456 Communications synthesis

A Facile and Concise Synthesis of 2-Alkyl- and 2-Aryl-4-oxo-4*H*-thiopyrano[2,3-*b*]pyridines

Axel Couture,* Pierre Grandelaudon, Eric Huguerre

Laboratoire de Chimie Organique Physique, U.A. C.N.R.S. N° 351, Université des Sciences & Techniques de Lille Flandres Artois, F-59655 Villeneuve d'Ascq Cedex, France

2-Alkyl- and 2-aryl-4-oxo-4*H*-thiopyrano[2,3-*h*]pyridine can be conveniently prepared by reacting the appropriate aromatic and aliphatic *O*-ethyl thiocarboxylates with the sodium derivative of various alkyl 3-(2-bromopyridyl) ketones.

Although a plethora of synthetic methods for the elaboration of fused polyheterocycles has been developed in the recent years, a certain number of these systems still remain barely accessible. This is particularly the case of 2-alkyl- and 2-aryl-4oxo-4H-thiopyrano[2,3-b]pyridine 3 which can be regarded as the aza-analogs of thioflavones. It was firstly demonstrated that the methodology devised for the synthesis of azaflavone was not transposable to the corresponding thio-derivatives. 1 Recently a new synthetic route to these heterobicyclic systems has been developed which recommends the treatment of 2-chloro-3-ethoxycarbonylpyridine with sodium *tert*-butanethiolate followed by Claisen condensation with ketones and ultimate ring closure of the β -diketone with concentrated hydrochloric acid.² However, the overall yield of this multistep reaction does not exceed a 13% yield, calculated from 2-chloro-3-ethoxycarbonylpyridine, and the method is rather restrictive, especially with regard to the substituents R¹ and R² in 1. We therefore directed our investigations towards a novel, general, and effective synthetic approach to these fused heterocyclic systems.

Our strategy consists in reacting aliphatic and aromatic thiocarboxylates 2a-g with the anion of various alkyl 3-(2-bromopyridyl) ketones 1a-c.

1-3	R ¹	\mathbb{R}^2	1-3	\mathbb{R}^1	R ²
a	Н	Et	g	Н	2-thienyl
b	Н	$4-CH_3C_6H_4$	h	CH_3	4-ClC ₆ H ₄
c	Н	4-MeOC ₆ H ₄	i	CH_3	CH_3
d	Н	4-C1C ₆ H ₄	j	CH_3	2-furyl
e	Н	CH ₃	k	Et	Ph
f	Н	2-furyl	1	Et	2-furyl
		•			

The O-ethyl thiocarboxylates **2a**–**g** are efficiently prepared by a conventional method: treatment of aromatic, heteroaromatic, and aliphatic carboximidic acid esters, readily accessible from the appropriate nitriles via the Pinner reaction, with hydrogen sulfide at low temperature.³

The alkyl 3-(2-bromopyridyl) ketones 1 a-c are synthesized by oxidation with chromium(VI) oxide⁴ of the corresponding alcohols obtained by quenching the 2-bromo-3-lithiopyridine with the appropriate aldehydes⁵ (Table 1).

Table 1. Alkyl 3-(2-Bromopyridyl) Ketones 1a-c Prepared

		Molecular Formula ⁵	1 H-NMR (CDCl ₃ /TMS) e,d δ , J (Hz)
1a	47	C ₇ H ₆ BrNO (200.0)	2.6 (s, 3H, CH ₃); 7.2–7.4 (m, 1H, H_{pyr}); 7.6 (dd, $J = 7.5, 2.0, 1H, H_{pyr}$); 8.4 (dd, $J = 4.6, 2.0, 1H, H_{nyr}$)
1b	47	C ₈ H ₈ BrNO (214.1)	1.2 (i, $J = 7.4$, 3H, CH ₃); 2.9 (q, $J = 7.4$, 2H, CH ₂); 7.2–7.4 (m, 1H, H _{pyr}); 7.6 (dd, $J = 7.5$, 2.0, 1H, H _{pyr}); 8.4 (dd, $J = 4.8$, 2.0, 1H, H _{pyr})
1c	46	C ₉ H ₁₀ BrNO (228.1)	1.0 ($^{\circ}$ ($^{\circ}$ J = 6.8, 3 H, CH ₃); 1.4 1.9 (m, 2 H, CH ₂); 2.9 (t, J = 6.9, 2 H, CH ₂); 7.2–7.5 (m, 1 H, H _{pyr}); 7.6 (dd, J = 7.5, 2.1, 1 H, H _{pyr}); 8.4 (dd, J = 4.6, 2.1, 1 H, H _{pyr})

