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ABSTRACT: An efficient [4+1C]insert approach to the coupling of enaminones with donor/acceptor or donor/donor carbenes by 
AgOTf catalyzed C‒C bond carbenoid formal insertion/cyclization/[1,5]-shift cascade reaction was successfully developed, 
providing distinct chemo- and regio-selective multisubstituted pyrroles. The plausible reaction mechanism involves two catalytic 
cycles: in the first one, silver ions regioselectively catalyze the C–C bond formal insertion reaction; in the second one, silver ions 
chemo- and regio-selectively control the cyclization and [1,5]-shift reactions. This method not only provides convenience and 
applies atom economy in the synthesis multisubstituted pyrroles but also presents an entry point for further pyrrole diversification 
via facile modification of resulting 4-H-pyrrole products, as displayed by a short formal synthesis of the natural product lamellarin 
L.

KEYWORDS: C–C insertion, [4+1C], [1,5]-shift, cascade,  pyrrole.

Multisubstituted pyrroles, which are valuable five-membered 
heterocycles, are found in various biologically active natural 
products, pharmaceuticals, and materials.1 Various synthetic 
strategies, including [4+1N], [3+2], and [2+2+1] cycloaddition 
or coupling (Scheme 1a), have been developed toward pyrrole 
architecture. 2,3 However, the direct, region-defined synthesis 
of multisubstituted pyrroles remains a significant challenge.2a, 

2c,4 To develop a complementary approach to diversely 
substituted pyrroles, we envisage the retrosynthetic possibility 
of knocking out a carbon atom on the pyrrole ring to design a 
[4+1C]insert cascade reaction (Scheme 1b).5

Remarkable progress in metal-/organo-catalytic cascade 
reactions has been reported over the past two decades.6 
Exploring new types of cascade transformation attracts 
considerable research interest. Transition metal-catalyzed 
carbon insertion into C–C bond is recently emerging as a 
promising synthetic process;7,8 however, this type of reaction 
is rarely used to initiate a cascade transformation.9 To expand 
the classes and utilities of cascade transformation, we report 
on a type of cascade transfromation involving a previously 
unreported AgOTf catalyzed carbenoid C–C bond insertion 
into enaminone10 compounds, which chemoselectively and 
regioselectively yield multisubstituted pyrroles. The Bi 
research group recently disclosed a formal insertion of diazo 
compounds into the C–C bond of 1,3-dicarbonyl species to 
produce acyclic 1,4-dicarbonyl products.8a,8j No previous 
studies the synthesis of pyrrole by C–C insertion cascade have 
thus far been reported. Our [4+1C]insert cascade reaction not 
only represents a new type of cascade transformation but also 
constitutes a complementary process toward multisubstituted 
pyrroles with excellent chemo- and regio-selectivities.

Scheme 1. Synthetic Strategies Used to Prepare Pyrroles
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α-Diazocarbonyl compounds are important synthons 
exhibiting rich and unexpected chemistry.7a,7c,11 Many research 
groups,12 including Wang,12a Feng,9a Beller,12g and our 
group,12c have demonstrated that metal carbene originating 
from α-diazocarbonyl compounds can engage in cascade 
reactions where the metal carbene triggers subsequent inter-
/intramolecular transformation. Enaminones have also recently 
attracted particular attention because of the unique push–pull 
electronic properties of the C–C double bond.13 On the basis of 
achievements in carbene chemistry by silver–catalysis,14 we 
investigated whether low-cost silver catalysis could be used to 
mediate C–C bond cascade transformation. This process is 
highly favorable for the synthesis of multisubstituted pyrroles, 
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considering its potential to minimize the degree of 
functionality required for a starting material.

