Syntheses of isochromane analogues of the michellamines and korupensamines

Charles B. de Koning,* Joseph P. Michael and Willem A. L. van Otterlo

Centre for Molecular Design, Department of Chemistry, University of the Witwatersrand, PO Wits 2050, South Africa

Received (in Cambridge, UK) 19th October 1999, Accepted 15th December 1999

Syntheses of the oxygen analogues **6**, **7** and **8** of the michellamines **1** and korupensamines **2** are described. Racemic 5-iodo-6,8-dimethoxy-*trans*-1,3-dimethylisochromane **10** was synthesised in eleven steps from 2,4-dimethoxybenzaldehyde in an overall yield of 51%. The isopropoxy analogue **11** was synthesised in a similar manner. Isochromane **10** was coupled using Suzuki methodology with 4-isopropoxy-5-methoxy-7-methylnaphthalene-1-boronic acid **9** to produce **7** in 96% yield. This was converted in good yield into the desired product **6** by oxidative dimerisation followed by reduction of the cross-conjugated ene-dione intermediate **45**.

Introduction

The michellamines (*e.g.*, michellamine B, 1) are a growing class of novel naphthylisoquinoline alkaloids isolated from the tropical liana *Ancistrocladus korupensis*, found in the Cameroon.¹ These compounds are of interest to the scientific community as they show activity against the Human Immunodeficiency Virus (HIV).² In addition, as a result of their intriguing structures, chemists have been interested in the synthesis of these molecules and a number of groups have published total syntheses or approaches to their synthesis.³

Most of the published syntheses rely on the dimerisation of a (5)-naphthylisoquinoline such as 2, which in turn is constructed from a suitably protected tetrahydroisoquinoline precursor, e.g. 3. Isoquinoline 3 is invariably made by means of a Bischler-Napieralski cyclisation.⁴ The bromonaphthalene 4 is a key intermediate in several reported syntheses.^{3e,p,5} The biaryl axis is then formed between 3 and various naphthalene boronic acids such as 5, which are themselves prepared from the brominated precursor 4. The formation of the biaryl axis has been accomplished using both Suzuki^{3a-d,h-j,l,o,q} and Stille^{3e,p} coupling procedures, with the Suzuki methodology⁶ used more frequently. Removal of R^2 from the diastereoisomeric biaryl products 2, dimerisation and deprotection of the remaining phenolic groups result in formation of the michellamines, e.g. 1. The biaryl products 2, the 'monomers' of the michellamines, are also found in Nature and are known as the korupensamines.⁷ They do not show activity against the HIV, but do show biological activity against the malaria parasite, Plasmodium falciparum.

As a result of the activities associated with natural products such as the michellamines, the National Cancer Institute (NCI) of the USA has encouraged researchers to synthesise analogues of these naturally occurring compounds,⁸ and several have been reported.⁹ Most of the analogues prepared have unnatural biaryl linkages in which the isoquinoline and naphthalene moieties are joined at sites other than those found in **1**. In this paper we report in full on a synthesis of racemic methoxy-and isopropoxy-isochromane analogues of the korupensamines (**7** and **8**) as well as the methoxylated michellamine oxygen analogue **6**. Preliminary details have previously appeared in a communication.¹⁰

Results and discussion

Retrosynthesis of 6 takes the obvious structural symmetry of

DOI: 10.1039/a908367g

the target into account, and leads to 7. This important intermediate was in turn disconnected to give isochromane 10 and the naphthalene 9. In 10, the phenolic groups are protected as their methyl ethers, but we also chose to prepare the analogue 11 possessing isopropyl protecting groups, as it was hoped that these groups could be selectively removed when required to afford phenolic analogues of $6.^{11}$

We elected to synthesise the desired isochromanes **10** and **11** from 1-allyloxy-2,4-dimethoxybenzene **13** and its isopropoxy analogue **14**. The bromide analogue **12** was also prepared from

J. Chem. Soc., Perkin Trans. 1, 2000, 799–811 799

13. 1-Allyloxy-2,4-dimethoxybenzene **13** was synthesised either from vanillin through the intermediacy of **15** and **16** or from 2,4-dimethoxybenzaldehyde¹² via **17**;¹³ both routes involve Baeyer–Villiger oxidation of the aldehyde group as shown in Scheme 1. Although vanillin is cheaper, the second route was

Scheme 1 Reagents and conditions: For $15 \longrightarrow 16 \longrightarrow 13$ (i) MMPP (magnesium monoperoxyphthalic acid hexahydrate) silica gel, MeOH (64%); (ii) (MeO)₂SO₂, K₂CO₃, Me₂CO (92%); (iii) H₂C=CHCH₂Br, K₂CO₃, Me₂CO (96%) (17 \longrightarrow 13) (or 94%) (18 \longrightarrow 14); (iv) AcOH, TFAA, CH₂Cl₂ (66%) (13 \longrightarrow 19) (or 94%) (14 \longrightarrow 20); (v) (a) 160 °C; (b) PhCH₂Br, K₂CO₃, Me₂CO (2 steps) (82%) (19 \longrightarrow 21) (or 79%) (20 \longrightarrow 22); (vi) LiAlH₄, Et₂O (94%) (21 \longrightarrow 23) (or 93%) (22 \longrightarrow 24); (vii) KOBu', DMF, (94%) (23 \longrightarrow 25) (or 85%) (24 \longrightarrow 26).

the method of choice as the intermediate products were formed in higher yields and were easier to handle. Compound **14** was synthesised from 2,4-diisopropoxybenzaldehyde, which is readily made by Vilsmeier–Haack formylation of 1,3-diisopropoxybenzene.¹⁴ Following the same steps as outlined for the formation of **13**, 2,4-diisopropoxybenzaldehyde was converted into **14** via **18** in good overall yields (62%). With both **13** and **14** in hand, the acetyl functionality was introduced by treatment with a mixture of acetic acid and trifluoroacetic anhydride at ambient temperature to yield **19** (66%) and **20** (94%).¹⁵ The location of the acetyl group in both products was unambiguous, as the ¹H NMR spectra showed, *inter alia*, two singlets (*i.e.*, no *ortho* or *meta* coupling) at δ 7.45 and 6.50 for **19** and δ 7.44 and 6.50 for **20**.

Efficient conversion (*ca.* 80%) of both **19** and **20** into **21** and **22**, respectively, was achieved by heating the compounds neat at 160 °C (to induce a Claisen rearrangement) and protecting the resulting phenols as benzyl ethers. Reduction of **21** and **22** gave the racemic alcohols **23** and **24** (both in 93–94% yield).

Utilising methodology developed by Giles *et al.*,¹⁶ we converted both of these alcohols into the desired racemic *trans*-1,3-dimethylisochromanes **25** and **26** by treatment with potassium *tert*-butoxide in DMF at 75 °C. Evidence for the formation of the *trans*-product in both cases was again obtained from the ¹H NMR spectra. It has been shown that 3-H for *trans*-1,3-dimethylisochromanes occurs upfield ($\delta \approx 4$) in relation to the *cis*-isomer ($\delta \approx 3.8$).¹⁷ In these examples, the ¹H NMR spectra showed 3-H for **25** as a multiplet at δ 3.99–3.91, and for the isopropyl analogue **26** as a multiplet at δ 3.98–3.93. The relative stereochemistry was confirmed by an X-ray crystal-structure determination on compound **36**, prepared later in the synthetic sequence.

