Novel Brønsted Acidic Ionic Liquid ([CMIM][CF₃COO]) Prompted Multicomponent Hantzsch Reaction for the Eco-Friendly Synthesis of Acridinediones: An Efficient and Recyclable Catalyst

Dayanand Patil · Dattatray Chandam · Abhijeet Mulik · Prasad Patil · Surybala Jagadale · Rajni Kant · Vivek Gupta · Madhukar Deshmukh

Received: 10 November 2013/Accepted: 19 January 2014 © Springer Science+Business Media New York 2014

Abstracts A novel, highly efficient and recyclable Brønsted acidic ionic liquid ([CMIM][CF₃COO]) has been successfully implemented for the synthesis of acridinediones in aqueous media. Recyclability of novel catalyst, high yields, use of environmentally benign aqueous media as solvent, simple product isolation, high atom economy and sidestep to column chromatography are the noteworthy features of this protocol. This protocol is competent for producing wide library of acridinediones in good to excellent yields. Furthermore, molecular structure and relative stereochemistry of 4c and 4s derivatives were confirmed by single-crystal X-ray diffraction.

Keywords Acridinediones · Brønsted ionic liquid · Enamine · Multicomponent reaction

1 Introduction

MCR's endowed with notable properties as simpler methods and operations as compared to the conventional multistep methods of heterocycles synthesis have gained enormous interest in diversity oriented synthesis of skeletons found in

D. Patil \cdot D. Chandam \cdot A. Mulik \cdot S. Jagadale \cdot

Heterocyclic Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, MS 416 004, India e-mail: shubhlaxmi111@gmail.com

P. Patil

Department of Agrochemicals and Pest Management, Shivaji University, Kolhapur, MS 416 004, India

R. Kant · V. Gupta

X-ray Crystallography Laboratory, Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India

natural products, drug like molecules [1-3]. MCRs tactics are proclaimed to be economic, cost- and time-effective attributing its properties such as reduction in steps thereby saving synthetic time, efficient inexpensive purification process, synthetic convergence as well as selectivity and synthetic efficiency over traditional chemical reactions thereby attracted contemporary organic chemistry [4, 5].

Acridine 1,8-diones are an important class of heterocycles containing a 1;4-DHP parent nucleus, are induced with high efficiencies with several applications such as photoinitiators, laser activity, fluorescence [6–9], laser dyes [10– 12], electrochemical and photo-physical properties [13]. The 1,4-DHP derivatives contribute as a very significant compound due of their abundant pharmacological properties [14]. In particulars dihydropyridine drugs such as nifedipine, nicardipine, amlodipine and other are effective cardiovascular agents for the treatment of hypertension [15–17] (Fig. 1). 1,4-DHP have also been known for their calcium channel activity, moreover this heterocyclic ring constitutes variety of bioactive compounds such as vasodilator, bronchodilator, antiatheroscntific, antidiabetic, antitumor, and anti-inflammatory agents [18]. Further studies have discovered that these compounds exhibit diverse medical function such as neuroprotectus, platelet antiaggregaters and chemosensitizers [19].

The general synthesis of 1,4-DHP by Hantzsch method involves one pot cyclocondensation of aldehydes with dicarbonyls and ammonium acetate refluxing in ethanol [20]. There are several methods reported for the synthesis of 1,4dihydropyridines from dimedone, aldehyde through different nitrogen sources like urea [21], methyl amine [22], different aniline or ammonium acetate [23] via traditional heating in organic solvent and in presence of triethyl benzyl ammonium chloride (TEBAC) [24], p-dodecyl benzene sulphonic acid (DBSA) [25], L-proline [26], amberlyst-15

M. Deshmukh (🖂)

Fig. 1 Representative antihypertensive compounds

[27], under microwave [28], TMSCl-NaI [29], metal triflates [30], I₂ [31],CeCl₃·7H₂O [32], SiO₂-Pr-SO₃H [33], CAN [34], Fe₃O₄ Nanoparticles [35] and MCM-41-SO₃H [36].

However, most of the methods are blemished by aspects such as unsatisfactory yield, prolonged duration, inconvenient availability of reagent, toxic solvents and expensive catalysts, Hence the development of an efficient synthesis of Hantzsch 1,4-dihydropyridines seemed to be of prime importance. Recently avail of ionic liquids as catalyst or solvents in multicomponent reactions has been gaining elevated interest in green synthesis [37–39]. Initially ionic liquids have been introduced as alternative green reaction media attributed to their unique physico-chemical properties, such as negligible vapor pressure, non-volatility, noninflammability, thermal and chemical stability and controlled miscibility in organic solvents which proves their importance in controlling reactions as catalysts [40–42].

Amongst them, Brønsted acidic ionic liquids displayed potential catalytic characteristics over conventional homogeneous/heterogeneous acidic catalysts in chemical procedures as they are flexible, recyclable and reusable, noncorrosive and possess ability to be used as dual solvents and catalysts [43–46]. In continuation of our investigation on the development of eco-friendly methodologies and applications of ionic liquids as catalysts in multicomponent reactions [47], herein, we demonstrate an expedient and highly efficient protocol for one pot multicomponent synthesis of acridinediones derivatives from various aryl aldehydes, dimedone and ammonium acetate using novel Brønsted acidic ionic liquid [CMIM][CF₃COO] as an effective, recyclable and reusable catalyst (Scheme 1). To the best of our knowledge, our catalyst [CMIM][CF₃COO] is novel and used for first time.