Toward this goal, we developed a [4+1C]insert approach to 
the coupling of enaminones with donor/acceptor or 
donor/donor carbenes by AgOTf-catalyzed C–C bond 
carbenoid insertion/cyclization/[1,5]-shift cascade reaction, 
providing distinct chemo- and regio-selective multisubstituted 
pyrroles.
Table 1. Optimization of  Reaction Conditions for [4+1C]insert 
Cascadea

Ph

O

Ph COOMe

N2

NPh COOMe

Ph

Ph

+

1a (1.0 equiv.) 2a (1.2 equiv.)

3a

NPh

Ph

Ph

3a'

MeOOC

NPh Ph

Ph

COOMe

NPh

Ph

COOMePh

3a'' 3a'''

Cat. (x mol%)

Solvent, Temp.
-N2

HN
Ph

Yield (%)b

Entry Cat. (x mol %) Solvent T (ºC) 3a 3a', 3a'', and 3a'''

1 Pd(OAc)2 (5) CH2Cl2 25 2 ndc

2 Rh2(OAc)4 (5) CH2Cl2 25 4 nd

3 AgOAc (5) CH2Cl2 25 34 nd

4 PPh3AuNTf2 (5) CH2Cl2 25 5 nd

5 CF3CO2Ag (5) CH2Cl2 25 52 nd

6 Ag2CO3 (5) CH2Cl2 25 0 nd

7 AgNO3 (5) CH2Cl2 25 3 nd

8 AgOTf (5) CH2Cl2 25 89 nd

9 AgF (5) CH2Cl2 25 21 nd

10 PhCO2Ag (5) CH2Cl2 25 0 nd

11 C3F7CO2Ag (5) CH2Cl2 25 26 nd

12 Yb(OTf)3 (10) CH2Cl2 25 0 nd

13 La(OTf)3 (10) CH2Cl2 25 0 nd

14 Sc(OTf)3 (10) CH2Cl2 25 0 nd

15 Ca(OTf)3 (10) CH2Cl2 25 0 nd

16 AgOTf (5) THF 25 68 nd

17 AgOTf (5) CH3CN 25 59 nd

18 AgOTf (5) CH2Cl2 40 80 nd

19d AgOTf (1) CH2Cl2 25 79 nd

20d AgOTf (10) CH2Cl2 25 86 nd
aReaction conditions: In a 10 mL reaction tube, enaminone 1a (1 
mmol), diazoester 2a (1.2 mmol), metal catalyst (0.05 mmol), 
solvent 5 mL, under air (1 atm), stirred for 12 h at room 
temperature. bIsolated yield of 3a based on 1a. cnd means not 
detected. dDetailed survey of catalyst dosage was listed in SI file.

Our initial attempt involved the cascade reaction of N-
phenyl-enaminone 1a and phenyl diazoester 2a by using 
various metal catalysts (5 mol%) in dichloromethane. When 
the reaction was performed using AgOAc as catalyst at room 
temperature for 12 h (Table 1), the envisioned pyrrole 3a was 
obtained in 34% isolated yield. The C–C bond 
insertion/cyclization/[1,5]-shift cascade reaction showed 
exclusive chemoselectivity and regioselectivity, considering 
that 1,3,5-triphenyl pyrrole-2-carboxylate 3a was the only 
product formed in the reaction; the products 3aʹ, 3aʹʹ, or 3aʹʹʹ 
were not detected. With these results, we continued to 
optimize the reaction conditions. Catalyst screening displayed 
that AgOTf produced a higher yield (89%) of corresponding 
1H-pyrrole than that of Ag2CO3, and PhCO2Ag and other 

trifluoro-methane-sulfonates failed to realize such 
transformation (Table 1, entries 5-15). Solvent screening 
revealed that CH2Cl2 was the best solvent; by contrast, THF or 
CH3CN as the reaction solvent reduced the yield of the 
reaction to varying degrees. Room temperature was also 
determined as the best temperature for the reaction. The 
optimal catalyst dosage was determined as 5 mol% (Table S2, 
SI). The increase (entry 20) or decrease (entry 19) in catalyst 
dosage reduced the reaction efficiency. The yield of the 
desired product 3a was not increased by extending the reaction 
time to 24 h.
Table 2. Reaction Scope of Enaminones 1 with Aryl 
Diazoesters 2a