The naphthalene 9 required for the coupling with the isochromane moiety was synthesised using standard methodology. 2-Bromo-5-isopropoxybenzaldehyde ¹⁸ was treated with dimethyl succinate in the presence of potassium *tert*-butoxide to give the intermediate Stobbe condensation product 27 as a mixture of geometrical isomers (60:40). This was treated with acetic anhydride and sodium acetate¹⁹ to give the naphthalene 28. The overall yield of this two-step sequence was 49%. Following a series of functional-group manipulations^{3e} (28 \rightarrow 29 \rightarrow 30 \rightarrow 31 \rightarrow 32), 5-bromo-8-isopropoxy-1-methoxy-3-methylnaphthalene 4 was obtained. Conversion into the corresponding naphthaleneboronic acid 9 was accomplished in high yield by sequential treatment of 4 with *n*-butyllithium at -78 °C and triisopropyl borate followed by hydrolysis as outlined in Scheme 2.

Scheme 2 Reagents and conditions: (i) Ac₂O, NaOAc (74%); (ii) KOH–MeOH (95%); (iii) (MeO)₂SO₂, K₂CO₃, Me₂CO (99%); (iv) LiAlH₄, Et₂O (98%); (v) (CBrCl₂)₂, PPh₃, CH₂Cl₂ (86%); (vi) L-Selectride, CH₂Cl₂ (100%); (vii) (a) *n*-BuLi, THF, -78 °C; (b) B(OPrⁱ)₃, aq. NH₄Cl, not purified.

With the synthesis of both the isochromane skeleton and the naphthalene accomplished, it was necessary to modify functional groups to allow for efficient coupling of the two moieties. In particular, the benzyl ether at C-5 in both isochromanes **25** and **26** must be converted into a functional group suitable for coupling with the naphthalene **9**. While the specific choice of functional group was not obvious at this stage, it was clear that hydrogenolysis of the benzyl group was an essential first step. Removal of the benzyl protecting group was accomplished with either 10% palladium on charcoal or palladium black under a hydrogen atmosphere to give a quantitative yield of both **33** and **34**. The isochromane ring, itself a benzylic ether, was unaffected during this reaction.

Phenol 33 was converted into triflate 35 by treatment with triflic anhydride in the presence of pyridine (Scheme 3).

Scheme 3 Reagents and conditions: (i) 10% Pd/C, MeOH, H₂ (100%) (25 \longrightarrow 33) and (26 \longrightarrow 34); (ii) Tf₂O, CHCl₃, pyridine (88%); (iii) (EtO)₂POCl, NaH, THF (100%) (33 \longrightarrow 36) (or 81%) (34 \longrightarrow 37); (iv) K, NH₃, -78 °C (100%) (36 \longrightarrow 38) (or 91%) (37 \longrightarrow 39); (v) Ag₂SO₄, I₂, EtOH (94%) (38 \longrightarrow 10) and (39 \longrightarrow 11); or Br₂, AcOH-CHCl₃ (93%) (38 \longrightarrow 12).

Attempted coupling reactions with two model systems, 1-naphthylboronic acid 40^{20} and tributyl-(4-methoxyphenyl)stannane 42,²¹ were unsuccessful. This is probably due to the electron-rich nature of the isochromane, which makes it more difficult for palladium(0) to be inserted between the triflate oxygen and carbon in the aromatic ring.²² Hence we chose to replace the benzyloxy group with a halogen before attempting coupling reactions. For isochromane 25, this was done by using an uneventful high yielding deoxygenation sequence,²³ $25 \longrightarrow 33 \longrightarrow 36 \longrightarrow 38$, which proceeded overall in quantitative yield. An X-ray crystal structure²⁴ of 36 provided conclusive evidence of the structure of the molecule and verified the 1,3-trans-dimethyl stereochemistry of the pyran ring. Isochromane 38 was converted into both the bromide 12 and iodide 10 using bromine in acetic acid or iodine and silver(I) sulfate²⁵ in yields of 93 and 94%, respectively. A similar sequence of reactions was used for converting the isopropoxyisochromane 34 into iodide 11 via 37 and 39. The regiochemistry of all three products 10, 11 and 12 was confirmed by NOE experiments. Irradiation of the single aromatic proton showed enhancement of both methoxy groups in 10 and 12, while irradiation of 11 showed enhancement of both isopropoxy groups.

The stage was now set to couple the halogenated isochromanes 10-12 with the substituted naphthaleneboronic acid 9 using the palladium-mediated Suzuki reaction.⁶ However, we considered it prudent to optimise reaction conditions by first performing some model reactions with readily accessible aromatic boronic acids before committing our more valuable naphthaleneboronic acid 9. Treatment of bromoisochromane 12 with 1-naphthylboronic acid 40 in the presence of 10 mol% tetrakis(triphenylphosphine)palladium(0) in toluene and of aq. sodium bicarbonate^{3f} under argon gave a 28% yield of the desired product 43 as a mixture of diastereoisomers (ratio: 66:34), which arise from the creation of a stereogenic axis. Clear evidence for the formation of two diastereoisomers came from the ¹H and ¹³C NMR spectra, which showed doubling of virtually all the signals. In addition, the high-resolution mass spectrum showed the expected molecular ion at M⁺ 348.1717 $(C_{23}H_{24}O_3 \text{ requires } M, 348.1725)$. As the yield of 43 was low the reaction was repeated using the method of Coudret.²⁶ Reaction of 12 with 1-naphthylboronic acid pinacol ester 41²⁷ and dichloro-[1,1'-bis(diphenylphosphino)ferrocene]palladium(0) gave a very disappointing yield (14%) of the desired product 43. Hence, at this stage it was decided that all future work on these reactions would be done on the iodinated isochromanes 10 and 11, as literature precedent indicated that iodine is the best halogen for Suzuki coupling reactions.3f

After much experimentation, iodoisochromane **10** and naphthylboronic acid **9** were treated with 20 mol% tetrakis(triphenylphosphine)palladium(0) in DMF under argon with tribasic potassium phosphate²⁸ to give the desired biaryl compound **7** in an excellent yield of 96%. Doubling of signals in both the ¹H NMR and ¹³C NMR spectra showed clearly that the product had been formed as a mixture of two diastereoisomers (59:41). The ¹H NMR spectrum showed a number of differences on the isochromane moiety as compared with that of the precursor **10**, the most significant being the shift of the aromatic singlet (7-H) from δ 6.34 to δ 6.99 and 6.97 for the diastereomeric products. Additionally, the two 4-H protons, which appeared as double doublets at δ 2.74 and 2.35 in **10**, appeared in the product **7** as multiplets at δ 2.15–2.03 and 1.88–1.81.

Under the same conditions, coupling 11 with 9 gave the desired product 8 in a disappointing yield of 15%. Even in the presence of an oxygen scavenger, 2,6-di-*tert*-butyl-4-methyl-phenol,²⁹ the yield could not be improved. Nevertheless, compounds 7 and 8 are both oxygen analogues of the korupensamines—the first on record.

Selective removal of the isopropyl group of 7 with boron trichloride yielded the naphthol 44. This was treated with silver(I) oxide to afford 45 (Scheme 4). This purple compound was not characterised fully, but subjected to hydrogenation on a palladium–charcoal catalyst to yield the desired oxygen analogue of the michellamines 6 in good yield. The product was produced as a mixture of racemic diastereoisomers. This represents the first synthesis of an isochromane analogue of the michellamines. We are currently investigating the separation of these six possible diastereoisomers, after which biological evaluation of these new michellamine analogues will be undertaken. Furthermore, synthesis of the isochromane building blocks as pure enantiomers will also reduce the number of diastereoisomeric options in the final product, and this comparatively straightforward task is also under investigation.