- a Overall yield based on 2-bromopyridine.
- ^b Satisfactory microanalyses obtained: $C \pm 0.19$, $H \pm 0.25$, $N \pm 0.29$.
- ° 1R (neat): $v = 1690 \cdot 1695 \text{ cm}^{-1} \text{ (C=O)}$.
- d Recorded on a Bruker WP 60 spectrometer.

The anion of the 3-(2-bromopyridyl) methyl and ethyl ketones $(1\mathbf{a}, \mathbf{b})$ is generated with sodium hydride in tetrahydrofuran at low temperature. The cyclocondensation which gives rise to the fused polyheterocycles $3\mathbf{a} - \mathbf{j}$ is induced by refluxing a mixture of the resulting anion with the thiocarboxylates $2\mathbf{a} - \mathbf{g}$ in tetrahydrofuran. The 2-alkyl- and 2-aryl-4-oxo-4*H*-thiopyrano[2,3-*b*]pyridines $3\mathbf{a} - \mathbf{j}$ are then obtained with fairly good yields by this method (Table 2).

It should be noted that the preparation of the 2-aryl-3-ethyl-4*H*-thiopyrano[2,3-*b*]pyridines 3k, 1 by condensation of the anion of the 3-(2-bromopyridyl) ethyl ketone (1c) with the suitable thiocarboxylates 2a, f requires higher temperature, as the reactions must be carried out at 140°C in *N*-methyl-2-pyrrolidone.

It is likely that these reactions proceed via the intermediacy of a species like 4. Moreover the intramolecular cyclization takes advantage of the great nucleophilicity of the transient sulfur anion and of the remarkable sensitivity of the bromine atom in α -bromopyridines with respect to nucleophilic attacks.

The reactions reported here therefore represent a new and efficient method for the synthesis of the hardly attainable 4-oxo-4*H*-thiopyrano[2,3-*b*]pyridines. On the other hand they significantly broaden the synthetic utility of aromatic and aliphatic thiocarboxylates in the elaboration of polyheterocyclic frameworks.⁶

Preparation of the Starting Materials

Aromatic and Aliphatic O-Ethyl Thiocarboxylates: The thiocarboxylates 2a-g are prepared by treatment of the corresponding carboximidic acid esters with H₂S. Initially, aromatic and aliphatic nitriles (0.15 mol) are converted to the salts of their carboximidic acid esters by treatment with EtOH (2 equiv) and HCl (0.19 mol) in CHCl₃ (30 mL) at 0°C.³ After 5 days in the refrigerator, these salts are treated with NH₃ which gives rise to the desired carboximidates; yield: 77–90%.

The thiocarboxylates 2a-g are prepared in the following manner: dried cation exchange resin (Dowex^R 50W-X8, H⁺, 16 g, 80 mmol) is added to a solution of the appropriate carboximidic acid ester (50 mmol) in dry MeOH (200 mL). The mixture is stirred rapidly and cooled to $-30\,^{\circ}\mathrm{C}$ in an acetone/dry ice slush bath. Then $\mathrm{H_2S}$ gas is passed through the

