

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 6019-6023

Synthesis and study of anti-inflammatory activity of some novel cyclophane amides

Perumal Rajakumar,^{a,*} A. Mohammed Abdul Rasheed,^a A. Iman Rabia^b and D. Chamundeeswari^b

^aDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India ^bSri Ramachandra College of Pharmacy, Sri Ramachandra Medical College and Research Institute, Chennai 600 116, India

> Received 31 May 2006; revised 17 August 2006; accepted 30 August 2006 Available online 25 September 2006

Abstract—Macrocyclic di- and tetra-amides with thia- and oxylinkages were synthesized and screened for in vitro anti-inflammatory activity. Cyclophane diamide 15 showed a dose-dependent activity, while the other cyclophane amides 16–20 exhibited mild activity. © 2006 Elsevier Ltd. All rights reserved.

Synthesis of new supramolecules architecturally novel and of potential importance in the context of designing simple models for studying biomolecular interactions stimulates the imaginative skill of synthetic chemists. The basic crown ether has been modified by substituting the oxygen donor atom by sulfur and/or nitrogen atom and introducing functional groups, viz., amide, ester in the ring to use them as models of protein-metal binding sites in biological systems,¹ synthetic ionophores, therapeutic reagents in chelate therapy, cyclic antibiotics,² and to study host-guest interactions.³ Cyclic amides play important role in various biological systems.⁴ Cystine based cyclic peptide has the unique ability of forming double-helical structure.⁵ Cyclic peptides with open pores are useful as transport vehicles for biologically important ions or neutral molecules.⁶ The self-assembly of acyclic peptides and their ability to form β -sheet structures have been demonstrated.^{7,8} Adamantanebased supramolecular systems also form double-helical cyclic structures.^{8,9} Macrocyclic hexa-amides, which can effectively bind peptides, have been reported.¹⁰ Supramolecular amides have been also used as molecular receptors and in molecular recognition of biologically interacting substrates¹¹ including anti-HIV active macrocyclic amides.¹² Copper complexes of macrocyclic compounds exhibit increased antibiotic and antifungal activity than the uncomplexed macrocyclic com-

Keywords: Cyclophane; Anti-inflammatory; HRBC stabilization.

* Corresponding author. Tel.: +914422351269; fax: +914422352494; e-mail: perumalrajakumar@hotmail.com pounds.¹³ Thus macrocyclic compounds containing amide linkages are found to be biologically active. Hence we are interested in the synthesis and study of anti-inflammatory activity of cyclophane amides.

Diamines 1–6 were synthesized and used for the preparation of cyclophane amides.

Diamine 1 and 2^{14} were prepared by the reaction of their corresponding dihalides 7 and 8 with 2-aminothiophenol in methanolic KOH at room temperature. Dichloride 8^{15} was obtained by the reaction of *o*-phenylenediamine with 2 equiv of chloroacetyl chloride in the presence of triethylamine in methylene chloride. Diamine 3 was prepared by the reaction of the corresponding dibromide¹⁶ 9 with 2-aminothiophenol in toluene and aq KOH in the presence of tetrabutylammonium bromide at reflux. Nitro compounds 10 and 11 were obtained by the alkylation of 4-nitrobenzyl bromide and 1-(4-nitrophenoxy)-2-bromo ethane with 2-aminothiophenol, respectively. Reduction of the nitro compounds 10 and 11 with iron and dil HCl gave the diamine 4^{17} and 5 in 62% and 70% yields, respectively (Scheme 1).

In order to synthesize the cyclic tetra-amide with oxy linkages, diamine **6** was obtained in 65% yield by the reaction of diacid chloride **12** with 2 equiv of *N*-pheny-lethylenediamine (Scheme 2).

Diacid chloride 14¹⁸ was obtained by the reaction of the corresponding diacid 13 with excess thionyl chloride in

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2006.08.124

Scheme 1. Reagents and conditions: (a) 2-aminothiophenol (2 equiv), KOH, methanol, room temperature; (b) 2-aminothiophenol (2 equiv), aq KOH, toluene, TBAB, reflux, 4 h; (c) KOH, methanol, room temperature; (d) activated iron powder, dil HCl, reflux, 3 h.

Scheme 2. Reagents and conditions: (a) *N*-phenylethylenediamine (2 equiv), TEA, CH₂Cl₂, room temperature, 1 h.

the presence of triethyl amine in methylene chloride. Thus diacid chloride 14 was reacted with diamines 1-6 to give cyclophane amides 15-20 in 50%, 45%, 35%, 40%, 42%, and 40% yields, respectively (Scheme 3).