Scheme 4 Reagents and conditions: (i) BCl_3 , -78 °C, CH_2Cl_2 (51%); (ii) Ag_2O , 0.2% Et_3N , $CHCl_3$ (100%); (iii) H_2 , Pd/C (75%).

Experimental

¹H and ¹³C NMR spectra were recorded either on a Bruker AC-200 or Bruker DRX 400 spectrometer at the frequency indicated. DEPT, CH-correlated and HMBC spectra were run on some samples to enable complete assignments of all the signals. J-Values are given in Hz. NMR spectroscopic assignments with the same superscript may be interchanged. IR spectra were recorded on either a Bruker IFS 25 Fourier Transform spectrometer or on a Bruker Vector 22 Fourier Transform spectrometer. Mass spectra were recorded on a Kratos MS 9/50. VG 70E MS or a VG 70 SEQ mass spectrometer. Elemental analyses were performed on a Perkin-Elmer 2400 CHN Elemental Analyser. Macherey-Nagel Kieselgel 60 (particle size 0.063-0.200 mm) was used for conventional silica gel chromatography, and Macherey-Nagel Kieselgel 60 (particle size 0.040–0.063 mm) was used for preparative flash chromatography. All solvents used for reactions and chromatography were distilled prior to use.

4-Allyloxy-3-methoxybenzaldehyde 15

Allyl bromide (39.8 g, 0.33 mol) and potassium carbonate (90.0 g, 0.65 mol) were added to a solution of vanillin (22.0 g, 0.145 mol) in dry DMF (500 cm³). The reaction mixture was heated under nitrogen at 70 °C for 50 h. After filtration and removal of the solvent in vacuo, the reside was purified by column chromatography (10% ethyl acetate-hexane) to give the product 15 as a clear yellow oil (27.5 g, 99%) which solidified (mp 27-29 °C) (Found: M⁺, 192.0793. C₁₁H₁₂O₃ requires *M*, 192.0786); v_{max}(film)/cm⁻¹ 3080m (=CH₂), 3030m (=CH), 1683s (C=O), 1586s (ArC=C), 1267s and 1032m (C-O-C) and 995s (=CH); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 9.85 (1H, s, CHO), 7.43 (1H, dd, J 8.7 and 1.9, 6-H), 7.41 (1H, d, J 1.9, 2-H), 6.98 (1H, d, J 8.7, 5-H), 6.16–6.02 (1H, m, 2'-H), 5.50–5.31 (2H, m, 3'-H₂), 4.71 (2H, br dt, J 5.4 and 1.4, 1'-H₂) and 3.94 (3H, s, OCH₃); $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 190.7 (C=O), 153.3, 149.7 (2× ArC-O), 132.1 (2'-C), 130.0 (1-C), 126.4 (6-C), 118.6 (3'-C), 111.8 (2-C), 109.1 (5-C), 69.6 (1'-C) and 55.8 (OCH₃); m/z (EI)

192 (M⁺, 100%), 177 (6), 151 (63), 95 (43), 77 (19), 65 (10) and 41 (32).

4-Allyloxy-3-methoxyphenol 16

Magnesium monoperoxyphthalic acid hexahydrate (MMPP) (51.0 g, 0.10 mol) was added to a solution of the benzaldehyde 15 (16.6 g, 0.086 mol) in dry methanol (200 cm^3), under a nitrogen atmosphere at 0 °C. The reaction mixture was allowed to warm up to room temperature and stirred under nitrogen for 55 h, during which time a pink precipitate formed. An additional portion of MMPP (10 g) was added and the reaction mixture was stirred for a further 15 h. The solvent was removed in vacuo and the residue was purified by column chromatography (20% ethyl acetate-hexane), to afford the phenol 16 as a dark red-brown oil (9.91 g, 64%) (Found: M^+ , 180.0774. $C_{10}H_{12}O_3$ requires *M*, 180.0786); v_{max}(film)/cm⁻¹ 3417br (OH), 3086m (=CH₂), 2844m (OCH₃), 1601s and 1510m (ArC=C), 1211s and 1016m (C–O–C) and 994s (=CH); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 6.74 (1H, d, J 8.6, 5-H), 6.46 (1H, d, J 2.8, 2-H), 6.33 (1H, dd, J 8.6 and 2.8, 6-H), 6.17-5.95 (2H, m, 2'-H and OH), 5.40-5.19 (2H, m, 3'-H₂), 4.51 (2H, br dt, J 5.6 and 1.4, 1'-H₂) and 3.76 $(3H, s, OCH_3); \delta_C (50.32 \text{ MHz}; CDCl_3) 150.9, 150.4 \text{ and } 141.5$ (3 × ArC-O), 133.6 (2'-C), 117.8 (3'-C), 115.6 (5-C), 106.0 (2-C), 100.8 (6-C), 71.1 (1'-C) and 55.6 (OCH₃); m/z (EI) 180 (M⁺, 34%), 139 (100), 111 (26), 93 (12), 69 (6), 65 (8) and 41 (11).

1-Allyloxy-2,4-dimethoxybenzene 13

Dimethyl sulfate (11.8 cm³, 0.13 mol) and potassium carbonate (20.0 g, 0.14 mol) were added to a solution of 4-allyloxy-3methoxyphenol 16 (5.45 g, 0.03 mol) in distilled acetone (250 cm³). The reaction mixture was heated at reflux under a nitrogen atmosphere for 18 h. The acetone was removed in vacuo after which water (100 cm³) and diethyl ether (100 cm³) were added. The organic phase was separated, and washed successively with aq. ammonia (10% v/v; 3×100 cm³), water (100 cm³), hydrochloric acid (10% v/v; 100 cm³) and water (100 cm³). The organic solvent was dried (MgSO₄), and removed in vacuo to yield the crude material, which was purified by column chromatography (5% ethyl acetate-hexane) to give the triether 13 (5.39 g, 92%) as a clear oil (Found: M^+ , 194.0934. $C_{11}H_{14}O_3$ requires M, 194.0943); v_{max}(film)/cm⁻¹ 2820m (OCH₃), 1610m and 1583m (ArC=C), 1503m (C=C), 1210vs and 1043s (C-O-C) and 983s and 917m (=CH); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 6.81 (1H, d, J 8.7, 6-H), 6.51 (1H, d, J 2.9, 3-H), 6.36 (1H, dd, J 8.7 and 2.9, 5-H), 6.18-5.95 (1H, m, 2'-H), 5.37 (1H, dd, J 17.3 and 1.5, 3'-H), 5.25 (1H, dd, J 10.5 and 1.5, 3'-H), 4.53 (2H, br dt, J 5.5 and 1.5, 1'-H₂) and 3.84 and 3.75 (each 3H, s, OCH₃); $\delta_{\rm C}$ (50.32 MHz; CDCl₃; Me₄Si) 154.6, 150.5 and 142.1 (3 × ArC-O), 133.7 (2'-C), 117.5 (3'-C), 114.8 (6-C), 102.9 (3-C), 100.3 (5-C), 70.7 (1'-C) and 55.7 and 55.4 (2 × OCH₃); *m*/*z* (EI) 194 (M⁺, 32%), 153 (100), 125 (40) and 91 (28).