2 Experimental

2.1 General

The chemicals were purchased from Thomas Baker, Sigma-Aldrich and used as received without further

purification. All the melting point check on Labstar melting apparatus was uncorrected. The IR spectra was run on a Perkin-Elmer, FTIR-1600 spectrophotometer and expressed in cm⁻¹ (KBr). ¹H and ¹³C NMR spectra were recorded on Bruker Avance (300 MHz) spectrometer in CDCl₃, D₂O or DMSO-d₆ using TMS as the internal standard. The LC-MS spectrums were recorded by Shimadzu LC-MS-2010 equipped with electron spray ionization interface.

2.2 X-Ray Structure Analysis

X-ray diffraction data of compounds **4c** and **4s** were collected at T = 298 and 293 K on a Bruker APEXII CCD and CrysAlis PRO Oxford diffractometer with graphite monochromated Mo K α (λ = 0.71073 Å) radiation. Table 4 shows the unit cell parameters and other crystallographic details. The determination of cell refinement and data reduction were performed with program SAINT and CrysAlis PRO [51]. The structure was solved using the direct methods of program SHELXS97 and refined anisotropically by full-matix least-square on F² was carried out with the program SHELXL97 [52].

2.3 Synthesis of Ionic Liquid

The Brønsted acidic ionic liquid such as 3-(carboxymethyl)-1methyl-1H-imidazol-3-ium trifluoroacetate [CMIM][CF_{3-} COO] was synthesized as shown in Scheme 2.

2.3.1 Preparation of [CMIM][CF₃COO]

A mixture of 1-methyl imidazole (10 mmol), chloroacetic acid (10 mmol) and dry acetone (40 ml) were charged into 250 ml round bottom flask at RT. The reaction was performed 5–7 h under reflux condition. After completion of reaction (checked by TLC), the reaction mixture was cooled and then a stoichiometric amount of trifluoroacetic acid (99 %) was slowly added at 5–10 °C under stirring over 30 min. Then the reaction was stirred an additional period of 1 h at RT. The white solid was observed, filter and washed

3–4 times with acetone (10 ml) to remove non-ionic residue. Finally, it was dried under vacuum at 50 °C for 2 h to give [CMIM][CF₃COO] as a white solid in 97 % yield and further it used as a catalyst after checking pH (pH 1.7).

[Compound 8: 3-(Carboxymethyl)-1-methyl-1H-imidazol-3-ium trifluoroacetate]

2.4 General Procedure for the Synthesis of Acridinediones (4a-4z)

In a 50 ml round bottom flask, a mixture of dimedone **1** (2 mmol), aldehyde **2** (1 mmol), ammonium acetate **3** (1.5 mmol) and [CMIM][CF₃COO] (30 mol%) in aqueous ethanol (1:1, 7 ml) was stirred at 80 °C for 1–1.5 h. The progress of reaction was monitored by TLC. After completion of reaction, the mixture was gradually cool to RT and poured on ice water under stirring, solid was precipitate out. Then, filter the product and recrystallized in ethanol. The catalyst [CMIM][CF₃COO], being aqueous ethanol soluble, was recovered from the filtrate.

2.5 Spectral Data for IL_s and Some Representative Acridinediones Derivatives

2.5.1 3-(Carboxymethyl)-1-methyl-1H-imidazol-3-ium trifluoroacetate [CMIM][CF₃COO] (8)

White solid; mp 190–195 °C;

Fresh ¹H NMR (300 MHz, DMSO-d₆): δ 13.67 (brs, 1H, OH), 9.20 (s, 1H, Ar–H), 7.74-7.76(m, 2H, Ar–H), 5.18 (s, 2H, CH₂), 3.91 (s, 3H, CH₃);

¹H NMR (300 MHz, D₂O): δ 9.0 (s, 1H, Ar–H), 7.64–7.65 (d, 2H, Ar–H), 5.12 (s, 2H, CH₂), 3.89 (s, 3H, CH₃); ¹³C NMR (75 MHz, DMSO-d₆): δ 168.2, 159.5, 159.0, 158.5, 158.0, 137.9, 123.9, 123.2, 120.9, 117.1, 113.3, 109.5, 49.9, 35.9; ESI-MS (+ve ion) (m/z): 141(M⁺); ESI-MS (-ve ion) (m/z): 112.9(M⁺);

After 4th run ¹H NMR (300 MHz, D₂O): δ 8.88 (s, 1H, Ar–H), 7.49-7.62 (m, 2H, Ar–H), 5.08 (s, 2H, CH₂), 3.84 (s, 3H, CH₃);

Anal. Calcd.for $C_8H_9F_3N_2O_4$ (254.162): C, 37.80; H, 3.57; N, 11.02. Found: C, 37.73; H, 3.63; N, 11.09.