R1

O

Ar COOR3

N2

NR1 COOR3

R2

Ar

+

1 (1.0 equiv.) 2 (1.2 equiv.) 3b

AgOTf (5 mol%)
CH2Cl2, rt, 12 hHN

R2

N COOMe

Ph

Ph

R

3b, 77% R = 3-Me
3c, 75% R = 3-OMe
3d, 83% R = 4-Br
3e, 92% R = 3-F
3f, 90% R = 4-NO2
3g, 72% R = 4-OMe
3h, 81% R = 3-Br

NPh COOMe

Ph

S

3t, 84%

NPh

Ph

COOMe

3u, 82%

N

Ph

COOEt

Ph

N COOMe

Ph

S

MeO
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N

Ph

COOMe

PhS
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N

Ph

COOMe

Ph
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N

Ph

COOMe

Ph
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N COOMe

PhS

S
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N COOMe

PhS

3af, 68% NPh COOMe

Ph

3ai, 74%

NPh
nBu

COOMe

MeO
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N COOMe

Ph

CH3

3ag, 74%

NPh COOMe

Ph

OMe
3ak, 81%

NPh COOMe

N COOMe

Ph

Ph

Ph

NPh

Ph

COOR

Ph

NPh COOMe

Ph

R
3m, 76% R = 4-Cl
3n, 71% R = 4-F
3o, 72% R = 3-F
3p, 59% R = 2-F
3q, 89% R = 4-OMe
3r, 88% R = 4-Me
3s, 86% R = 2-Me

Ph

3a, 89% R = Me
3v, 79% R = Et
3w, 68% R = i-Bu
3x, 59% R = isopentyl

N COOMe

Ph
R

R' 3aa, 81% R = 3-F, R' = 2-F
3ab, 89% R = 4-F, R' = 4-OMe
3ac, 78% R = 4-OMe, R' = 4-OMe
3ad, 80% R = 4-Br, R' = 4-Cl

R

3al, 65% R = 4-Cl
3am, 69% R = H

R

3y, 80% R = 4-Br
3z, 73% R = 3-Me

3k, 79%

3an R1=R2=4-F-Ph

3b-3h

3m-3s

3a, 3v-3x 3y-3z 3aa-3ad

NR2 COOMe

Ph

R1

=

aReaction conditions: In a 10 mL reaction tube, enaminone 1 (1 
mmol), diazoester 2 (1.2 mmol), AgOTf (0.05 mmol), and CH2Cl2 
(5 mL), under air, stirred for 12 h at room temperature. bIsolated 
yield of 3 based on 1.

Under optimized reaction conditions, the scope of 
enaminone starting materials (1) was investigated with a 
variety of aryl diazoesters (2) (Table 2). A range of 
enaminones was first examined. The cascade reaction 
generally tolerated a broad range of substituted enaminones 
(3b–3h: R1= m-Me, m-OMe, m-F, m-Br, p-OMe, p-NO2, or p-
Br phenyl) to afford high to excellent yields of the 
corresponding multisubstituted 1H-pyrroles. A study on the 
electronic influence of the phenyl group (R1) indicated that 
although both electron-donating (e.g., 3g) and electron-
withdrawing (e.g., 3e and 3f) groups worked well and resulted 
in good yields, electron-deficient enaminones achieved a 
higher yield (92% yield). Moreover, the cascade reaction 
produced equally satisfactory results by using thiophenyl 3i 
and naphthalenyl 3l. Notably, both aliphatic styrene 3k and 
isobutene 3j can be introduced as substrates in this cascade 
reaction. Similarly, a range of donor/acceptor diazoesters, 
including substituted aryl, 2-thienyl, and 2-naphthyl, obtained 
high to excellent yields of desired products under the standard 
conditions (3m–3u), whereas the acceptor-only (e.g., ethyl 
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diazoacetate) diazo compounds failed to accomplish this 
cascade reaction with the same reaction sequence. Different R3 
groups of aryl diazoesters exerted evident steric effects, with 
Methyl, Ethyl, and i-Bu (in this particular order) exhibiting the 
highest efficiency, followed by isopentyl (3a, 3v–3x). Finally, 
functional N-substituents (R2), such as benzyl, p-OMe phenyl, 
n-Bu, and cyclopropyl were compatible under the standard 
reaction conditions, thus leading to products 3ai, 3aj, 3ak, and 
3al in 74%, 66%, 81%, and 65% yield, respectively (Table 2). 
To verify the structure of the multisubstituted pyrrole, 3an15 
was selected as the representative compound and was 
characterized by X-ray crystallography (Table 2, 3an).
Table 3. Reaction Scope of Enaminones 1 with N-
tosylhydrazones 4a