2,4-Dimethoxyphenol 17

Magnesium monoperoxyphthalic acid hexahydrate (26.8 g, 0.054 mol) was added portionwise to a solution of 2,4dimethoxybenzaldehyde (6.00 g, 0.036 mol) in methanol (250 cm³), under a nitrogen atmosphere at 0 °C. The reaction mixture was warmed to room temperature and stirred under nitrogen for 48 h, during which time the mixture went a bright pink colour. The reaction mixture was then filtered to remove the precipitate. The precipitate was washed with an excess of ethyl acetate and then the organic filtrates were combined and the solvent removed *in vacuo*. The crude residue was purified by column chromatography (10–20% ethyl acetate–hexane) to afford the *phenol* **17** (4.90 g, 88%) as a yellow oil (bp 129 °C, 10 mmHg; lit.,¹³ 129 °C, 10 mmHg); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 6.82 (1H, d, *J* 8.6, 6-H), 6.49 (1H, d, *J* 2.8, 3-H), 6.38 (1H, d, *J* 8.6 and 2.8, 5-H), 5.53 (1H, br s, OH) and 3.84 and 3.75 (each 3H, s, OCH₃); $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 153.5, 147.0 and 139.7 (3 × ArC–O), 114.1 (6-C), 104.2 (3-C), 99.4 (5-C) and 55.8 and 55.7 (2 × OCH₃).

1-Allyloxy-2,4-dimethoxybenzene 13 (alternative preparation)

Allyl bromide (18.6 cm³, 26.0 g, 0.21 mol) and potassium carbonate (29.7 g, 0.21 mol) were added to a solution of 2,4dimethoxyphenol **17** (13.3 g, 0.086 mol) in dry acetone (200 cm³). The reaction mixture was heated at reflux under nitrogen for 18 h. The potassium carbonate was removed by filtration and the solvent was removed *in vacuo*. Purification by column chromatography (10–20% ethyl acetate–hexane) afforded the *product* **13** as a clear yellow oil (16.01 g, 96%). Spectral data of this compound were identical to those obtained from 4-allyloxy-3-methoxyphenol **16**.

5-Allyloxy-2,4-dimethoxyacetophenone 19

Trifluoroacetic anhydride (TFAA) (3.3 cm³, 4.9 g, 0.023 mol) and glacial acetic acid (1.3 cm³, 1.4 g, 0.023 mol) were pre-mixed in a glass vial and the mixture added to a solution of 1-allyloxy-2,4-dimethoxybenzene 13 (3.49 g, 0.018 mol) in dry dichloromethane (100 cm³). The reaction mixture was then stirred under nitrogen for 60 h. Water (50 cm³) was added and solid sodium hydrogen carbonate was added portionwise until effervescence had decreased. The reaction mixture was then stirred for 1 h before being extracted with dichloromethane $(3 \times 30 \text{ cm}^3)$, and the organic layer was dried (MgSO₄), and concentrated in vacuo. Column chromatography (20% ethyl acetate-hexane) yielded the ketone 19 as a white crystalline material (2.80 g, 66%), mp 82.5-83.5 °C (from hexane-ethyl acetate) and starting material (0.59 g, 17% recovery) (Found: M⁺, 236.1036. C, 66.02; H, 6.76. C₁₃H₁₆O₄ requires M, 236.1049. C, 66.07; H, 6.83%); v_{max}(KBr pellet)/cm⁻¹ 2835w (OCH₃), 1760s (C=O), 1667s and 1613s (ArC=C), 1507 (C=C), 1287s and 1027s (C–O–C) and 975m (=CH); $\delta_{\rm H}$ (200 MHz; CDCl₃) 7.45 (1H, s, 6-H), 6.50 (1H, s, 3-H), 6.16-5.96 (1H, m, 2'-H), 5.41 (1H, dd, J 17.3 and 1.5, 3'-H), 5.28 (1H, dd, J 10.4 and 1.5, 3'-H), 4.58 (2H, br dt, J 5.5 and 1.5, 1'-H), 3.94 and 3.91 (each 3H, s, OCH₃) and 2.58 (3H, s, COCH₃); $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 197.0 (CO), 155.7, 154.4 and 141.8 $(3 \times ArC-O)$, 133.1 (2'-C), 119.0 (1-C), 118.1 (3'-C), 114.9 (6-C), 96.4 (3-C), 70.2 (1'-C), 56.0 and 56.0 $(2 \times OCH_3)$ and 32.0 (COCH₃); m/z (EI) 236 (M⁺, 41%), 195 (100), 43 (58) and 41 (18).

2-Allyl-3-benzyloxy-4,6-dimethoxyacetophenone 21

5-Allyloxy-2,4-dimethoxyacetophenone 19 (3.29 g, 0.014 mol) was heated at 160 °C for 23 h under a nitrogen atmosphere. An NMR spectrum of the crude product confirmed that conversion to the phenol had occurred. The reaction mixture was cooled to room temperature and acetone (200 cm³), potassium carbonate (9.6 g, 0.070 mol) and benzyl bromide (8.3 cm³, 0.070 mol) were added. The reaction mixture was then heated under nitrogen at reflux for 18 h. After cooling, filtration of the inorganic solids and evaporation of the solvent under vacuum, the residue was purified by column chromatography (5-10%)ethyl acetate-hexane) to afford the ketone 21 as a clear, colourless oil (3.71 g, 82%) (Found: M⁺, 326.1512. C₂₀H₂₂O₄ requires M, 326.1518); v_{max}(film)/cm⁻¹ 3004m (=CH), 2840m (OCH₃), 1691s (C=O), 1594 (ArC=C), 1250s (C-O-C), 1003m and 913m (=CH); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 7.48–7.32 (5H, m, Ph), 6.43 (1H, s, 5-H), 5.95-5.75 (1H, m, 2'-H), 4.98-4.87 (2H, m, 3'-H₂), 4.90 (2H, s, OCH₂), 3.89 and 3.81 (each 3H, s, OCH₃), 3.42 (2H, br dt, J 6.2 and 1.6, 1'-H₂) and 2.45 (3H, s, COCH₃); $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 204.6 (CO), 154.0, 153.3, 140.0 (3 × ArC-O), 137.7 (ArC-C), 136.9 (2'-C), 131.8 (ArC-C), 128.3, 127.9, 127.8 (3 × PhC), 124.0 (ArC-C), 115.5 (3'-C), 95.1 (5-C), 74.9 (OCH₂), 55.9 and 55.8 (2×OCH₃), 32.6

(COCH₃) and 30.5 (1'-C); *m*/*z* (EI) 326 (M⁺, 14%), 235 (100), 217 (37), 91 (57) and 43 (83).

1-(2-Allyl-3-benzyloxy-4,6-dimethoxyphenyl)ethanol 23

Lithium aluminium hydride (0.53 g, 0.014 mol) was added to a solution of ketone 21 (2.27 g, 6.96 mmol) in dry diethyl ether (40 cm³) and the reaction mixture was stirred under argon for 18 h. Methanol (10 cm³) was added carefully, followed by water (40 cm³), and the aqueous phase was extracted with ethyl acetate $(3 \times 20 \text{ cm}^3)$. The organic layer was dried (MgSO₄) and the solvent removed in vacuo, after which the residue was purified by column chromatography (10% ethyl acetate-hexane), to yield the alcohol 23 as a clear oil (2.14 g, 94%) (Found: M⁺, 328.1666. $C_{20}H_{24}O_4$ requires *M*, 328.1675); $v_{max}(film)/cm^{-1}$ 3600br (OH), 1600s (ArC=C) and 1000s (=CH); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 7.48–7.29 (5H, m, Ph), 6.49 (1H, s, 5-H), 6.00– 5.82 (1H, m, 2'-H), 5.02 (1H, dd, J 10.2 and 1.6, 3'-H), 4.94 (1H, dd, J17.2 and 1.6, 3'-H), 4.87 and 4.91 (each 1H, d, J10.9, OCH₂), 3.88 and 3.87 (each 3H, s, OCH₃), 3.88–3.81 (1H, br m, CHCH₃), 3.50–3.43 (2H, m, 1'-H₂) and 1.51 (3H, d, J 6.6, CH₃); $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 154.1, 151.9 and 140.1 (3 × ArC–O), 137.9 (ArC-C), 136.8 (2'-C), 131.3 (ArC-C), 128.3, 127.9 and 127.7 (3 × PhC), 124.0 (ArC-C), 115.4 (3'-C), 96.2 (5-C), 74.9 (OCH₂), 67.0 (CHOH), 55.9 and 55.5 (2 × OCH₃), 30.3 (1'-C) and 23.7 (CH₃); m/z (EI) 328 (M⁺, 19%) 237 (66), 219 (100) and 91 (45).

