

S0040-4039(96)00339-5

An Efficient Rearrangement of Secondary Alkyl S-Methyl Xanthates by Trimethylaluminum (TMA)

Derek H. R. Barton* and Seung-Yong Choi

Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.

Abstract: The rearrangement of secondary S-methyl xanthates to S-methyl dithiocarbonates at room temperature using trimethylaluminum has been studied. This reaction affords an efficient and simple method for converting secondary alcohols to thiols. Copyright © 1996 Elsevier Science Ltd

The high temperature rearrangements of xanthates to dithiocarbonates is well-documented for xanthates without a β -hydrogen atom.¹ An analogous high temperature reaction is used in the Newman-Kwart rearrangement, which converts phenols into thiophenols.² The Chugaev elimination involves the pyrolysis of alcohol xanthates at fairly high temperatures to afford olefins.³ It has a unimolecular mechanism and proceeds with *cis*-elimination.⁴

Extensive work by Taguchi⁵ has shown that when a cation stabilizing group is present, as in 2dialkylaminoalkyl S-methyl xanthates and allylic S-alkyl xanthates, rearrangement to dithiocarbonates occurs at more modest temperatures. An ion pair mechanism is probably involved. On the other hand, rearrangement of ordinary primary⁶ or secondary xanthates⁷ requires heatings at above 200 °C. A few years ago, the catalytic rearrangement⁸ of xanthates to dithiocarbonates was shown to occur under milder conditions using Lewis acid or pyridine N-oxide catalysis but the yields are low for secondary xanthates. Recently, an enantioselective synthesis of thiols⁹ has been accomplished by treating xanthates with an optically active pyridine N-oxide at 100 °C for a prolonged period.

In earlier work¹⁰ we had shown that carbohydrate dimethylketals were smoothly converted into glycol mono-*t*-butyl derivatives with trimethylaluminum. In this letter we report that secondary *S*-methyl xanthates rearrange at room temperature to the corresponding dithiocarbonates upon treatment with trimethylaluminum (TMA) or triethylaluminum. In a typical reaction, to the cyclododecyl *S*-methyl xanthate 1 (200 mg, 0.73 mmol) in 1 mL of hexanes (Scheme 1) TMA (1.5 eq.; 2M in hexanes) was added in one portion at 0 °C and stirred at room temperature for 15 hrs under Ar. After quenching by slow addition of water and extraction into ether, the dithiocarbonate 2 was obtained (83%) by column chromatography on silica gel. There was no trace of cyclododecene.¹¹ The use of triethylaluminum in toluene under the same conditions resulted in a lower yield (70%). The structure of 2 was proven by conversion to the thiol 3 and oxidation to the disulfide 4 in nearly quantitative yield.¹¹

Scheme 1

A primary xanthate, hexadecyl S-methyl xanthate, did not rearrange under the same conditions nor did 2,4,6trimethylphenoxy S-methyl xanthate. The observation that the NMR signals, corresponding to the methine hydrogen and carbon atoms, were significantly shifted after xanthate 1 (¹H: $\delta = 6.5$ ppm; ¹³C: $\delta = 79.2$ ppm, C₆D₆) was treated with 1.2 eq. TMA indicated that xanthate 1 initially coordinated to TMA (¹H: $\delta = 6.1$ ppm; ¹³C: $\delta = 82.7$ ppm, C₆D₆) in a fast reaction. However, the rearrangement is relatively slow (see above).

In order to study the stereoselectivity of the rearrangement, 3β - (5a) and 3α -cholestanyl S-methyl xanthate (5b) were examined (Scheme 2). First, the reaction of 5a with TMA gave a mixture of two products consisting of isomers 6 and 7 in a 4:1 ratio (65-70% isolated yield).

Scheme 2

In addition to the rearranged products, the dimeric product¹² 8 was also detected. To elucidate the structure of 8 (200 mg, 0.24 mmol) it was first reduced with LAH and methylated (*n*-BuLi/MeI) to give a 1:1 mixture of the thio ethers 8a (31 mg, 0.074 mmol, 31%) and 8b (34 mg, 0.081 mmol, 34%) which were purified by column chromatography (hexanes/EtOAc = 98/2). These were identical with the authentic compounds prepared by methylation (Scheme 3) of 10a and 10b, respectively. In every reaction with TMA, all of the initial 5a was consumed without elimination according to TLC and NMR data. The major isomer 6 (w/2 = 11 Hz, width of band at half height¹³) was isolated and reduced with LAH to yield cholestan-3 α -thiol which was oxidized to give the dicholestan-(3 α)-yl disulfide. Authentification¹⁴ (Scheme 3) of cholestan-3 α -thiol and dicholestan-(3 α)-yl disulfide was accomplished by treatment of 3 β -cholestanyl tosylate (w/2 = 24 Hz) of 9a with KSCN in acetone to produce 3 α -cholestanyl thiocyanide (60%, w/2 = 10 Hz) which was reduced by LAH to yield 10a (81%, w/2 = 12 Hz) and oxidized to 11 (84%, w/2 = 9 Hz).