2.5.2 3,3,6,6-Tetramethyl-9-(4-chlorophenyl)-3,4,6,7,9,10hexahydroacridine-1,8-dione (**4c**)

Yellow solid; mp >300 °C; IR (KBr): 3432, 3279, 3174, 3057, 2955, 1649, 1609, 1489, 1398, 1366 cm⁻¹; ¹H NMR(300 MHz, DMSO-d₆): δ 8.18 (s, 1H, NH), 7.28–7.26(d, 2H, J = 5.7 Hz, Ar–H),7.17–7.14 (d, 2H, J = 8 Hz, Ar–H), 5.04 (s, 1H, CH), 2.29–2.11 (m, 8H, CH₂), 1.08 (s, 6H, CH₃), 0.96 (s, 6H, CH₃); ¹³C NMR (75 MHz, DMSO-d₆): δ 195.9, 153.8, 149.9, 145.1, 131.6, 129.4, 128.0, 112.5, 50.8, 40.6, 40.4, 33.2, 32.5, 29.6, 27.0; ESI–MS (m/z): 384.3 (M+H)⁺;

Anal. Calcd. for C₂₃H₂₆ClNO₂ (383.911): C, 71.96; H, 6.83; N, 3.65. Found: C, 71.87; H, 6.75; N, 3.73.

2.5.3 3,3,6,6-Tetramethyl-9-(4-hydroxy,3-methoxyphenyl)-3,4,6,7,9,10-hexahydroacridine-1,8-dione (**4m**)

Yellow solid; mp 295–298 °C; IR (KBr): 3409, 3274, 3168, 3049, 1623, 1511, 1370 cm⁻¹;

¹H NMR (300 MHz, DMSO-d₆): δ 9.69(s, 1H, OH), 8,71 (brs, 1H, NH), 7.69 (s, 1H, Ar–H), 7.44

(s, 2H, Ar–H), 5.69(s, 1H, CH), 4.61 (s, 3H, OCH₃), 3.25–2.88 (m, 8H, CH₂), 1.89 (s, 6H, CH₃), 1,77 (s, 6H, CH₃); 13 C NMR (75 MHz, DMSO-d₆): δ 195.4, 149.0, 138.9, 114.6, 112.8, 55.7, 50.8, 32.6, 32.4, 29.6, 26.9;

Anal. Calcd. for $C_{24}H_{29}NO_4$ (395.491): C, 72.89; H, 7.39; N, 3.54. Found: C, 72.81; H, 7.33; N, 3.63.

2.5.4 3,3,6,6-Tetramethyl-9-(3,4-dimethoxyphenyl)-3,4,6,7,9,10-hexahydroacridine-1,8-dione (**4n**)

Yellow solid; mp 286–290 °C; IR (KBr): 3273, 3200, 3071, 2954, 1642, 1610 cm⁻¹;

¹H NMR(300 MHz, CDCl₃): δ 7.69 (s, 1H, NH), 6.92-6.91 (d, 1H, J = 1.8 Hz, Ar–H), 6.84–6.81 (m, 1H, Ar–H), 6.68–6.65 (d, 1H, J = 8.4 Hz, Ar–H), 5.04 (s, 1H, CH), 3.80 (s, 3H, OCH₃), 3.74 (s, 3H, OCH₃), 2.31–2.12 (m, 8H, CH₂), 1.05 (s, 6H, CH₃), 0.96 (s, 6H, CH₃);

¹³C NMR (75 MHz, CDCl₃): δ 195.8, 148.7, 148.4, 147.1, 139.4, 119.8, 113.2, 111.8, 110, 55.7, 55.6, 50.8, 40.7, 32.9, 32.5, 29.5, 26.9; ESI–MS (m/z): 432.15 (M+Na)⁺;

Anal. Calcd. for $C_{25}H_{31}NO_4$ (409.571): C, 73.32; H, 7.63; N, 3.42. Found: C, 73.41; H, 7.72; N, 3.47.

2.5.5 3,3,6,6-Tetramethyl-9-(3-trifluoromethylphenyl)-3,4,6,7,9,10-hexahydroacridine-1,8-dione (**40**)

Yellow solid; mp >300 °C; IR (KBr): 3270, 3186, 3068, 2963, 1644, 1616 cm⁻¹;

¹H NMR(300 MHz, DMSO-d₆): δ 8.92 (brs,1H,NH), 7.51–7.40 (m, 2H, Ar–H), 7.21–7.20 (d, 2H, J = 4.8 Hz, Ar–H), 4.92(s, 1H, CH), 2.49–1.95 (m, 8H, CH₂), 0.98 (s, 6H, CH₃), 0.82 (s, 6H, CH₃); ¹³C NMR (75 MHz, DMSOd₆): δ 195.2, 149.6, 148.1, 131.8, 128.1, 112.0, 50.6, 40.4, 40.3, 40.2, 39.9, 39.6, 39.3, 33.7, 32.4, 29.5, 26.7; ESI–MS (m/z): 418 (M⁺);

Anal. Calcd. for $C_{24}H_{26}F_3NO_2$ (417.463): C, 69.05; H, 6.28; N, 3.36. Found: C, 68.95; H, 6.19; N, 3.34.