5-Benzyloxy-6,8-dimethoxy-trans-1,3-dimethylisochromane 25

Sublimed potassium tert-butoxide (1.50 g, 13.4 mmol) was added to a solution of the alcohol 23 (1.10 g, 3.35 mmol) in dry DMF (50 cm³). The reaction mixture was stirred under argon at 75 °C for 90 min. Water (20 cm³) and diethyl ether (20 cm³) were added and the mixture was extracted sequentially with diethyl ether $(3 \times 50 \text{ cm}^3)$, dichloromethane $(3 \times 40 \text{ cm}^3)$ and ethyl acetate (20 cm³). The organic solvents were combined, dried (MgSO₄) and evaporated under vacuum. Subsequent purification by column chromatography (5% ethyl acetate-hexane) afforded the isochromane 25 (1.03 g, 94%) as a clear oil (Found: M⁺, 328.1681. C₂₀H₂₄O₄ requires *M*, 328.1675); v_{max}(film)/cm⁻¹ 2842m (OCH₃), 1604s and 1568m (ArC=C), 1230m, 1088s and 808m (C–O–C); δ_H (200 MHz; CDCl₃; Me₄Si) 7.48–7.30 (5H, m, Ph), 6.39 (1H, s, 7-H), 5.04 (1H, q, J 6.5, 1-H), 4.91 (2H, s, OCH₂), 3.99-3.91 (1H, m, 3-H), 3.87 and 3.80 (each 3H, s, OCH₃), 2.78 (1H, dd, J 17.0 and 3.3, 4-H pseudo-equatorial), 2.28 (1H, dd, J 17.0 and 10.8, 4-H pseudo-axial), 1.47 (3H, d, J 6.5, 1-CH₃) and 1.27 (3H, d, J 6.1, 3-CH₃); $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 151.7, 151.1 and 138.7 (3 × ArC-O), 138.0 and 128.7 (2 × ArC-C), 128.3, 128.1 and 127.8 (3 × PhC), 120.3 (ArC-C), 94.8 (7-C), 74.3 (OCH₂), 68.0 (1-C), 62.4 (3-C), 56.1 and 55.4 (2 × OCH₃), 30.8 (4-C), 21.9 (1-CH₃) and 19.7 (3-CH₃); m/z (EI) 328 (M⁺, 18%), 237 (100), 193 (88), 165 (17) and 91 (13).

2,4-Diisopropoxyphenol 18

DMF (13.1 cm³, 12.4 g, 0.17 mol) and anhydrous phosphoryl trichloride (7.9 cm³, 13.0 g, 0.085 mol) were added to a solution of 1,3-diisopropoxybenzene¹⁴ (16.4 g, 84.6 mmol) in toluene (15 cm³). The reaction mixture was stirred at 0 °C for 30 min and the bright yellow mixture was then heated at 120 °C for 2 h under nitrogen. During this time the colour of the reaction changed from yellow to deep red. The reaction mixture was poured into aq. sodium hydroxide (250 cm³ of 10% NaOH and 100 cm³ of ice) with stirring and the mixture was subsequently extracted with dichloromethane (3 × 100 cm³). The organic phase was washed with water (2 × 100 cm³), dried (MgSO₄) and evaporated *in vacuo*. The resultant black residue was purified by silica gel column chromatography (10% ethyl acetate–hexane) to afford 2,4-diisopropoxybenzaldehyde as an orange oil (18.1 g, 96%) (Found: M⁺, 222.1256. C₁₃H₁₈O₃ requires *M*, 222.1253);

 $v_{\rm max}({\rm film})/{\rm cm}^{-1}$ 1682s (C=O), 1602s and 1573m (ArC=C), 1386m and 1375m [CH₃, CH(CH₃)₂] and 1261s (C=O=C); $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 10.31 (1H, s, CHO), 7.78 (1H, d, *J* 8.7, 6-H), 6.47 (1H, dd, *J* 8.7 and 2.2, 5-H), 6.43 (1H, d, *J* 2.2, 3-H), 4.66–4.59 [2H, m, 2 × CH(CH₃)₂], 1.39 [6H, d, *J* 6.0, CH(CH₃)₂] and 1.36 [6H, d, *J* 6.1, CH(CH₃)₂]; $\delta_{\rm C}$ (100.63 MHz; CDCl₃) 188.2 (CHO), 164.4 and 162.2 (2 × ArC=O), 129.9 (6-C), 119.3 (1-C), 106.9 (5-C), 101.0 (3-C), 70.8 and 70.1 [2 × CH(CH₃)₂] and 21.7 [2 × CH(CH₃)₂]; *m*/z (EI) 222 (M⁺, 29%), 180 (12), 138 (100), 109 (4) and 43 (14).

2,4-Diisopropoxybenzaldehyde (16.9 g, 75.8 mmol) was dissolved in distilled methanol (100 cm³) and the solution was cooled in an ice-bath. Magnesium monoperoxyphthalic acid hexahydrate (MMPP) (56.3 g, 0.11 mol) was added gradually to the stirred solution over a period of 20 min. The solution was left to stir for 60 h at room temperature under nitrogen. The solution, which changed from pale yellow to pink, was filtered and then solvent was removed in vacuo. The resultant red oil was purified by column chromatography (10% ethyl acetatehexane). The phenol 18 was isolated as a yellow oil (10.07 g, 63%) (Found: M⁺, 210.1242. C₁₂H₁₈O₃ requires M, 210.1256); v_{max} (film)/cm⁻¹ 4000br (OH), 1594s, (ArC=C), 1385m and 1373m [C-CH₃, CH(CH₃)₂], 1284s (C-O-C) and 1001s and 987s (C–O, C–OH); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 6.80 (1H, d, J 8.7, 6-H), 6.49 (1H, d, J 2.7, 3-H), 6.37 (1H, dd, J 8.7 and 2.7, 5-H), 5.70 (1H, br s, OH), 4.46 and 4.36 [each 1H, sept, $J 6.1, 2 \times CH(CH_3)_2$ and 1.27 and 1.26 [each 6H, d, J 6.1, CH(CH₃)₂]; $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 151.0, 144.8 and 140.7 (3 × ArC-O), 114.1 (6-C), 107.7 (3-C), 104.0 (5-C), 71.1 and 70.5 $[2 \times CH(CH_3)_2]$ and 21.7 and 21.6 $[2 \times CH(CH_3)_2]$; m/z (EI) 210 (M⁺, 77%), 168 (27) and 126 (100).