Rearranged xanthate 7 (w/2= 26 Hz), as a minor isomer, was also separated and compared with an authentic sample (Scheme 3) prepared by reaction of the 3α -cholestanyl tosylate (w/2= 8 Hz) of 9b with KSCN in acetone to give 3β -cholestanyl thiocyanide (55%, w/2= 25 Hz). This was reduced by LAH to yield thiol 10b (60%, w/2= 24 Hz). Treatment of thiol 10b (500 mg, 1.24 mmol) with *n*-BuLi/CS₂ and MeI gave thiocarbonyl compound 12 (430 mg, 0.87 mmol, 70.2%), which was treated at room temperature in THF with 1 eq. of benzeneseleninic anhydride¹⁵ to produce the authentic 7 (55%, w/2= 25 Hz).¹⁶

We further examined the reaction of 5b with TMA. Xanthate 5b was easily prepared from the corresponding 9b (w/2 = 8 Hz) which was obtained by the selective reduction of 3-cholestanone with L-selectride.¹⁷ However, treatment of 5b with TMA under the same reaction conditions above produced exactly

the same results as the xanthate 5a (Scheme 2). The major isomer 6 (w/2=10 Hz) was isolated and fully characterized by NMR spectra and mixed m.p. which proved it identical to the major compound from the reaction of 5a and TMA.

The original concept that initiated this study was that TMA would complex so strongly with the thiocarbonyl of a secondary xanthate that fragmentation to anion and carbocation might take place. Since the TMA would be more strongly bonded to the potential carbonyl oxygen than to the sulfur the ionic complex might then neutralize itself by forming irreversibly the rearranged dithiocarbonate. The experiment with the cyclododecane xanthate 1 shows that this new reaction does indeed take place in good yield under room temperature conditions. We had expected that the two cholestane xanthate 5a and 5b would afford the same mixture of products by this mechanism. Indeed this is the case, but the axial 3α -product is the major constitutent of the mixture in both cases. It would seem very improbable that the 3α -xanthate complexed to TMA would be more stable than its 3β -isomer. Therefore the identical product mixture must come from a more favourable kinetic approach of the anionic complex to the α -side of the molecule opposite to the 10β -methyl group. We presume that the coordination of TMA renders the complex as bulky as adding a *t*-butyl group to the thiocarbonyl of the xanthate.

Acknowledgements: We thank the N.I.H., the Welch Foundation and the Schering-Plough Corporation for supporting this work.

References and Notes

- 1. (a) Freudenberg, K.; Wolf, A. Chem. Ber. 1927, 60, 232. (b) Schönberg, A.; Vargha, L. Chem. Ber. 1930, 63, 178.
- (a) Kwart, H.; Evans, E. R. J. Org. Chem. 1966, 31, 410. (b) Newman, M. S.; Hetzel, F. W. Org Synth. 1971, 31, 139. (c) Newman, M. S.; Karnes, H. A. J. Org. Chem. 1966, 31, 3980.
- 3. Tarbell, D. S.; Harnish, D. P. Chem. Revs. 1951, 49, 56.
- 4 Barton, D. H. R. J. Chem. Soc. 1949, 2174.
- (a) Taguchi, T.; Nakao, M. Tetrahedron, 1962, 18, 245. Taguchi, T.; Kawazoe, Y.; Nakao, M. Tetrahedron Lett. 1963, 3, 131.
 (b) Taguchi, T.; Harano, K. Chem. Pharm. Bull.(Tokyo) 1972, 11, 2357 and 1972, 20, 2348.
 (c) Harano, K; Taguchi, T. Tetrahedron Lett. 1974, 4479.
- 6. Jenneskens, L. W.; Hoefs, C. A. M.; Wiersum, U. E. J. Org. Chem. 1989, 54. 5811.
- McAlpine, I. M. J. Chem. Soc. 1931, 1114.; 1932, 906. Overberger, C. G.; Borchert, A. E. J. Am. Chem. Soc. 1960, 82, 4896.