2.5.6 3,3,6,6-Tetramethyl-9-(3-fluorophenyl)-3,4,6,7,9,10hexahydroacridine-1,8-dione (**4p**)

Yellow solid; mp >300 °C; IR (KBr): 3217, 3070, 2954, 1627 cm⁻¹;

¹H NMR (300 MHz, DMSO-d₆): δ 9.19 (brs, 1H, NH), 7.64–7.48 (m, 3H, Ar–H), 7.26–7.24 (d, 1H, J = 6.6 Hz, Ar–H), 5.53 (s, 1H, CH), 2.91–2.59 (m, 8H, CH₂), 1.57 (s, 6H, CH₃), 1.44 (s, 6H, CH₃); ¹³C NMR (75 MHz, DMSOd₆): δ 190.5, 159.3, 144.7, 144.6, 144.4, 124.2, 124.1, 118.9, 110.0, 109.0, 107.0, 45.0, 53.0, 34.0, 28.0, 27.0, 23.0, 22.0; ESI–MS (m/z): 368 (M+H)⁺;

Anal. Calcd. for C₂₃H₂₆FNO₂ (367.456): C, 75.18; H, 7.13; N, 3.81. Found: C, 75.25; H, 7.19; N, 3.87.

2.5.7 3,3,6,6-Tetramethyl-9-(3-pyridine)-3,4,6,7,9,10hexahydroacridine-1,8-dione (**4r**)

Light yellow solid; mp 298–300 °C; IR (KBr): 3432, 3270, 3172, 2957, 1634 cm⁻¹;

¹H NMR (300 MHz, CDCl₃): δ 11.89 (s, 1H, NH), 8.42-8.37 (m, 2H, Ar–H), 7.39–7.37 (d, 1H, J = 8.1 Hz, Ar–H), 7.26–7.18 (m, 1H, Ar–H), 5.53 (s.1H, CH), 2.50–2.19 (m, 8H, CH₂), 1.23 (s, 6H, CH₃), 1.11 (s, 6H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 190.8, 189.4, 148.6, 147.0, 134.4, 133.7, 122.9, 114.6, 46.9, 31.3, 31.0, 29.6, 27.3; ESI–MS (m/z): 351.15 (M+H)⁺;

Anal. Calcd. for $C_{22}H_{26}N_2O_2$ (350.454): C, 75.40; H, 7.48; N, 7.99. Found: C, 75.31; H, 7.44; N, 8.05.

2.5.8 3,3,6,6-Tetramethyl-9-(2-hydroxyphenyl)-3,4,6,7,9,10-hexahydroacridine-1,8-dione (**4s**)

Yellow solid; mp >300 °C; IR (KBr): 3405, 3265, 3083, 2943, 1649 cm⁻¹;

¹H NMR(300 MHz, DMSO-d₆): δ 9.64 (brs, 1H, OH), 9.48 (s, 1H, NH), 6.96–6.89 (m, 2H, Ar–H), 6.70–6.66 (m, 2H, Ar–H), 4.85 (s, 1H, CH), 2.52-2.03 (m, 8H, CH₂), 1.02 (s, 6H, CH₃), 0.90 (s, 6H, CH₃); ¹³C NMR (75 MHz, DMSO-d₆): δ 196.4, 153.6, 151.6, 134.4, 128.6, 127.4, 120.1, 117.7, 111.7, 50.3, 32.5, 29.3, 27.0, 26.9; ESI–MS (m/z): 366.3 (M+H)⁺;

Anal. Calcd. for $C_{23}H_{27}NO_3$ (365.465): C, 75.59; H, 7.45; N, 3.83. Found: C, 75.54; H, 7.42; N, 3.87.

 Table 1 Optimization solvent and reaction conditions for the synthesis of acridinediones

Entry	Solvent	Temp. (°C)	Time (min)	Yield (%) ^a
1	Water	RT	360	_b
2	Ethanol	RT	240	_b
3	Methanol	RT	240	_ ^b
4	Water	80	300	_ ^b
5	Ethanol	78	150	75
6	Methanol	64	180	67
7	Water+ethanol (2:1)	80	130	63
8	Water+ethanol (1:1)	80	85	86
9	Acetone	60	180	20
10	Isopropyl alcohol	80	120	70
11	Glycerol	80	110	75
12	Acetonitrile	80	135	45
13	Dimethyl formamide	80	300	25
14	Dimethyl sulfoxide	80	240	37
15	[CMIM][CF ₃ COO]	80	120	Trace
16	-	80	180	_ ^b

Reaction condition: dimedone (2 mmol), 4-OH benzaldehyde (1 mmol), ammonium acetate (1.5 mmol), [CMIM][CF₃COO] (30 mol%)

^a Isolated yield

^b No reaction

Tuble 2 Dereening of eataryst concentration	Table 2	Screening	of cata	alyst	concentration
--	---------	-----------	---------	-------	---------------

Entry	Catalyst (mol%)	Time (min)	Yield (%) ^a
1	-	350	_ ^b
2	5	300	Trace
3	10	170	35
4	20	110	63
5	30	85	86
6	40	85	85

Reaction condition: dimedone (2 mmol), 4-OH benzaldehyde (1 mmol), ammonium acetate (1.5 mmol) in 7 ml aqueous ethanol (1:1) at 80 $^{\circ}$ C

^a Isolated yield

^b No reaction

3 Results and Discussion

At this instance, we outlined an eco-friendly protocol for the multicomponent synthesis of acridinediones scaffolds using novel ionic liquid [CMIM][CF₃COO] as a green and recyclable catalyst in aqueous ethanol (1:1) at 80 $^{\circ}$ C (Scheme 1).