1-Allyloxy-2,4-diisopropoxybenzene 14

2,4-Diisopropoxyphenol 18 (10.0 g, 47.8 mmol) was dissolved in acetone (400 cm³). Anhydrous potassium carbonate (16.5 g, 0.12 mmol) and allyl bromide (10.3 cm^3 , 14.4 g, 0.12 mol) were added and the stirred solution was heated at reflux under a nitrogen atmosphere for 24 h. Excess of anhydrous potassium carbonate (16.5 g, 0.12 mol) and allyl bromide (10.3 cm³, 14.4 g, 0.12 mol) were added and the solution was heated at reflux under a nitrogen atmosphere for a further 24 h. The solution was then filtered and the solvent removed in vacuo. The resultant yellow oil was purified by column chromatography (5% ethyl acetate-hexane). The triether 14 was isolated as a yellow oil (11.17 g, 94%) (Found: M⁺, 250.1556. C₁₅H₂₂O₃ requires M, 250.1569); v_{max}(film)/cm⁻¹ 1612m and 1584m (ArC=C), 1382m and 1372m (-CH₃), 1241s (C-O-C), 1167m (-CH₃) and 1000s and 929m (=CH); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 6.81 (1H, d, J 8.8, 6-H), 6.52 (1H, d, J 2.9, 3-H), 6.40 (1H, dd, J 8.8 and 2.9, 5-H), 6.04 (1H, ddt, J 17.2, 10.5 and 5.2, 2'-H), 5.37 (1H, dd, J 17.2 and 1.6, 3'-H), 5.22 (1H, dd, J 10.5 and 1.6, 3'-H), 4.52-4.38 [4H, m, 1'-H₂ and $2 \times CH(CH_3)_2$], 1.34 [6H, d, J 6.1, $CH(CH_3)_2$] and 1.29 [6H, d, J 6.0, $CH(CH_3)_2$]; δ_C (100.63 MHz; CDCl₃) 152.8, 149.0 and 143.7 (3 × ArC-O), 134.1 (2'-C), 116.8 (3'-C^a), 116.7 (6-C^a), 107.4 (3-C^b), 106.8 (5-C^b), 71.6 and 71.1 $[2 \times CH(CH_3)_2]$, 70.4 (1'-C) and 22.1 and 22.0 $[2 \times CH(CH_3)_2]$; *m*/*z* (EI) 250 (M⁺, 11%), 209 (3), 194 (11), 179 (2), 167 (14), 125 (100) and 110 (70).

5-Allyloxy-2,4-diisopropoxyacetophenone 20

Acetic trifluoroacetic anhydride was pre-formed by adding glacial acetic acid $(0.33 \text{ cm}^3, 0.35 \text{ g}, 5.8 \text{ mmol})$ to stirred TFAA $(0.81 \text{ cm}^3, 1.0 \text{ g}, 4.8 \text{ mmol})$ and the mixture was then added to a solution of 1-allyloxy-2,4-diisopropoxybenzene **14** (1.2 g, 4.8 mmol) in dichloromethane (20 cm³) under argon. The solution was stirred for 72 h and gradually darkened to a purple-blue colour. Water (20 cm³) and dichloromethane (50 cm³) were added to the solution, and the excess acid was neutralised by careful addition of solid sodium hydrogen carbonate during 2 h

until no further effervescence was observed. The mixture was extracted with dichloromethane $(6 \times 50 \text{ cm}^3)$ and this extract was dried (MgSO₄) and the solvent was removed in vacuo. The resultant residue was purified by column chromatography (5-10% ethyl acetate-hexane) to afford the ketone 20 as a dark oil (1.30 g, 94%) (Found: M⁺, 292.1971. C₁₇H₂₄O₄ requires M, 292.1675); v_{max}(film)/cm⁻¹ 1762s (C=O), 1655 (ArC=C), 1409m (CH₃, CH₃CO), 1384m and 1373m (-CH₃), 1021m (C-O-C) and 999m and 916m (=CH); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 7.44 (1H, s, 6-H), 6.50 (1H, s, 3-H), 6.13-5.96 (1H, m, 2'-H), 5.46-5.20 (2H, m, 3'-H₂), 4.65–4.53 [4H, m, $2 \times CH(CH_3)_2$ and 1'-H₂], 2.60 (3H, s, COCH₃) and 1.39 [12H, d, J 6.1, $4 \times$ CH(CH₃)₂]; δ_C (50.32 MHz; CDCl₃) 197.5 (C=O), 153.6, 152.8 and 143.0 (3 × ArC–O), 133.4 (2'-C), 120.9 (1-C), 117.1 (3'-C), 116.2 (6-C), 102.6 (3-C), 71.8 and 71.2 $[2 \times CH(CH_3)_2]$, 70.4 (1'-C), 32.2 (COCH₃) and 22.0 and 21.9 [2 × CH(CH₃)₂]; m/z (EI) 292 (M⁺, 17%), 277 (4), 250 (3), 235 (2), 209 (7), 167 (100), 149 (77) and 41 (60).

2-Allyl-3-benzyloxy-4,6-diisopropoxyacetophenone 22

Ketone 20 (1.00 g, 3.42 mmol) was heated in an oil-bath at 160 °C for 24 h under an argon atmosphere until NMR spectroscopy showed that the Claisen rearrangement was complete. Acetone (50 cm³), benzyl bromide (2.9 g, 17.0 mmol) and anhydrous potassium carbonate (2.4 g, 17.0 mmol) were added and the reaction mixture was heated at reflux, under an argon atmosphere, for 17 h. After cooling, the solution was filtered and the solvent was removed in vacuo. The resulting brown oil was purified by column chromatography (hexane, and then 5% ethyl acetate-hexane) to afford the ketone 22 as a clear yellow oil (1.03 g, 79%) (Found: M⁺, 382.2139. C₂₄H₃₀O₄ requires M, 382.2144); v_{max}(film)/cm⁻¹ 1692s (C=O), 1591vs (ArC=C), 1421m (-CH₃, CH₃CO), 1373m (-CH₃), 1218s (C-O-C), 1172m and 1160m (–CH₃) and 999m and 912m (=CH); $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 7.47-7.30 (5H, m, Ph), 6.42 (1H, s, 5-H), 5.90-5.80 (1H, m, 2'-H), 4.96-4.90 (2H, m, 3'-H₂), 4.91 (2H, s, OCH₂), 4.58 [1H, sept, J 6.1, CH(CH₃)₂], 4.46 [1H, sept, J 6.1, CH(CH₃)₂], 3.42 (2H, br dt, J 6.2 and 1.5, 1'-H), 2.46 (3H, s, COCH₃), 1.37 [6H, d, J 6.1, CH(CH₃)₂] and 1.31 [6H, d, J 6.1, CH(CH₃)₂]; δ_C (100.63 MHz; CDCl₃) 204.9 (CO), 151.9, 151.2 and 141.4 (3 × ArC-O), 137.9 (ArC-C), 137.0 (2'-C), 131.9 (ArC-C), 128.2, 127.9 and 127.7 (3 × PhC), 125.8 (ArC-C), 115.3 (3'-C), 100.9 (5-C), 74.7 (CH₂), 71.3 and 71.1 [2 × CH(CH₃)₂], 32.6 (COCH₃), 30.6 (1'-C) and 22.0 and 22.0 $[2 \times CH(CH_3)_2]; m/z$ (EI) 382 (M⁺, 52%), 291 (28), 249 (15), 207 (100), 165 (7), 91 (59) and 41 (13).