In ¹H NMR spectrum cyclophane amide **15**¹⁹ displayed the aromatic methyl, SCH₂, and OCH₂ protons as singlets at δ 2.16, δ 3.95, and δ 4.80, respectively, in addition to aromatic protons. The protons attached to the amide nitrogen appeared at δ 9.68 as a broad singlet. In ¹³C NMR spectrum aromatic methyl, SCH₂, OCH₂, and carbonyl carbons appeared at δ 19.4, 41.9, 67.9, and 164.0 in addition to the aromatic carbons. The molecular ion appeared at m/z 798 in the FAB mass spectrum for cyclophane amide **15**, which further confirms the proposed structure. Cyclophane amides **16**²⁰ and **17**²¹ were also completely characterized by spectral and analytical data.

Cyclophane amide 18^{22} in ¹H NMR spectrum displayed the aromatic methyl protons as two singlets at δ 2.25 and δ 2.27, SCH₂ protons as singlet at δ 3.65, OCH₂ protons as two singlets at δ 5.08 and δ 5.17, and the amide protons as a broad singlet at δ 9.69 in addition to the aromatic protons. In ¹³C NMR spectrum cyclophane amide 18 displayed two aromatic methyl carbons at δ 19.6 and δ 19.8, SCH₂ carbon at δ 43.3, OCH₂ carbons at δ 69.5 and δ 70.8, and carbonyl carbons at δ 162.8 and δ 165.7 in addition to the aromatic carbons. In the mass spectrum the molecular ion appeared at *m*/*z* 600.

Cyclophane amide 19^{23} in ¹H NMR spectrum displayed the aromatic methyl protons as two singlets at δ 2.25 and δ 2.33, SCH₂CH₂O protons as two triplet at δ 2.97 and δ 3.77 with J = 4.8 Hz, OCH₂ protons as two singlet at δ 5.01 and δ 5.06 in addition to the aromatic protons, and the amide protons as a broad singlet at δ 9.13. In ¹³C NMR spectrum cyclophane amide **19**

Scheme 3. Reagents and conditions: (a) SOCl₂, TEA, CH₂Cl₂, reflux, 3 h; (b) TEA, CHCl₃, room temperature, 6 h.

displayed two aromatic methyl carbons at δ 19.2 and δ 19.8, SCH₂CH₂O carbons at δ 37.7 and δ 64.9, OCH₂ carbons at δ 66.5 and δ 70.9, and carbonyl carbons at δ 162.5 and δ 165.0 in addition to the aromatic carbons. In the FAB mass spectrum, the molecular ion appeared at *m*/*z* 630. Similarly cyclophane amide **20**²⁴ was also completely characterized by spectral and analytical data.

Anti-inflammatory activity. Cyclophane amides **15–20** were screened for in vitro anti-inflammatory activity. The HRBC membrane stabilization²⁵ has been used as a method to study the anti-inflammatory activity using prednisolone as standard drug.

Blood was collected from healthy volunteers and the collected blood was mixed with equal volume of sterilized Alsever's solution (2% dextrose, 0.8% sodium citrate, 0.05% citric acid, and 0.42% sodium chloride). The blood was centrifuged at 1500 rpm and the packed cells were washed with isotonic NaCl (0.85%, pH 7.2) and a 10% v/v suspension of the packed cells was made with isotonic NaCl. The assay mixture contained the drug (concentration as mentioned in Table 1), 1 ml phosphate buffer (0.15 M, pH 7.4), 2 ml of hypotonic NaCl (0.36%), and 0.5 ml HRBC

Table 1. Effect of cyclophane amides 15-20 on HRBC membrane stabilization

Compound	Activity (% prevention of lysis)			
	10 μg/ml	50 µg/ml	100 µg/ml	200 µg/ml
15	65.17 ± 0.95	82.43 ± 0.48	89.67 ± 0.68	91.00 ± 0.58
16	40.53 ± 0.75	42.60 ± 0.95	48.72 ± 0.31	49.65 ± 0.49
17	48.27 ± 0.61	49.37 ± 0.54	51.42 ± 0.59	54.14 ± 0.38
18	50.31 ± 0.73	52.27 ± 0.39	56.04 ± 0.18	60.86 ± 0.46
19	44.28 ± 0.11	45.63 ± 0.64	50.25 ± 0.63	51.27 ± 0.63
20	38.84 ± 0.44	41.72 ± 0.61	45.25 ± 0.86	47.97 ± 0.09
Prednisolone	_	59.34 ± 0.44	86.37 ± 0.49	

suspension. Prednisolone 100 μ g was used as the reference drug. Instead of hypotonic NaCl, 2 ml of distilled water was used in the control. All the assay mixtures were incubated at 37 °C for 30 min and centrifuged. The hemoglobin content in the supernatant solution was estimated using spectrophotometer (systronics model) at 500 nm. The percentage hemolysis was calculated by assuming the hemolysis produced in the presence of distilled water as 100%. The percentage of HRBC membrane stabilization or protection was calculated using the formula: 100