Initially, the ionic liquid 3-(carboxymethyl)-1-methyl-1H-imidazol-3-ium trifluoroacetate was synthesized (Scheme 2) and identified by ¹H NMR, ¹³C NMR, mass and elemental analyses. After characterization of ionic liquid, to evaluate the efficiency and applicability of our new catalyst to synthesis of acridinediones, we choose dimedone (2 mmol), 4-OH benzaldehyde (1 mmol), ammonium acetate (1.5 mmol) as a substrates and 30 mol% of [CMIM][CF₃COO] as catalyst proportion for model reaction. Successively, we focused our initial investigation on the effect of various solvents and their mixtures on model reaction at different temperatures (Table 1). It was observed that, the reaction doesn't marches successfully in sole solvents like water, EtOH and MeOH even after prolonged stirring at room temperature (Table 1, entries 2, 3). However, best result was observed using same proportional mixture (1:1) of water/ethanol at

Table 3 [CMIM][CF ₃ COO] catalyzed synthesis of acridinediones derivatives	Entry	Ar	Product	Time (min)	Yield ^a (%)	MP °C (observed)	MP °C (literature)[Ref.]
	1	4-NO ₂ C ₆ H ₄	4 a	70	90	>300	261–262 [24]
	2	C ₆ H ₅	4b	80	87	285-289	251–252 [24]
	3	4-Cl C ₆ H ₄	4c	65	89	>300	>300 [24]
	4	4-OH C ₆ H ₄	4d	85	86	271-274	284–286 [29]
	5	4-CH ₃ C ₆ H ₄	4 e	90	84	270-275	227–228 [<mark>29</mark>]
	6	3-NO ₂ C ₆ H ₄	4f	67	88	>300	285–286 [29]
	7	3-Cl C ₆ H ₄	4g	72	87	283-285	281–282 [29]
	8	4-OCH ₃ C ₆ H ₄	4h	90	84	275–277	266–267 [29]
	9	2;3-(OCH ₃) ₂ C ₆ H ₃	4i	87	83	>300	324–326 [29]
	10	3-OH,4-OCH ₃ C ₆ H ₃	4j	85	85	>300	324–326 [29]
	11	2-OCH ₃ C ₆ H ₄	4k	80	83	>300	294–296 [<mark>29</mark>]
	12	2-Cl C ₆ H ₄	41	78	84	263-264	221–223 [28]
	13	4-OH, 3-OCH ₃ C ₆ H ₃	4m	85	83	294–296	295-298 [48]
	14	3,4-(OCH ₃) ₂ C ₆ H ₃	4n	85	85	288-291	286–290 [49]
	15	3-F ₃ C C ₆ H ₄	40	70	87	>300	_
	16	3-F C ₆ H ₄	4p	70	89	>300	300 [50]
	17	4-F C ₆ H ₄	4 q	65	90	>300	275–276 [24]
	18	3-CHO C ₅ H ₄ N	4r	60	81	298-300	_
	19	2-OH C ₆ H ₄	4 s	87	82	>300	-
	20	4- (CH ₃) ₂ N C ₆ H ₄	4t	85	83	269-271	256–257 [24]
(2 mmol) aldebyde (1 mmol)	21	4-Br C ₆ H ₄	4u	78	87	>300	330–332 [<mark>32</mark>]
(2 mmol), addingde (1 mmol), ammonium acetate (1.5 mmol) and [CMIM][CF ₃ COO] (30 mol%) in ml aqueous	22	3-Br C ₆ H ₄	4 v	73	86	294–297	288–289 [24]
	23	4-CN C ₆ H ₄	4 w	80	88	>300	328-330 [32]
	24	3-OH C ₆ H ₄	4x	75	83	>300	>302 [32]
a Isolated violds	25	2-NO ₂ C ₆ H ₄	4 y	81	84	284–287	293–295 [28]
b M	26	n-butanal	4z	180	_ ^b	_	_

^b No reaction

80 °C, which afforded 86 % yield of targeted molecules within 85 min (Table 1, entry 8).

Next, the same model reaction was carried out at 80 °C in excess of [CMIM][CF₃COO], only trace amount of product was formed, furthermore at solvent free condition the reaction didn't progressed even after prolonged stirring (Table 1, entries 15,16).

The results revealed that the reaction temperatures and choice of solvents significantly influence on the product yield and time of reaction completion.

Consequently, to optimize the concentration of catalyst for the synthesis of targeted molecule, we carried a reaction of dimedone, 4-OH benzaldehyde and ammonium acetate with different amount of [CMIM][CF₃COO] in aqueous ethanol (1:1) medium at 80 °C (Table 2, entries 1–5). The result signifies that with increase in the concentration of catalyst from 0 to 30 mol%, the yield of product **4a** increased up to 86 %. However, further increasing the concentration of catalyst from 30 to 40 mol%, there was no considerable change in the yield of product observed