1-(2-Allyl-3-benzyloxy-4,6-diisopropoxyphenyl)ethanol 24

Lithium aluminium hydride (0.20 g, 5.2 mmol) was added over a period of 10 min to a solution of ketone 22 (1.00 g, 2.61 mmol) in diethyl ether (100 cm³). The reaction mixture was then stirred under an argon atmosphere for 2 h. Methanol (10 cm³) was added carefully, followed by water (20 cm³). The mixture was then extracted with diethyl ether $(3 \times 50 \text{ cm}^3)$, which was dried (MgSO₄) and the solvent was removed in vacuo. The resultant yellow oil was purified by column chromatography (10% ethyl acetate-hexane) to afford the alcohol 24 as a clear yellow oil (0.93 g, 93%) (Found: M⁺, 384.2303. $C_{24}H_{32}O_4$ requires *M*, 384.2301); v_{max} (film)/cm⁻¹ 3547br (OH), 2867m (OCH₂), 1594s, (ArC=C), 1385s and 1371s [-CH₃, CH(CH₃)₂], 1271s (C–O–C, ArC–O–C) and 993s and 909m (=CH); $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 7.48-7.30 (5H, m, Ph), 6.48 (1H, s, 5-H), 6.00-5.88 (1H, m, 2'-H), 5.04-4.88 (4H, m, 3'-H₂ and OCH₂Ph), 4.61 [1H, sept, J 6.1, CH(CH₃)₂], 4.53 [1H, sept, J 6.1, CH(CH₃)₂], 4.02 (1H, br s, OH), 3.73 (1H, q, J 6.4, CHCH₃), 3.51–3.30 (2H, m, 1'-H₂), 1.53 (3H, d, J 6.6, CHCH₃) and 1.42–1.32 [12H, m, $2 \times CH(CH_3)_2$]; δ_C (100.63 MHz; CDCl₃) 151.6, 149.6 and 141.3 (3 × ArC–O), 138.0 (ArC–C), 136.9 (2'-C), 131.6 (ArC-C), 128.2, 127.9 and 127.7 (3 × PhC),

125.1 (ArC–C), 115.4 (3'-C), 101.3 (5-C), 74.8 (OCH₂), 71.5 and 71.0 [$2 \times CH(CH_3)_2$], 67.2 (CHOH), 30.5 (1'-C), 23.7 (CHCH₃) and 22.3, 22.2, 22.1 and 21.9 [$2 \times CH(CH_3)_2$]; *m/z* (EI) 384 (M⁺, 14%), 293 (58), 251 (13), 209 (36), 191 (100), 163 (15), 91 (58) and 43 (14).

5-Benzyloxy-6,8-diisopropoxy-trans-1,3-dimethylisochromane 26

Sublimed potassium tert-butoxide (1.52 g, 13.5 mmol) was added to a solution of the alcohol 24 (1.30 g, 3.38 mmol) in DMF (20 cm³). The reaction mixture was stirred under argon at 75 °C for 10 min. Water (50 cm³) and ice (10 cm³) were added and the mixture was extracted with diethyl ether $(3 \times 50 \text{ cm}^3)$. The organic phases were combined, dried (MgSO₄), and evaporated under vacuum. Subsequent column chromatography (5% ethyl acetate-hexane) afforded the isochromane 26 (1.11 g, 85%) as a clear oil (Found: M⁺, 384.2307. C₂₄H₃₂O₄ requires M, 384.2301); v_{max}(film)/cm⁻¹ 1600m (ArC=C), 1373m and 1360m [-CH₃, CH(CH₃)₂], 1217m (C-O-C) and 1122s, 1066m and 813m (C–O–C); $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 7.47–7.30 (5H, m, Ph), 6.37 (1H, s, 7-H), 5.01 (1H, q, J 6.6, 1-H), 4.93 (2H, s, OCH₂), 4.55–4.44 [2H, m, 2 × CH(CH₃)₂], 3.98–3.93 (1H, m, 3-H), 2.76 (1H, dd, J 17.0 and 3.3, 4-H pseudo-equatorial), 2.30 (1H, dd, J 17.0 and 10.8, 4-H pseudo-axial), 1.48 (3H, d, J 6.6, 1-CH₃), 1.35 (3H, d, J 6.0, 3-CH₃), 1.34 [6H, d, J 6.1, CH(CH₃)₂], 1.29 [3H, d, J 6.9, CH(CH₃)CH₃] and 1.27 [3H, d, J 7.1, CH(CH₃)CH₃]; δ_c (100.63 MHz; CDCl₃) 149.6, 148.9 and 140.3 (3 × ArC-O), 138.2 and 128.8 (2 × ArC-C), 128.3, 128.1 and 127.8 (3 × PhC), 122.1 (ArC-C), 101.1 (7-C), 74.2 (OCH₂), 71.8 and 69.9 [2 × CH(CH₃)₂], 68.3 (1-C), 62.4 (3-C), 31.0 (4-C), 22.4, 22.3, 22.2 and 22.1 $(2 \times CH(CH_3)_2^{a})$, 21.9 (1-CH₃^a) and 19.8 (3-CH₃); m/z (EI) 384 (M⁺, 18%), 293 (54), 251 (37), 209 (100), 167 (57), 91 (56) and 43 (32).

Methyl 4-acetoxy-8-bromo-5-isopropoxy-2-naphthoate 28

A solution of 2-bromo-5-isopropoxybenzaldehyde¹⁸ (2.97 g, 0.12 mmol) and dimethyl succinate (2.14 g, 0.15 mmol) in dry tert-butyl alcohol (10 cm³) was added to a boiling solution of freshly sublimed potassium tert-butoxide (1.51 g, 13.4 mmol) in dry tert-butyl alcohol (40 cm³) over a period of 15 min. The reaction mixture was heated under reflux for a further 45 min, then allowed to cool, diluted with water (50 cm³) and acidified with conc. hydrochloric acid. The organic material was extracted into toluene $(3 \times 100 \text{ cm}^3)$ and the solvent removed by evaporation under reduced pressure. Diethyl ether (100 cm³) and saturated aq. sodium hydrogen carbonate (20 cm³) were added to the resultant oil. The organic phase was separated and the aqueous phase washed a further two times with diethyl ether $(2 \times 100 \text{ cm}^3)$. The aqueous phase was then made acidic with conc. hydrochloric acid and the resulting mixture extracted with diethyl ether $(3 \times 100 \text{ cm}^3)$, which was then dried (MgSO₄), and removed under vacuum. The residue was purified by column chromatography (20% ethyl acetate-hexane) to afford the intermediate acid 27 as a mixture of geometrical isomers (60:40). The product 27 was a pale yellow oil which hardened into an opaque yellow semi-solid (2.88 g, 66%) (Found: M⁺, 356.0268. C₁₇H₁₇BrO₅ requires *M*, 356.0259); $v_{max}(film)/cm^{-1} 3200-3100 br$ (COO-H), 1701m (CO₂Me), 1659s (CO₂H), 1601 (ArC=C), 1368m [CH₃, CH(CH₃)₂], 1241s (C-O) and 706m (C-Br); $\delta_{\rm H}$ [200 MHz; CO(CD₃)₂] (assignments in brackets are for the minor geometrical isomer) 7.80 (7.72) (1H, s, CH=C) 7.55 (7.29) (1H, d, J 8.8, 3-H), 7.04 (6.83) (1H, d, J 3.0, 6-H), 6.90 (6.75) (1H, dd, J 8.8 and 3.0, 4-H), 4.58 (4.47) [1H, sept, J 6.0, CH(CH₃)₂], 3.82 (3H, s, CO₂CH₃), (3.63) 3.44 (2H, s and d, J 0.6, CH₂) and 1.29 [6H, d, J 6.0, CH(CH₃)₂]; $\delta_{\rm C}$ [50.32 MHz; CO(CD₃)₂] 172.3, 168.0 (168.0) (2 × C=O), 158.3 (157.9) (ArC-O), (141.5) 141.1 (3-C), 136.9 (1-C^a), 134.4 (133.9) (6-C), 129.1 (HC=C^a), (119.6) 119.4 (4-C^b), 117.7 (117.3) $(HC=C^{b})$, 71.0 (70.9) $[CH(CH_{3})_{2}]$, 52.6 $(CO_{2}CH_{3})$, 34.0 (CH_{2})

and 22.1 [CH(CH₃)₂]; *m*/*z* (EI) 358, 356 (M⁺, 9%), 277 (20), 235 (100), 191 (18) and 43 (16).

