinflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. *Surgery*, 2008, 143, 334-342.
- [25] Luber-Narod, J.; Austin-Ritchie, T.; Hollins, C.; Menon, M.; Malhotra, R.K.; Baker, S.; Carraway, R.E. Role of substance P in several models of bladder inflammation. *Urol. Res.*, **1997**, *25*, 395-399.
- [26] Kim, H.D.; Cho, H.R.; Moon, S.B.; Shin, H.D.; Yang, K.J.; Park, B.R.; Jang, H.J.; Kim, L.S.; Lee, H.S.; Ku, S.K. Effects of β-glucan from Aureobasidium pullulans on acute inflammation in mice. *Arch. Pharmacal. Res.*, **2007**, *30*, 323-328.