457

Table 2. 4-Oxo-4*H*-thiopyrano[2,3-*b*]pyridines 3a-1 Prepared

Prod- uct	Yield (%)	mp ^a (°C)	Molecular Formula ^b or Lit. mp (°C)	MS (70 eV)° m/z	¹ H-NMR (CDCl ₃ /TMS) ^{d, c} δ, J(Hz)
3a	70	118-119	113-1162	239 (M ⁺ , 100); 211 (50); 137 (30); 109 (90)	7.2 (s, 1H, H-3); 7.5–7.7 (m, 6H, $H_{Ph} + H_{pyr}$); 8.6–8.8 (m, 2H, H_{pyr}) ^f
3b	71	157-158	C ₁₅ H ₁₁ NOS (253.3)	253 (M ⁺ , 100); 225 (45); 137 (10); 109 (20)	2.4 (s, 3H, CH ₃); 7.2 (s, 1H, H-3); 7.3 (d, $J = 8.3$. 2H, H _{Ph}); 7.4 (m, 1H, H _{pyr}); 7.6 (d, $J = 8.3$, 2H, H _{ph}); 8.6–8.8 (m, 2H, H _{pyr})
3c	73	155–156	150-151 ²	269 (M ⁺ , 100); 241 (50); 137 (25); 109 (70)	3.8 (s, 3 H, OCH ₃); 7.0 (d, $J = 9.0$, 2 H, H _{Ph}); 7.2 (s, 1H, H-3); 7.4-7.5 (m, 1H, H _{pyr}); 7.6 (d, $J = 9.0$, 2 H, H _{ph}); 8.6-8.8 (m, 2 H, H _{pyr})
3d	66	203204	C ₁₄ H ₈ CINOS (273.7)	275 (M ⁺ , 35); 273 (M ⁺ , 100); 247 (23); 245 (62); 137 (30); 109 (50)	7.2 (s, 1H, H-3); 7.5 7.7 (m, 5H, $H_{pyr} + H_{Ph}$); 8.6~8.8 (m, 2H, H_{pyr})
3e	63	156-157	C ₉ H ₇ NOS (177.2)	177 (M ⁺ , 100); 149 (30); 137 (20): 109 (35)	2.4 (d, $J = 1.1$, 3 H, CH ₃); 6.8 (d, $J = 1.1$, 1 H, H-3); 7.3–7.5 (m, 1 H, H _{pyr}); 8.6–8.8 (m, 2 H, H _{pyr})
3f	65	209-210	C ₁₂ H ₇ NO ₂ S (229.3)	229 (M ² , 100); 201 (40); 137 (10); 109 (25)	6.5 (dd, $J = 3.6$, 1.8, 1H, H _{furan}); 7.0 (d, $J = 3.6$, 1H, H _{furan}); 7.3 (s, 1H, H-3); 7.4-7.5 (m, 1H, H _{pyr}); 7.6 (d, $J = 1.8$, 1H, H _{furan}); 8.6-8.8 (m, 2H, H _{pyr})
3g	69	194–195	C ₁₂ H ₇ NOS ₂ (245.3)	245 (M ⁺ , 100); 217 (50); 137 (10); 109 (30)	7.2 (s, 1H, H-3); 7.3-7.6 (m, 4H, H _{pyr} + H _{thiophene}); 8.6-8.8 (m, 2H, H _{pyr})
3h	70	137-138	C ₁₅ H ₁₀ CINOS (287.8)	289 (M ⁺ , 20); 287 (M ⁺ , 60); 252 (50)	2.1 (s, 3H, CH ₃); 7.5 -7.7 (m, 5H, H _{Ph} + H _{pyr}); 8.6-8.8 (m, 2H, H _{pyr})
3i	68	138-140	C ₁₀ H ₉ NOS (191.2)	191 (M ⁻¹ , 100); 162 (16); 158 (32)	2.1 (s, 3 H, CH ₃); 2.4 (s, 3 H, CH ₃); 7.3 -7.5 (m, 1 H, H _{nv}); 8.6-8.8 (m, 2 H, H _{nv})
3ј	61	136138	C ₁₃ H ₉ NO ₂ S (243.3)	243 (M ⁺ , 100); 214 (52); 186 (23)	2.4 (s, 3 H, CH ₃); 6.5 (dd, $J = 3.6, 1.8, 1H, H_{furan})$; 7.0 (d, $J = 3.6, 1H, H_{furan})$; 7.4 7.5 (m, 1H, H _{pyr}); 7.6 (d, $J = 1.8, 1H, H_{furan})$; 8.6 8 (m, 2H, H _{pyr})
3k	60	104–106	C ₁₆ H ₁₃ NOS (267.3)	267 (M ⁺ , 50); 266 (70); 186 (91); 184 (100)	1.0 (t, $J = 7.3$, 3H, CH ₃); 2.5 (q, $J = 7.3$, 2H, CH ₂) 7.4 (m, 6H, H _{ph} + H _{pyr}); 8.7–8.8 (m, 2H, H _{pyr})
31	59	120 -122	C ₁₄ H ₁₁ NO ₂ S (257.3)	257 (M°, 100); 256 (50); 229 (32); 228 (52); 214 (60); 203 (74)	1.2 (t, $J = 7.3$, 3H, CH ₃); 2.9 (q, $J = 7.3$, 2H, CH ₂) 6.5 (dd, $J = 3.5$, 1.8, 1H, H _{fuvan}); 6.9 (d, $J = 3.5$, 1H H _{fuvan}); 7.2–7.6 (m, 2H, H _{pyr} + H _{fuvan}); 8.6–8.8 (m 2H, H _{pvr})