R1

O
R3 Ar

NNHTs

NR1 Ar

R2

R3

+

1 (1.0 equiv.) 4 (1.2 equiv.) 5b

AgOTf (5 mol%),
Li2CO3 (1.0 equiv.),
toluene, 110 oC, 36 hHN

R2

N Ph

Ph
R N Ph

PhS
N Ph

Ph

NR Ph

Ph

5a, 70% R = H
5b, 62% R = 3-OMe
5c, 75% R = 4-Br
5d, 78% R = 3-F
5e, 77% R = 4-NO2
5f, 58% R = 4-CH3
5g, 63% R = 3-CH3

5n, 65% R = Ethyl
5o, 58% R = Isopropyl

NPh

Ph

5k, 77% R = 4-Cl
5l, 81% R = 4-F
5m 67% R = 4-CH3

NPh

Ph

NPh

Ph

NPh Ph

R

5h, 55% 5i, 72% 5j, 61%

Cl

N Ph

PhO

5p, 51% 5q, 42%

5r, 73%

NPh

Ph

Ph

Ph

N
Ph

Cl N
Ph

N
S S

5s, 62%

5u, 69% 5w, 56%

5t, 68%

5x, 52%

NPh

Ph

5v, 68%

NPh

Ph

5a-5g

5k-5m

N
Ph

Ph

5y, 69% 5z, 73%

NPh

Ph
F

5aa, 76%

NPh

Ph

CF3

aReaction conditions: In a 10 mL reaction tube, enaminone 1 (1 
mmol), N-tosylhydrazones 4 (1.2 mmol), Li2CO3 (1.0 mmol), 
AgOTf (0.05 mmol), and toluene (5 mL), under air, stirred for 36 
h at 110 oC. bIsolated yield of 5 based on 1.

Aryl diazoesters act as donor/acceptor carbene precursors 
that can efficiently perform cascade reaction; thus we 
subsequently studied the reactivity of N-tosylhydrazones16 (4) 
as donor/donor-carbene sources with different substituents in 
the cascade reaction (Table 3). The release of carbene from N-
tosylhydrazones 4 requires base catalysis. Thus, we first 
screened for the effects of varying bases and temperatures 
under the standard conditions (Table S1, SI). By adding 1 
equivalent of Li2CO3 to the standard reaction conditions and 
increasing the temperature to 110 °C for 36 h, the cascade 
reaction was performed efficiently. The regioselectivity and 
chemoselectivity of the reaction were as-expected, with the 
electron-deficient aryl group migrating to the C2-position of 
the pyrrole ring; meanwhile, the alkyl insertion site remains in 
the C3-position of the pyrrole ring. Under the newly optimized 
reaction conditions, various substituted enaminones (R1 = aryl, 
heteroaryl, and alkyl; R2 = phenyl, ethyl, and cyclopropyl) 
reacted well with different tosylhydrazones (Ar = substituted 
phenyl, and thiophenyl; R3 = methyl, and ethyl) affording the 

