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Development of a novel chiral spiro ligand bearing oxazoline
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Abstract—The synthesis of bis(oxazoline) ligand 1 bearing a spiro skeleton is achieved via double ring-closing metathesis (RCM) of
tetraene 2 and subsequent oxazoline ring formation using N-bromosuccinimide (NBS). The Cu-spiro bis(oxazoline) complexes pre-
pared from 1 and Cu(OTf)2 or Cu(OAc)2 act efficiently as chiral catalysts for promoting carbonyl-ene reactions or Henry reactions
with good enantiocontrol.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The design of enantiomerically pure chiral ligands is one
of the most important challenges in the development of
asymmetric catalysts.1 Recently, our group reported the
first design and synthesis of chiral spiro ligands bearing
isoxazolines [spiro bis(isoxazoline) ligands; SPRIXs],2a–e

pyrazoles,2f and isoxazoles,2g as shown in Figure 1. The
rigidity of the spirocyclic framework of these ligands,
and of SPRIXs in particular, appears to reduce the con-
formational obscurity in the transition state and conse-
quently promote Pd(II)-mediated enantioselective
reactions such as the Wacker-type cyclization of alkenyl
alcohols2b and the carbonylation of alkenylamines in the
presence of carbon monoxide.2c
N
O N Oi-Pr

i-Pr
i-Pr

i-Pr
HH

N
N
H

N N
H

N
O

N O

M

SS

M M

(M,S,S)-i-Pr-SPRIX spiro bis(pyrazole)
ligand

spiro bis(isoxazole)
ligand

Figure 1. Chiral spiro ligands bearing isoxazolines, pyrazoles, and

isoxazoles.
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Scheme 1. Design of spiro bis(oxazoline) 1.
To investigate further the unique chirality of spiro lig-
ands in enantioselective reactions, we herein report the
first design and synthesis of spiro bis(oxazolines) 1 and
compare the ligand-acceleration effect of 1 with SPRIXs.
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Over the past decade, a large number of chiral oxazoline
ligands have been prepared and successfully applied in a
variety of asymmetric reactions.3 The incorporation of
oxazoline heterocyclic units into a rigid spiro skeleton
would provide a new class of chiral ligands.4
2. Results and discussion

The first step was to design a spiro bis(oxazoline) com-
pound with seven stereogenic centers (Scheme 1).
Among all the possible diastereomers of the spiro com-
pounds, only 1, which can be constructed by the reac-
tion of (M*,S*,S*)-3 with N-bromosuccinimide
(NBS),5 was expected to function as a bidentate ligand.
In fact, the result of molecular modeling for all diaster-
eomers on MOPAC (AM1) suggested that 1 has the
shortest N–N atomic distance (2.74Å) and the smallest
out-of-plane angle between the two C–N bonds (51.5 �).
Our retrosynthetic strategy for spiro bis(oxazoline) 1 is
outlined in Scheme 2. In this strategy, the key com-
pound (M*,S*,S*)-3 is synthesized by ring-closing
metathesis (RCM)6 of tetraene (S*,S*)-2 prepared by
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Scheme 2. Retro synthetic strategy for spiro bis(oxazoline) 1.
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the stereoselective addition of vinyl metal reagents to
chiral t-butanesulfinyl imines 4.7

In order to construct the cyclization precursor 3 with the
(M*,S*,S*) configuration, (Rs,Rs)-4 was prepared as
follows (Scheme 3): diethyl 2,2-diallyl malonate 5 was
converted to the Weinreb amide 6 in 85% yield by the
reaction of MeONHMe with i-PrMgBr.8 After the
reduction of 6 by LiAlH4, the obtained mono-aldehyde
7 was used directly in the next imine formation. In the
presence of Ti(OEt)4, condensation of 7 with (R)-t-butyl
sulfinamine (R)-8 afforded (Rs)-9 in 55% yield. After the
oxidation of (Rs)-9, the resulting aldehyde was reacted
with (R)-8 to afford (Rs,Rs)-4 in 78% yield.9
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Scheme 3. Synthesis of t-butanesulfinyl imine (Rs,Rs)-4. Reagents and

conditions: (a) MeONHMe–HCl, i-PrMgBr, THF, �20�C, 85%; (b)

LiAlH4, THF; (c) 7, Ti(OEt)4, THF, 55% (two steps from 6); (d) (i)
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Scheme 5. Synthesis of cyclization precursor (R*,R*)-2.
Diastereoselective 1,2-addition of vinyl metal reagents
to (Rs,Rs)-4 was then examined. However, the diastereo-
selective 1,2-addition of vinyl metal reagents, such as
vinyl magnesium bromide or vinyl lithium, with or with-
out a Lewis acid to (Rs,Rs)-4 predominantly afforded
undesired adduct (S,R,Rs,Rs)-10 in low yields (�20%).