^a Uncorrected, measured with a Reichert-Termopan apparatus; recrystallized from hexane/toluene (except for 3k, l).

mixture for 15 min and stirring is maintained for an additional hour at -20 °C. The reaction mixture is filtered, and the filtrate is evaporated in vacuo (at atmospheric pressure for **2e**) to give quantitative yields of the thiocarboxylates **2a**-g.

Alkyl 3-(2-Bromopyridyl) Ketones: The 3-(2-bromopyridyl) methyl ketone (1a) is prepared in 47% yield according to the previously described procedure. The 3-(2-bromopyridyl) ethyl and propyl ketones. (1b) and (1c), respectively, are synthesized in the same manner by quenching the 2-bromo-3-lithiopyridine with propanal and butanal. The intermediate alcohols are subsequently oxidized with CrO₃ in acctone (Jones reagent) to furnish the desired pyridyl ketones 1b, c (Table 1), which are obtained as colorless oils after distillation under reduced pressure.

Preparation of 4-Oxo-4*H*-thiopyrano[2,3-*b*]pyridines 3a-l; General Procedure:

To a suspension of NaH (310 mg, 13 mmol) in anhydrous THF (10 mL) are slowly added, with stirring and under argon, the appropriate ketones ${\bf 1a}$, ${\bf b}$ (12 mmol) dissolved in THF (20 mL). The mixture is maintained at 0°C for 15 min. A solution of the thiocarboxylates ${\bf 2a}$ –g (12 mmol) in anhydrous THF (20 mL) is then added dropwise, and the resultant mixture is stirred under reflux for 2 h. The crude reaction mixture is then poured into cooled (0°C) ${\bf H_2O}$ (100 mL). The products are collected by filtration and recrystallized twice from hexane/toluene (70: 30) (decolorized with Norit*).

For the experiments performed with the 3-(2-bromopyridyl) ethyl ketone (1c), the reactions are carried out in N-methyl-2-pyrrolidone, but the amount of solvent is reduced by half. To induce the cyclocondensation a

temperature of 140 °C must be maintained for 2 h. After pouring into cold $\rm H_2O$ (200 mL) the mixture is extracted with EtOAc (3 × 50 mL), and the organic extract is dried with MgSO₄. The solvents are removed under reduced pressure. Purification of compounds 3k, Lis achieved by column chromatography on silica gel (Merck, Kieselgel 60, 70–230 mesh) using the mixture EtOAc/hexane (1:1) as eluent.

The authors gratefully acknowledge the financial support of the Centre National de la Recherche Scientifique and Region Nord-Pas de Calais (grant to E.H.).

Received: 14 November 1988

- (1) Sliwa, H. Bull. Soc. Chim. Fr. 1970, 642.
- (2) Becher, J., Christensen, M.C., Møller, J., Winckelman, I. Sulfur Lett. 1982, 1, 43.
- (3) Reynaud, P., Moreau, R. C., Samana, J. P. Ball. Soc. Chim. Fr. 1965, 3628.
- (4) Güngör, T., Marsais, F., Queguiner, G. J. Organomet. Chem. 1981, 215, 139.
- (5) Marsais, F., Laperdrix, B., Güngör, T., Mallet, M., Queguiner, G. J. Chem. Res. (S) 1982, 278; (M) 2863.
- (6) Couture, A., Grandelaudon, P. Synthesis 1985, 533.

^b Satisfactory microanalyses obtained: C \pm 0.28, H \pm 0.25, N \pm 0.38, O \pm 0.39, S \pm 0.34, Cl \pm 0.28.

[°] Obtained on a Riber 10-10 spectrometer.

^d 1R (KBr): $v = 1630 \text{ cm}^{-1}$ (C=O).

Recorded on a Bruker WP 60 spectrometer.

^f This signal has been erroneously attributed to H-3.² Actually the chemical shift value for H-3 is $\delta = 7.2$, as unambiguously attested by its disappearance in **3h**-1.