- (a) Kawata, T.; Harano, K.; Taguchi, T. Chem. Pharm. Bull. 1973, 21(3), 604. Komaki, K.; Kawata, T.; Harano, K.; Taguchi, T. Chem. Pharm. Bull. 1978, 21(12), 3807. (b) Harano, K.; Shinohara, I.; Murase, M.; Hisano, T. Heterocycles 1987, 26, 2583. Harano, K.; Kiyonaga, H.; Sugimoto, S-I.; Matsuoka, T.; Hisano, T. Heterocycles 1988, 27, 2327. Harano, K.; Shinohara, I.; Sugimoto, S-I.; Matsuoka, T.; Hisano, T. Chem. Pharm. Bull. 1989, 37(3), 567.
- 9. Diana, M. B.; Marchetti, M.; Melloni, G. Tetrahedron: Asymmetry 1995, 6, 1175.
- Barton, D. H. R.; Zhu, J. Tetrahedron, 1992, 48, 8837. There is precedent for this reaction which we had unintentionally overlooked: Takano, S.; Ohkawa, T.; Ogasawara, K. Tetrahedron Lett. 1988, 29, 1823. See also Fujiwara, J.; Fukutani, Y.; Hasegawa, M.; Maruoka, K.; Yamamoto, H. J. Am. Chem. Soc. 1984, 106, 5004. Fukutani, Y.; Maruoka, K.; Yamamoto, H. Tetrahedron, Lett. 1984, 25, 5911. Mori, A.; Fujiwara, J.; Maruoka, K.; Yamamoto, H. J. Organomet. Chem. 1985, 285, 83. Maruoka, K.; Nakai, S.; Sakurai, M.; Yamamoto, H. Synthesis, 1986, 130. Maruoka, K.; Yamamoto, H. Tetrahedron, 1988, 44, 5001.
- The reaction mixture contained cyclododecanol and cyclododecanone as minor products. Compound 2 was eluted with hexanes/EtOAc (9:1): m.p. 35-36 °C, IR: 2933, 1734, 1639, 1441, 1344, 853 cm⁻¹. ¹H NMR: δ 3.74-3.88 (1H, m), 2.41 (3H, s), 1.89-1.20 (22H, b) ¹³C NMR: δ 190.1, 42.6, 30.6, 23.6, 23.6, 23.5, 23.4, 22.4, 12.9. Anal. Calcd. for C₁₄H₂₆S₂O: C, 61.31; H, 9.48; S, 23.38. Found: C, 61.36; H, 9.55; S, 23.31. Compound 4: m.p. 77.5-78 °C, IR: 2919, 2834, 1455, 1433 cm⁻¹. ¹H NMR: δ 2.53-2.58 (2H, m), 1.40-1.02 (44H, b). ¹³C NMR: δ 47.8, 30.2, 23.8, 23.7, 23.6, 23.0, 22.5. Anal. Calcd. for C₂₄H₄₆S₂:C, 72.36; H, 11.56; S, 16.08. Found: C, 72.38; H, 11.46; S, 15.93.
- 12. Compound 8: m.p. 267-268 °C. IR: 2927, 2867, 1631, 1442, 843 cm⁻¹. ¹H NMR: δ 4.05-4.15 (1H_{eq}, b, w/2=8 Hz), 3.45-3.52 (1H_{ex}, m, w/2=25 Hz), 1.85-0.80 (80H, b), 0.78 (6H, s), 0.64 (6H, s) ¹³C NMR: δ 189.2, 56.4(4), 56.4(1), 56.2, 54.2, 54.1, 47.1, 44.5, 44.0, 42.5, 42.3, 39.9, 39.5, 38.8, 36.1, 36.0, 35.7, 35.5, 35.4, 34.4, 34.1, 31.9, 31.8, 28.9, 28.5, 28.4, 28.2, 28.00, 27.6, 24.1, 23.8, 22.8, 22.5, 20.9, 20.7, 18.6, 12.2, 12.0, 11.8. Anal. Calcd. for C₅₅H₉₄S₂O; C, 79.14; H, 11.27; S, 7.64. Found: C, 78.91; H,11.31; S, 7.61.
- 13. Barton, D. H. R.; Houminer, Y. J. Chem. Soc. Perkin Trans 1. 1972, 919 and references there cited.
- 14. a) Characterized by m.p., [α], ¹H NMR spectroscopy (w/2). b) Bourdon, R. Bull. Soc. Chim. France, 1962, 844. Bobbio, P. A.; Bobbio, F. O. Ber, 1962, 95, 2747.
- 15. Barton, D. H. R.; Cussans, N. J.; Ley, S. V. J. Chem. Soc. Chem. Comm. 1978, 393; J. Chem. Soc. Perkin Trans 1. 1980, 1650.
- 16. Authentic 7: m.p. 101-102 °C. IR: 2920, 2854, 2840, 1633, 1438, 1016, 849 cm⁻¹. ¹H NMR: δ 3.59-3.50 (1H, m, w/2 = 25.2 Hz), 2.39 (3H, s), 1.99-0.82 (b, 40H) 0.79 (3H, s), 0.64 (3H, s). ¹³C NMR: δ 189.7, 56.4, 56.2, 54.2, 47.0, 44.6, 42.5, 39.9, 39.5, 38.8, 36.1, 35.7, 35.4, 31.9, 28.85, 28.55, 28.23, 28.01, 24.1, 23.8, 22.8, 22.5, 20.9, 18.6, 12.9, 12.1, 12.0. Anal. Calcd. for C₂₉H₅₀OS₂: C, 72.74; H, 10.52; S, 13.39. Found: C, 72.92; H, 10.40; S, 13.11.
- 17. Contreras, R.; Mendoza, L. Steroids 1979, 34(2), 121.

(Received in USA 11 January 1996; accepted 21 February 1996)