Activity (% prevention of lysis) = 100OD of drug treated sample

$$\frac{100 - \frac{1}{100} \times 100}{\text{OD of control}} \times$$

The lysosomal enzymes released during inflammation produce a variety of disorders. This extracellular activity of these enzymes is related to acute or chronic inflammation. Since the HRBC membranes are similar to lysosomal membrane components, the prevention of hypotonicity induced HRBC membrane lysis is taken as a measure of anti-inflammatory activity of drug.

The degree of anti-inflammatory activity in cyclophane amide 15 at 50 µg/ml was found to be 82.43%, whereas that of the reference drug prednisolone, at the same concentration, was 59.34%. The activity of cyclophane amide 15 was found to be more than that of prednisolone which clearly shows that cyclophane amide 15 is superior to the reference drug prednisolone. Though the degree of anti-inflammatory activity in cyclophane amide 18 at 50 µg/ml was 52.27% which is some what nearer to the reference drug prednisolone, at 100 µg/ml it was only 56.04% which indicates that cyclophane amide 18 is inferior to prednisolone. Cyclophane amides 16, 17, 19, and 20 did not show much activity. The results are summarized in Table 1.

Cyclophane amides 15–20 were synthesized by the acylation of the corresponding diamines with acid chloride 14. Cyclophane amides 15–20 showed a dose-dependent effect in HRBC membrane stabilization. Anti-inflammatory activity was more in cyclophane amide 15 than the cyclophane amides 16-20.

Acknowledgments

The authors thank CSIR, New Delhi, for financial assistance, UGC SAP, for providing facility to the Department, SAIF, IIT, Chennai, for NMR spectra and RSIC, CDRI, Lucknow, for FAB MS.

References and notes

- 1. Hosseini, M. W.; Lehn, J. M.; Duff, S. R.; Gu, K.; Mertes, M. P. J. Org. Chem. 1987, 52, 1662.
- 2. Dobler, M.. In Comprehensive Supramolecular Chemistry; Gokul, G. W., Ed.; Pergamon: New York, 1996; Vol. 1, p 267.
- 3. Bradshaw, J. S.; Izatt, R. M.; Bordunov, A. V.; Zhu, C. Y.; Hathway, J. K.. In Comprehensive Supramolecular Chemistry; Gokel, G. W., Ed.; Pergamon: New York, 1996; Vol. 1, p 35.
- 4. Sprengard, U.; Schudok, M.; Schmidt, W.; Kretzschmar, G.; Kunz, H. Angew. Chem., Int. Ed. Engl. 1996, 35, 321.
- 5. Karle, I. L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc. 1996, 118, 10916.
- 6. Kataoka, H.; Katagi, T. Tetrahedron 1987, 43, 4519.
- Karle, I. L.; Ranganathan, D.; Kurur, S. J. Am. Chem. Soc. 1999, 121, 7156.
- 8. Karle, I. L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc. 1998, 120, 6903.