Fig. 2 X-ray crystal structure of 4c with atom-labeling scheme

Table 4 Crystal data and structure refinement for 4c and 4s

Identification code	4c	4s
Empirical formula	C ₂₃ H ₂₆ ClNO ₂	C ₂₃ H ₂₇ NO ₃
Formula weight	383.90	365.46
Temperature	298(2) K	293(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system, space group	Orthorhombic, Pna2(1)	Orthorhombic, Pna2(1)
Unit cell dimensions	$a = 14.1368(4) \text{ Å} \alpha = 90^{\circ}.$	$a = 13.669(5) \text{ Å } \alpha = 90^{\circ}$
	$b = 14.1212(4) \text{ Å } \beta = 90^0.$	$b = 14.753(5) \text{ Å } \beta = 90^{\circ}$
	$c = 10.7332(3) \text{ Å } \gamma = 90^{\circ}.$	$c = 10.043(5) \text{ Å } \gamma = 90^{\circ}$
Volume	2142.65(10) A ³	2025.3(14) A ³
Z, calculated density	4, 1.190 mg/m ³	4, 1.199 mg/m ³
Absorption coefficient	0.195 mm^{-1}	0.079 mm^{-1}
F(000)	816	784
Crystal size	$0.22 \times 0.16 \times 0.10 \text{ mm}$	$0.3 \times 0.2 \times 0.1 \text{ mm}$
Theta range for data collection	2.04° to 24.99°	3.61° to 26.00°
Limiting indices	$-16 \le h \le 16, -16 \le k \le 16, -11 \le l \le 12$	$-16 \le h \le 16, -18 \le k \le 18, -12 \le l \le 12$
Reflections collected/unique	24469/3,642 [R(int) = $0.0,208$]	28,953/3,959 [R(int) = 0.0402]
Completeness to theta	= 24.99 99.8 %	= 26.00 99.7 %
Absorption correction Multi-scan	0.9808 and 0.9584	1.00000 and 0.86047
Max. and min. transmission		
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data/restraints/parameters	3,642/1/248	3,959/1/253
Goodness-of-fit on F ²	1.033	1.332
Final R indices $[I > 2sigma(I)]$	R1 = 0.0314, $wR2 = 0.0834$	R1 = 0.1017, wR2 = 0.2985
R indices (all data)	R1 = 0.0355, wR2 = 0.0877	R1 = 0.1226, wR2 = 0.3321
Absolute structure parameter	0.01(7)	-1(3)
Largest diff. peak and hole	0.209 and -0.274 e.A^{-3}	0.799 and -0.331 e.A ⁻³
CCDC number	CCDC 965866	CCDC 965867

Fig. 3 X-ray crystal structure of 4s with atom-labeling scheme

Table 5 Geometry of intra- and inter molecular hydrogen bonds for 4c and 4s

Compound	D-HA	D–H (Å)	HA (Å)	DA (Å)	[D–H…A (°)]
4c	N1-H101	0.86	1.86	2.718	178.00
4s	O20– H20O1	0.728	1.946	2.661	167.60
	C9– H9O20	0.98	2.502	2.898	103.95
	N1– H12O8 ⁱ	0.86	2.195	2.809	128.23

Symmetry code: (i) x - 1/2, -y + 1/2, +z

(Table 2, entry 6). Using these optimized conditions of 30 mol% of [CMIM][CF₃COO] and aqueous ethanol (1:1) to check the generality and versatility of the protocol we reacted several substituted aryl aldehydes, dimedone and ammonium acetate which afforded good to excellent yields (Table 3, entries 1–25).

In general, we found that the reactions of aromatic aldehydes containing electron withdrawing group at different positions (Table 3, entries 1,3,6,7,12,15–17,21–23,25) prove to be predominant attributed to high yield of products than the reactions of aldehydes containing electron donating group (Table 3, entries 4,5,8–11,13,14,19,20,24). Along with this our protocol has also been found to be in good agreement with heteroaromatic aldehyde affording resultant product in good yield (Table 3, entry 18). Further, we examined aliphatic aldehyde such as n-butanal instead of aromatic or heteroaromatic aldehydes, however there was no product formed after prolonged stirring (Table 3, entry 26).

All the products were crystalline and fully characterized on the basis of their melting points and spectral data (IR, ¹H-NMR, ¹³C-NMR and LC–MS) with those of authentic sample [24, 28, 29, 32, 48–50]. The molecular structure of compound 3,3,6,6-tetramethyl-9-(4-chlorophenyl)-3,4,6,7,9,10-hexahydroacridine-1,8-dione **4c** and 3,3,6,6-tetramethyl-9-(2hydroxyphenyl)-3,4,6,7,9,10-hexahydroacridine-1,8-dione **4s** were also confirmed by single crystal X- ray analysis (Table 4; Figs. 2, 3).

In X-ray single crystal analysis the geometry of **4c** and **4s** are orthorhombic. The central rings of acridinediones in **4c** and **4s** are in boat conformation whiles other two cyclohexanone rings of dimedone in half chair conformations. The geometry of inter and intra-molecular hydrogen

Scheme 3 Pausible mechanism for the formation of 1,8-dioxoacridinediones

bonds for 4c and 4s as shown in Table 5, Moreover the intermolecular packing arrangement of molecules along b axis for 4s as shown in Fig. 4.