Thus, meso-4 with an (S*s,R*s)-configuration was also
prepared using (Rs)-9 with (S)-8 in 79% yield according
to the method described for (Rs,Rs)-4. The obtained
meso-4 was then reacted with vinyl metal reagents.
Among the various conditions attempted, the use of
vinyl lithium (toluene solution) for meso-4 gave the
desired product (S*,S*,S*s,R*s)-10 together with
(S*,R*,S*s,R*s)-10 as an undesirable diastereomer in a
ratio of 8:1, as shown in Scheme 4. Diastereomer
(S*,S*,S*s,R*s)-10 and (S*,R*,S*s,R*s)-10 were separa-
ble by silica gel column chromatography (acetone/hex-
ane = 1:6). A solution of (S*,S*,S*s,R*s)-10 in MeOH
was treated with HCl (4.0M in dioxane) to cleave the
t-butyl sulfinimine moiety, with the resulting product re-
acted with benzoic acid chloride to afford the cyclization
precursor (S*,S*)-2 in 88% yield (Scheme 5).
RCM of (S*,S*)-2 with Grubbs�s catalyst 116b pro-
ceeded to afford the desired spiro amide (M*,S*,S*)-3
(36%) and (M*,R*,R*)-3 (30%), together with a trace
amount of 12 (Scheme 6). Finally, the desired spiro
bis(oxazoline) ligand 1 was synthesized in 82% yield
via oxazoline ring formation promoted by NBS, as
shown in Scheme 6. This reaction proceeded with high
diastereoselectivity, with no other diastereomer being
observed.

The coordinative ability of spiro bis(oxazoline) ligand 1
to transition metals was briefly examined by mixing 1
with metal salts such as CuCl2, Pd(OCOCF3)2, and
Pd(CH3CN)2Cl2 in CH2Cl2. In all cases, the mixture
of 1 and metal salts produced characteristic color
changes. In particular, all peaks in the nuclear magnetic
resonance (NMR) spectrum of the complex (1-
Pd(CH3CN)2Cl2; 1/1) were significantly shifted down-
field compared to the original spectrum. These results



Figure 2. ORTEP drawing of PdCl2–(±)-1 complex.

Table 1. Comparison of acceleration effects of isoxazoline and oxazoline lig
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Scheme 6. Synthesis of spiro bis(oxazoline) 1.
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indicate the spontaneous formation of metal complexes
with ligand 1. X-ray analysis of a single crystal obtained
by recrystallization from a 1:1 mixture of ligand 1 with
PdCl2 in acetone–hexane revealed a PdCl2–1 complex
structure in which 1 acts as a bidentate ligand (Fig. 2).10

Enantiomerically pure 1 was readily obtained by separa-
tion using a chiral stationary phase column.11 Initially,
enantiomerically pure 1 was applied in the Pd(II)-medi-
ated enantioselective Wacker-type cyclization of the
alkenyl alcohol (Table 1).2b

In contrast to using Pd(II)–SPRIX and Pd(II)–17 (en-
tries 2 and 3),2e no cyclization product was detected when
the Pd–bis(oxazoline) complex was utilized (entries 1 and
4). This clearly shows that the isoxazoline moieties in
the ligand play an important role in promoting the
ands on asymmetric tandem cyclization
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Yield (%)a Product ratio [ee (%)]

14 15 16

Trace — — —

73 57(93) 20(31) 23(48)

91 41 41 18

Trace — — —

34 26 66 8

16 (26%, 60% ee).
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cyclization. The lack of catalytic activity when 1 and 1812

were applied in the above reaction may be attributable to
the strong Lewis basicity of the metal-coordinating oxazo-
lines in comparison with that for isoxazolines.2e

Although the Pd(II)–1 complex did not promote the tan-
dem reaction from 13 to 14, the Cu(II)–1 complex cata-
lyzed both the carbonyl-ene reaction13 of a-methyl
styrene with ethyl glyoxylate, and the Henry reaction14

of nitromethane with p-nitrobenzaldehyde to afford the
corresponding products with moderate enantioselectiv-
ity (Scheme 7). These results indicate that spiro
bis(oxazoline) functions effectively as an asymmetric lig-
and. This ligand-acceleration ability is a promising fea-
ture that has proven to be useful in studies of other
catalytic asymmetric reactions.
Cu(OTf)2 (10 mol %)

Ph +
O

H
OEt

O

Ph

OH

O

OEt

(-)-1 (12 mol %)

CH2Cl2, 0oC, 30h
62%, 84% ee

p-NO2-C6H4CHO   +   MeNO2
Cu(OAc)2 (5 mol %)

(-)-1 (5.5 mol %)

EtOH, rt, 24h
98%, 65% ee

p-NO2-C6H4

OH
NO2
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3. Conclusion

In conclusion, novel spiro bis(oxazoline) 1 was synthe-
sized as a new class of bidentate ligand, and the coordi-
native ability of 1 for metal salts was confirmed by
NMR and X-ray crystallographic analysis.
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