- 9. Ranganathan, D.; Haridas, V.; Nagaraj, R.; Karle, I. L. J. Org. Chem. 2000, 65, 4415.
- 10. Eun, J. J.; Soo, Y. S. Bull. Korean Chem. Soc. 2002, 23, 1483.
- 11. Cheng, S.-K.; Van Ergen, D.; Fan, E.; Hamilton, A. D. J. Am. Chem. Soc. 1991, 113, 7640.
- 12. (a) Jhaumeer-Laulloo, B. S.; Witvrouw, M. Indian J. Chem. 2000, B, 842; (b) Jhaumeer-Laulloo, B. S. Asian J. Chem. 2000, 12, 775.
- 13. Sulekh, C.; Sangeetika, T.; Shalini, T. Transition Met. Chem. 2004, 29, 925.
- 14. Cheng, C.-C.; Rokito, S. E.; Burrows, C. J. Angew. Chem., Int. Ed. Engl. 1993, 32, 277.
- 15. Halit, K.; Guelsev, D.; Yasar, G.; Uemmuehan, O.; Riza, A. Transition Met. Chem. 2003, 28, 51.
- 16. Du, C.-J. F.; Hart, H.; Ng, K. K. D. J. Org. Chem. 1986, 51, 3162.
- 17. Harada, T.; Takayama, M.; Oohashi, H.; Koike, W.; Yazawa, C. Jpn. Kokai Tokkyo Koho 80 33,348; Chem. Abstr. 1980, 93, p96593q).
- 18. Rajakumar, P.; Rasheed, A. M. A. Tetrahedron 2005, 61, 5351
- 19. A solution of the diacid chloride 14 (0.5 mmol) in dry chloroform (100 mL) and a solution of the diamine 1 (0.5 mmol) and triethylamine (1.1 mmol) in dry chloroform (100 mL) were added simultaneously dropwise to chloroform (500 mL) with vigorous stirring during 6 h. After the addition was complete, the reaction mixture was stirred for another 6 h. The solvent was removed at reduced pressure and the residue obtained was then dissolved in chloroform (300 mL), washed with water (2× 100 mL) to remove triethylamine hydrochloride and then dried over magnesium sulphate. Removal of the chloroform gave the cyclophane 15 as a crude material, which was purified by column chromatography (SiO₂) using hexane/chloroform (1:1) as eluting agent to give pure cyclophane amide 15 as a violet crystalline solid. Yield: 50%; R_f 0.66 (toluene/ethyl acetate, 9:1); mp: 234-236 °C; IR (KBr, cm⁻¹) 3379, 1662, 1508; ¹H NMR (400 MHz, CDCl₃) δ 2.16 (s, 6H), 3.95 (s, 4H), 4.80 (s, 4H), 6.75-8.58 (m, 26H), 9.68 (s, 2H); ¹³C NMR (100.4 MHz, CDCl₃) δ 19.4, 41.9, 67.9, 113.7, 121.1, 121.2, 123.9, 123.9, 124.4, 126.6, 128.2, 128.5, 129.8, 130.4, 130.5, 135.6, 136.1, 137.3, 138.7, 140.7, 156.3, 164.0; FAB Mass spectrum: *m*/*z* 798 (M⁺); Elemental analysis calcd for C₅₀H₄₂N₂O₄S₂: C, 75.18; H, 5.26; N, 3.50. Found: C, 75.35; H, 5.32; N, 3.61.
- 20. Cyclophane amide 16. White solid. Eluent for column chromatography: chloroform to chloroform/methanol (99:1); yield: 45%; R_f 0.54 (chloroform/methanol, 9:1); mp: 280–283 °C; IR (KBr, cm⁻¹) 3280, 1672, 1581, 1517; ¹H NMR (400 MHz, DMSO- d_6) δ 2.08 (s, 6H), 3.38 (s, 4H), 5.62 (s, 4H), 7.10-8.29 (m, 22H), 9.47(s, 2H), 10.52 (s, 2H); ¹³C NMR (100.4 MHz, DMSO- d_6) δ 19.0, 40.1, 68.2, 113.5, 120.9, 122.2, 122.6, 124.8, 125.5, 127.9, 130.3, 131.2, 131.6, 132.0, 133.0, 135.9, 138.0, 155.7, 163.4, 166.7; FAB Mass spectrum: $m/z 808 (M^+)$: Elemental analysis calcd for C46H40N4O6S2: C, 68.31; H, 4.95; N, 6.93. Found: C, 68.42; H, 5.12; N, 6.84.
- 21. Cyclophane amide 17. Beige crystalline solid. Eluent for column chromatography: hexane to hexane/chloroform (1:1); yield: 35%; $R_f 0.45$ (toluene/ethyl acetate, 9:1); mp: (1.1), yield: 3576, $R_{\rm f}$ (0.49 (toluchereduly accure, 9.1), inp. 150–154 °C; IR (KBr, cm⁻¹) 3280, 1662, 1581, 1517; ¹H NMR (400 MHz, CDCl₃) δ 1.94 (s, 6H), 4.03 (s, 4H), 5.05 (s, 4H), 6.75–8.43 (m, 30H), 9.73 (s, 2H); ¹³C NMR $(100.4 \text{ MHz}, \text{CDCl}_3) \delta 19.3, 41.5, 68.1, 114.3, 121.4, 121.9,$ 123.9, 124.5, 125.4, 126.8, 127.4, 128.7, 128.8, 128.9, 129.3, 130.4, 130.8, 132.7, 134.6, 136.5, 137.2, 140.0, 140.2, 140.9, 156.4, 163.9; FAB Mass spectrum: m/z 874 (M⁺); Elemen-

tal analysis calcd for $C_{56}H_{46}N_2O_4S_2$: C, 76.88; H, 5.30; N, 3.20. Found: C, 76.79; H, 5.41; N, 3.28.