A plausible mechanism for the formation of acridinediones **4** is outlined in Scheme **3**. The reaction is initiated by the Knoevenagel condensation of aryl aldehyde **1** with a molecule of dimedone **2** to form Knoevenagel product **5**, and simultaneously condensation of another molecule of dimedone **2** with ammonium acetate **3** to provide enamine **6**. Finally, the subsequent Michael addition between **6** and **5** followed by intramolecular cyclization and dehydration affords the product **4**.

The reusability and recyclability are the key aspects in viewpoint point of green chemistry, thus checked it for our novel catalyst [CMIM][CF₃COO]. The recyclability of the catalyst was checked on the model reaction using 30 mol% of [CMIM][CF₃COO] in aqueous ethanol media. After each run, the filtrate was collected of filtered product and the containing ionic liquid was extracted with diethyl ether (2×15 ml) to remove organic impurities. Then the water was evaporated and catalyst was further dried at 50 °C under reduced pressure. The catalyst was recovered in excellent yields

(96 %) and reused in the subsequent reaction for four consecutive times, giving an average of 84 % yield of isolated product (Fig. 5). From these results, it was noticed that the [CMIM][CF₃COO]proved as highly efficient and recyclable catalyst with negligible loss in its catalytic activity. The recovered catalyst after four

Fig. 5 Reusable and recyclability of catalyst for synthesis of 4d

Fig. 4 The packing arrangement of molecules viewed along the b axis. The *dashed lines* show intermolecular N–H…O hydrogen bonds. Only H atoms involved in hydrogen bonds are shown

 Table 6
 Comparison of the results of [CMIM][CF₃COO]

 with literature reported catalysts

Entry	Catalyst	Conditions	Reaction time (h/min)	Yield (%)	Reference
1.	L-proline	H ₂ O/reflux	130–200 min	78–92	[26]
2.	_	H ₂ O/100 °C/microwave	3–5 min	88–95	[28]
3.	CeCl ₃ .7H ₂ O	[Bmim][BF ₄]/55 °C	3 h	85–95	[32]
4.	CAN	PEG 400/50 °C	3.5–4 h	94–98	[34]
5.	Nano-Fe ₃ O ₄	Solvent free/120 °C	10-50 min	75–90	[35]
6.	MCM-41-SO ₃ H	Solvent free/110 °C	10-110 min	61–98	[36]
7.	[CMIM][CF ₃ COO]	H ₂ O:EtOH (1:1)/80 °C	60–90 min	81–90	[This work]

consecutive runs had no observable change in the structure referring to the ¹H-NMR spectrum in comparison with fresh catalyst ¹H NMR (8). These results imply that the catalyst was highly stable and appropriately capable for its reuse under these reaction's conditions.

The applicability of the protocol for the synthesis of acridinediones has been compared with some of the previously reported catalysts in Table 6. The results have been compared with respect to the reaction times and yields. As demonstrated in Table 6, [CMIM][CF₃COO] is an uniformly or more proficient catalyst for this multicomponent reaction in terms of yield and reaction time.

4 Conclusions

In conclusion, we have developed a superficial and expedient method for the one pot synthesis of acridinediones derivatives using novel [CMIM][CF₃COO] as an ecofriendly and efficient catalyst. The advantage of this protocol in which recyclable and reusable Brønsted acidic ionic liquid is employed as an effective catalyst, high catalytic efficiency, shorter reaction time, high yield and atom economy, a convenient work up and environmental benignancy.

5 Supplementary Information

Crystallographic data for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as Supplementary Publication No. CCDC 965866, 965867. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (www.ccdc.cam.ac.uk/data_request/cif or e-mail: deposit@ccdc.cam.ac.Uk).

Acknowledgments The authors are thankful to Department of Chemistry, Shivaji University, Kolhapur for spectral measurements. D.R.Patil is grateful to the UGC New Delhi for awarding him a Junior Research Fellowship [F.No. 41-211/2012(SR)]. The authors are also grateful to Department of Chemistry, IIT Madras, Chennai and Department of Physics & Electronics, University of Jammu, for providing single crystal analysis data of compound **4c** and **4s** (CCDC 965866, 965867).