desired products in good yield (5a–5aa). The substituents of 
the enaminone continued to exert electronic effects: electron-
deficient enaminones performed more efficiently than 
electron-rich enaminones (78% yield). Notably, donor-only 
diazo compounds (e.g., N-tosylhydrazone derived from 
benzaldehyde) obtained the desired product (5y) in high yield  
under the standard conditions. Meanwhile, by using cyclic 
tosylhydrazones as a reaction substrate, indole, and 
cyclohepta[b]pyrrole derivatives were finally produced (5p 
and 5q). In addition, donor–donor diazo compounds derived 
from unsymmetrical aryl ketones or other EWGs apart from 
the esters group (e.g., 5z and 5aa) can be used in this cascade 
reaction. The results showed that the products remain highly 
chemo- and regio-selective. Lastly, the NOE spectra of 5a 
confirmed that the Ar group was shifted to the C2-position of 
the pyrrole ring (Figure S1, SI).

To gain insights into the reaction mechanism, we first 
conducted isotopic labeling experiments under the standard 
conditions (Scheme 2). Deuterium hydrogen-labeling 
experiments were conducted, and the pyrrole product of 
deuterium hydrogenation at the C4-position was detected 
(Scheme 2, Eq. 1). 15N was also retained in the 1H-pyrrole 
product when 15N-labeled enaminones were used as starting 
materials in the cascade reaction (Scheme 2, Eq. 2). These 
results showed that an exchange of active hydrogen atoms 
occurred in the catalytic cycle, and that nitrogen atoms in the 
pyrrole ring were introduced by the enaminones. To obtain 
evidence for C–C bond insertion and Ag-catalyzed selective 
control, we separated the intermediate 1,4-iminone (3a-q) 
containing a quaternary carbon center under standard 
conditions (Scheme 2, Eq. 3). A single crystal structure 
(Scheme 2, 3a-q-Crystal)14 confirmed that this compound was 
the product of the C–C bond formal insertion reaction of the 
enaminone and diazoester. In addition, 1,4-iminone (3a-q) 
could be converted into 1H-pyrrole products 3a under standard 
conditions; however under TfOH catalysis, no reaction 
occurred at room temperature, and two selective products (3a 
and 3a′) appeared in the reflux, indicating that the silver ion 
controlled several reaction steps, including the C–C bond 
insertion reaction, as well as the condensation and migration 
reactions.

Scheme 2. Control Experiments
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Scheme 3. Plausible Reaction Mechanism for AgOTf Catalyzed [4+1C]insert Synthesis of Multisubstituted Pyrroles
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On the basis of these results and control experiments, we 
propose a plausible catalytic cycle for AgOTf-catalyzed 
[4+1C]insert cascade synthesis of multisubstituted pyrroles with 
enaminone 1 and diazoester 2/4 (Scheme 3). In the silver 
catalyzed C-C bond insertion cycle, cis/trans-enaminone were 
in thermodynamic equilibrium, in which cis-enaminone 1′ was 
first converted by AgOTf into silver enaminone T1, which 
reacted with diazoester 2/4 to give electrophilic silver 
carbenoid T2 following the loss of N2. Cyclopropanation of 
T2 resulted in the intermediate T3. Owing to the assistance of 
the nitrogen lone pairs and ring strain, the C–C bond is 
regioselectively cleaved at the α,β-position of the carbonyl 
group to yield silver enolate T4. Upon protonation by HOTf, 
T4 released 1,4-iminone 3/5-q with an all-carbon quaternary 
center following regeneration of the silver catalyst (Scheme 3, 
left cycle). In contrast to the existing catalytic methods used 
for the insertion of diazoesters into 1,3-dicarbonyl 
compounds,8a,8c-e the cyclopropanation in the current study 
selectively occurred at the double bond of the predominant 
enamine form rather than the enol imine form or the 
previously reported pathway that relied on the ability of the 