- 22. Cyclophane amide **18**. Beige crystalline solid. Eluent for column chromatography: hexane to hexane/chloroform (1:1); yield: 40%; R_f 0.55 (toluene/ethyl acetate, 9:1); mp: 206–208 °C; IR (KBr, cm⁻¹) 3340, 1677, 1591; ¹H NMR (400 MHz, CDCl₃) δ 2.25 (s, 3H), 2.27 (s, 3H), 3.65 (s, 2H), 5.08 (s, 2H), 5.17 (s, 2H), 6.54–8.50 (m, 18H), 9.69 (br s, 2H); ¹³C NMR (100.4 MHz, CDCl₃) δ 19.6, 19.8, 43.3, 69.5, 70.8, 113.0, 116.3, 121.0, 122.1, 122.2, 122.4, 124.2, 125.2, 127.7, 128.0, 128.5, 128.9, 130.5, 131.4, 131.7, 132.2, 133.1, 133.6, 134.4, 135.5, 136.7, 137.5, 137.5, 138.9, 141.6, 156.0, 156.8, 162.8, 165.7; Mass spectrum: *m*/*z* 600 (M⁺); Elemental analysis calcd for C₃₇H₃₂N₂O₄S: C, 74.00; H, 5.33; N, 4.66. Found: C, 73.85; H, 5.49; N, 4.78.
- 23. Cyclophane amide **19**. Yellow crystalline solid. Eluent for column chromatography: hexane to hexane/chloroform (1:1); yield: 42%; R_f 0.60 (toluene/ethyl acetate, 9:1); mp: 202–204 °C; IR (KBr, cm⁻¹) 3355, 1674, 1595; ¹H NMR (400 MHz, CDCl₃) δ 2.25 (s, 3H), 2.33 (s, 3H), 2.97 (t, 2H, J = 4.8 Hz), 3.77 (t, 2H, J = 4.8 Hz), 5.01 (s, 2H), 5.06 (s, 2H), 6.17–8.97 (m, 18H), 9.13 (br s, 2H); ¹³C NMR

(100.4 MHz, CDCl₃) δ 19.2, 19.8, 37.7, 64.9, 66.5, 70.9, 113.4, 113.8, 120.1, 120.4, 120.5, 120.6, 122.4, 122.7, 123.1, 124.5, 125.7, 127.5, 127.7, 128.2, 129.0, 130.0, 131.4, 132.0, 132.1, 132.2, 132.9, 133.0, 134.0, 135.5, 136.1, 138.5, 141.6, 154.0, 156.1, 162.5, 165.0; FAB Mass spectrum: *m*/*z* 630 (M⁺); Elemental analysis calcd for C₃₈H₃₄N₂O₅S: C, 72.38; H, 5.39; N, 4.44. Found: C, 72.55; H, 5.59; N, 4.53.

- 24. Cyclophane amide **20**. White crystalline solid. Eluent for column chromatography: chloroform/methanol (99:1); yield: 40%; $R_{\rm f}$ 0.65 (chloroform/methanol, 9:1); mp: 160–162 °C; IR (KBr, cm⁻¹) 3234, 1672, 1664, 1590; ¹H NMR (400 MHz, CDCl₃) δ 2.19 (s, 6H), 3.07–3.95 (m, 8H), 4.47 (s, 4H), 5.11 (s, 4H), 6.58–7.66 (m, 24H), 8.00 (br s, 2H); ¹³C NMR (100.4 MHz, CDCl₃) δ 19.3, 38.5, 47.6, 65.4, 67.6, 112.5, 114.2, 120.8, 121.8, 127.1, 127.3, 127.7, 128.3, 128.5, 128.7, 130.2, 130.8, 132.2, 132.5, 136.6, 141.6, 147.1, 154.3, 169.0, 170.1; FAB Mass spectrum: *m*/*z* 832 (M⁺); Elemental analysis calcd for C₅₀H₄₈N₄O₈: C, 72.10; H, 5.81; N, 6.73. Found: C, 72.28; H, 5.74; N, 6.66.
- 25. Gandhidasan, R.; Thamaraichelvan, A.; Baburaj, S. Fitoterapia 1991, 62, 81.