References

- 1. Singh OM, Devi NS (2009) J Org Chem 74:3141-3144
- Wang X, Xu X-P, Wang S-Y, Zhou W, Ji S-J (2013) Org Lett 15(16):4246–4249
- 3. Kumar A, Gupta MK, Kumar M (2012) RSC Adv 2:7371-7376
- 4. Ganem B (2009) Acc Chem Res 42(3):463-472
- Shaabani A, Sarvary A, Ghasemi S, Rezayan AH, Ghadari R, Ng SW (2011) Green Chem 13:582–585
- Thiagarajan V, Ramamurthy P, Thirumalai D, Ramakrishnan VT (2005) Org Lett 7:657–660
- Shanmugasundaram P, Murugan P, Ramakrishnan VT, Srividya N, Ramamurthy P (1996) Heteroat Chem 7:17–22
- Timpe HJ, Ulrich S, Decker C, Fouassier JP (1993) Macromolecules 26:4560–4566
- 9. Shanmugasundarm P, Prabahar KJ, Ramakrishnan VT (1993) J Heterocycl Chem 30:1003–1007
- Murugan P, Shanmugasundaram P, Venkatachalapathy B, Ramakrishnan VT, Srividya N, Ramamurthy P, Gunasekaran K, Velmurugan D (1998) J Chem Soc Perkin Trans 2:999–1004
- Prabahar KJ, Ramakrishnan VT, Sastikumar D, Selladurai D, Masilamani V (1991) Indian J Pure Appl Phys 29:382–384
- Islam A, Murugan P, Hwang KC, Cheng C-H (2003) Synth Met 139:347–353
- Mohan H, Srividya N, Ramamurthy P, Mittal JP (1996) J Chem Soc, Faraday Trans 92:2353–2359
- 14. Klusa V (1995) Drugs Future 26:135-138
- Reid JL, Meredith PA, Pasanisi F (1985) J Cardiovasc Pharmacol 7:S18–S20
- Pasunooti KK, Jensen CN, Chai H, Leow ML, Zhang D-W, Liu X-W (2010) J Comb Chem 12:577–581
- Lee HW, Shin SJ, Yu H, Kang SK, Yoo CL (2009) Org Proc Res Dev 13:1382–1386
- Mannhold R, Jablonka B, Voigdt W (1992) Eur J Med Chem 27:229–235
- 19. Boer R, Gekeler V (1995) Drugs Future 20:499-509
- 20. Hantzsch A, Liebigs J (1882) Ann Chim 215:1-82
- Bakibaev AA, Fillimonov VD, Nevgodova ES (1991) Zh Org Khim 27:1512–1519
- Hua GP, Zhang XJ, Shi F, Tu SJ, Xu JN, Wang Q, Zhu XT, Zang JP, Ji SJ (2005) Chin J Chem 23:1646–1650
- Martin N, Quinteiro M, Seoane C, Soto JL, Mora A, Suarez M, Morales A, Ochoa E, Bosque JD (1995) J Heterocycl Chem 32:235–238
- Wang XS, Shi DQ, Zhang YF, Wang SH, Tu SJ (2004) Chin J Org Chem 24:430–432
- Jin TS, Zhang JS, Guo TT, Wang AQ, Li TS (2004) Synthesis 2001–2005

- 26. Balalaie S, Chadegan F, Darviche F, Bijanzadeh HR (2009) Chin J Chem 27:1953–1956
- 27. Das B, Thirupathi P, Mahender I, Reddy VS, Rao YK (2006) J Mol Catal A 247:233–239
- 28. Singh SK, Singh KN (2010) J Heterocycl Chem 48:69-73
- Sabitha G, Reddy GSKK, Reddy CS, Yadav JS (2003) Tetrahedron Lett 44:4129–4131
- 30. Wang LM, Sheng J, Zhang L (2005) Tetrahedron Lett 61:1539-1543
- 31. Ko S, Sastry MNV, Lin C, Yao CF (2005) Tetrahedron Lett 46:5771–5774
- 32. Fan X, Li Y, Zhang X, Qu G, Wang J (2007) Heteroat Chem 18(7):786–790
- Ziarani GM, Badiei A, Hassanzadeh M, Mousavi S (2011) Arab J Chem. doi:10.1016/j.arabjc.2011.01.037
- 34. Ko Sh, Yao CF (2006) Tetrahedron Lett 62:7293-7299
- 35. Ghasemzadeh MA, Ghomi JS, Molaei H (2012) C R Chimie 15:969–974
- 36. Rostamizadeh S, Amirahmadi A, Shadjou N, Amani AM (2012) J Heterocycl Chem 49:111–115
- Qureshi ZS, Deshmukh KM, Dhake KP, Bhanage BM (2011) RSC Adv 1:1106–1112
- 38. Li W, Wang Y, Wang Z, Dai L, Wang Y (2011) Catal Lett 141:1651–1658

- 39. Li K, Yuan C, Zheng S, Fang Q (2012) Tetrahedron Lett 53:4245–4247
- Jain N, Kumar A, Chauhan S, Chauhan SMS (2005) Tetrahedron 61:1015–1060
- 41. Zhang Q, Zhang S, Deng Y (2011) Green Chem 13:2619-2637
- 42. Han F, Yang L, Lia Z, Xia C (2012) Org Biomol Chem 10:346–354
- 43. Liang X, Yang J (2010) Green Chem 12:201-204
- Cole AC, Jensen JL, Ntai I, Tran KLT, Weaver KJ, Forbes DC, Davis JH (2002) J Am Chem Soc 124:5962–5963
- 45. Shaterian HR, Ranjbar M, Azizi K (2011) J Mol Liq 162:95-99
- 46. Shi D-Q, Zhou Y, Liua H (2010) J Heterocycl Chem 47:131-135
- Mulik A, Chandam D, Patil P, Patil D, Jagdale S, Deshmukh M (2013) J Mol Liq 179:104–109
- Kant R, Gupta VK, Kapoor K, Patil DR, Patil PP, Deshmukh MB (2013) Acta Cryst E69:0110
- Kant R, Gupta VK, Kapoor K, Patil DR, Chandam DR, Deshmukh MB (2013) Acta Cryst E69:o297-o298
- Kant R, Gupta VK, Kapoor K, Patil DR, Jagadale SD, Deshmukh MB (2013) Acta Cryst E69:0101
- 51. Bruker AXS (1998) SAINT software reference manual. Bruker-AXS, Madison
- 52. Sheldrick GM (2008) Acta Cryst A 64:112-122