migrating groups, in which migration of the C2 carbon atom 
would likely be disfavored. The regioselective 
cyclopropanation represents a novel mode of carbenoid 
reactivity. Subsequently, in the Ag-catalyzed cyclization/[1,5]-
shift steps, 3H-pyrrole T7 was formed via the dehydration of 
the hydroxyl-pyrroline T6, formed by the intramolecular 
condensation of 1,4-iminone T5 driven by the coordination of 
silver with N and O atoms. Then, Ag+ induced chemo- and 
regio-selective thermal [1,5]-shift of the 3H-pyrrole T7 
yielded the 2H-pyrrole T8, which was dehydroaromatized to 
produce multisubstituted 1H-pyrroles 3/5 (Scheme 3, right 
cycle). Numerous studies have been conducted on the thermal 
[1,5]-sigmatropic rearrangements of 2H-pyrroles to ultimately 
give 1H-pyrroles,17 but similar rearrangements with 3H-
pyrroles as the starting materials are rarely reported.8a,18 In 
contrast to the reported thermolysis of 3H-pyrroles used to 
prepare 1H-pyrroles as the dominant product,18 the AgOTf-
catalyzed cascade synthesis of multisubstituted pyrroles 
regioselectively and chemoselectively produced 1H-pyrroles, 
representing a novel thermal rearrangement of 3H-pyrroles.

Scheme 4. Formal Synthesis of Lamellarin L
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Reaction conditions: aStirred in THF for 12 h at 20–60 oC, 87%. bCat. AgOTf (5 mol%), CH2Cl2, stirred for 12 h at rt, 68%. cNBS, 
DMF, 0 oC to rt, 6 h, 99%. d1) 9 (2.0 equiv.), Pd(PPh3)4 (10 mol%), THF, reflux, 18 h, 2) concd HCl, MeOH, reflux 1 h (two-step, 
94%).
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To show the utility of this method to pyrroles, we applied 
the C–C bond insertion/cyclization/[1,5]-shift cascade strategy 
for the synthesis of the pyrrole moiety of lamellarin L. Scheme 
4 presents our synthesis of this compound. The desired 
cascade transformation occurred (3ap) under the usual 
reaction conditions with a yield of 68%. Bromination of the 
remaining vacant pyrrole position proceeded in quantitative 
yield to give bromopyrrole 8 (99% yield). Subsequently, 
chromeno[3,4-b]pyrrol-4(3H)-one 10 (75% yield) was 
obtained over two-steps, via Suzuki coupling of bromopyrrole 
8 with phenylboronic acid 9 and intramolecular 
transesterification reaction. Decarboxylation coupling 
cyclization and deprotection of pyrrole can provide lamellarin 
L and various related compounds.1b,19 Compared with that of 
the industrial (Paal–Knorr) synthesis of pyrrole, the value of 
the method described in the present study lies not only in its 
use of readily available starting materials and the number of 
reaction steps but also its modularity, allowing access to 
various substituents on the pyrrole ring.

In summary, we demonstrated a distinct chemo- and 
regioselective cascade catalytic [4+1C]insert cascade reaction 
for the preparation of pyrroles from enaminones and carbene 
precursors by using AgOTf. This technique was used to 
formally synthesize lamellarin L. Control experiments 
provided a plausible reaction mechanism in which silver ions 
first catalyzed C–C bond carbene insertion and then controlled 
cyclization and [1,5]-shift. Further development of this 
AgOTf-catalyzed pyrrole synthesis is ongoing in our 
laboratory.
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Pyrrole: Ag-catalyzed [4+1C]insert cascade to coupling of enaminones with donor/donor or donor/acceptor carbenes, which provides 
distinct chemo- and region-selective multisubstituted pyrroles. This atom-economical, environmentally friendly methodology offers 
easy access to a range of substituted pyrroles in moderate to good yields.
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