The intermediate acid 27 (0.670 g, 1.88 mmol) and anhydrous sodium acetate (0.027 g, 3.29 mmol) were dissolved in acetic anhydride (15 cm³) and were heated at reflux for 6 h. The reaction mixture was allowed to cool and diluted with water (20 cm³) and diethyl ether (20 cm³). Saturated aq. sodium hydrogen carbonate was then added with stirring until effervescence had ceased. The aqueous layer was extracted with diethyl ether $(3 \times 50 \text{ cm}^3)$. The combined organic layers were then dried (MgSO₄), and removed in vacuo. The naphthoate 28 (0.53 g, 74%) was obtained as a yellow crystalline material, mp 108-109 °C (from hexane-ethyl acetate), after purification by column chromatography (5% ethyl acetate-hexane) (Found: M⁺, 380.0255. C₁₉H₁₇BrO₅ requires *M*, 380.0259); v_{max}(film)/ cm⁻¹ 1716s (C=O), 1600m (ArC=C), 1267s (C-O-C), 1213s (C–O) and 693m (C–Br); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 8.86 (1H, d, J 1.7, 1-H), 7.71 (1H, d, J 8.6, 7-H), 7.68 (1H, d, J 1.7, 3-H), 6.83 (1H, dd, J 8.6 and 0.4, 6-H), 4.68 [1H, sept, J 6.0, CH(CH₃)₂], 3.98 (3H, s, CO₂CH₃), 2.38 (3H, s, COCH₃) and 1.40 [6H, d, J 6.0, CH(CH₃)₂]; $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 169.5 (OAc^a), 165.9 (CO₂Me^a), 153.4 (5-C^b), 147.2 (4-C^b), 134.1 (8a-C), 131.1 (7-C°), 128.7 (2-C), 128.4 (1-C°), 123.5 (4a-C), 119.7 (3-C), 114.3 (8-C), 110.6 (6-C), 70.8 [CH(CH₃)₂], 52.4 (CO₂CH₃), 21.7 [CH(CH₃)₂] and 21.3 (COCH₃); m/z (EI) 382, 380 (M⁺, 60%), 340, 338 (38), 298, 296 (100), 267, 265 (38), 240, 238 (56), 217 (31) and 158 (35).

Methyl 8-bromo-5-isopropoxy-4-methoxy-2-naphthoate 30

Potassium hydroxide (0.28 g, 5.0 mmol) in methanol (10 cm³) was added to a solution of ester 28 (1.59 g, 4.17 mmol) in methanol (100 cm³) and the reaction mixture was stirred for 1 h under argon. The methanol was removed in vacuo and the organic material dissolved in toluene (50 cm³). The organic phase was washed with water $(3 \times 100 \text{ cm}^3)$ and then with hydrochloric acid (1 M; 100 cm³). The organic phase was then evaporated in vacuo to afford the intermediate naphthol 29 (1.34 g, 95%) as a yellow solid, mp 103-109 °C, which was not purified further (Found: M^+ , 338.0151. $C_{15}H_{15}BrO_4$ requires *M*, 338.0153); v_{max} (film)/cm⁻¹ 3360br (OH), 1720s (C=O), 1600m and 1567 (ArC=C), 1280s (C-O-C), 1227s (C-O, ArC–OH) and 1100s (C–O); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 9.86 (1H, s, OH), 8.37 (1H, d, J 1.6, 1-H), 7.61 (1H, d, J 8.4, 7-H), 7.45 (1H, d, J 1.6, 3-H), 6.71 (1H, d, J 8.4, 6-H), 4.81 [1H, sept, J 6.1, CH(CH₃)₂], 3.97 (3H, s, CO₂CH₃) and 1.50 [6H, d, J 6.1, $CH(CH_3)_2$; δ_C (50.32 MHz; CDCl₃) 166.7 (CO₂CH₃), 155.5 (4-Ca), 153.8 (5-Ca), 134.0 (8a-C), 130.3 (7- and 2-Cb), 120.8 (1-C^b), 118.9 (4a-C), 115.9 (8-C), 110.7 (3-C^c), 108.8 (6-C^c), 73.5 [CH(CH₃)₂], 52.3 (CO₂CH₃) and 21.9 [CH(CH₃)₂]; m/z (EI) 340, 338 (M⁺, 65%), 298, 296 (100) and 217 (14).

Dimethyl sulfate (1.0 cm³, 1.3 g, 0.11 mol) and potassium carbonate (1.5 g, 0.11 mol) were added sequentially to a solution of the foregoing naphthol 29 (0.77 g, 2.3 mmol) in acetone (100 cm³). The reaction mixture was heated at reflux under an argon atmosphere for 18 h. The acetone was removed in vacuo after which water (100 cm³) and diethyl ether (100 cm³) were added. The organic phase was washed successively with aq. ammonia (10%; 3×100 cm³), water (100 cm³), hydrochloric acid (10% v/v; 100 cm³) and water (100 cm³). The organic solvent was dried (MgSO₄), and evaporated in vacuo to yield a crude material, which was purified by column chromatography (5% ethyl acetate-hexane) to give the ether 30 (0.79 g, 99%) as thin white crystals, mp 102-103 °C (from CH₂Cl₂-hexane) (Found: M^+ , 352.0300. $C_{16}H_{17}BrO_4$ requires *M*, 352.0310); v_{max}(film)/cm⁻¹ 1728vs (OCO), 1589m (ArC=C), 1368s [CH₃, CH(CH₃)₂], 1282vs and 1256s (C–O) and 1163m [CH₃, CH(CH₃)₂]; $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 8.56 (1H, d, J 1.4, 1-H), 7.70 (1H, d, J 8.4, 7-H), 7.45 (1H, d, J 1.4, 3-H), 6.87 (1H, d, J 8.4, 6-H), 4.53 [1H, sept, J 6.0, CH(CH₃)₂], 4.00 and 3.99

(each 3H, s, CO₂CH₃ and OCH₃) and 1.40 [6H, d, J 6.1, CH(CH₃)₂]; $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 166.9 (CO₂CH₃), 157.7 (5-C^a), 155.0 (4-C^a), 134.4 (8a-C), 131.1 (7-C^b), 128.8 (2-C), 122.8 (1-C^b), 122.6 (4a-C), 115.5 (8-C), 114.8 (6-C), 105.8 (3-C), 73.3 [CH(CH₃)₂], 56.4 (OCH₃), 52.4 (CO₂CH₃) and 21.9 [CH(CH₃)₂]; *m*/*z* (EI) 354, 352 (M⁺, 27%), 312, 310 (100), 297, 295 (24), 253, 251 (9) and 172 (9).

(8-Bromo-5-isopropoxy-4-methoxy-2-naphthyl)methanol 31

Lithium aluminium hydride (0.020 g, 0.56 mmol) was added to a solution of compound 30 (0.200 g, 0.56 mmol) in dry diethyl ether (5 cm³) and the mixture was stirred under an argon atmosphere for 1 h. The mixture was filtered through a short Celite column and the solvent was removed in vacuo to yield the alcohol 31 (0.18 g, 98%) as a clear oil, with identical spectroscopic properties to those reported in the literature^{3e} (Found: M⁺, 324.0364. C₁₅H₁₇BrO₃ requires *M*, 324.0361); v_{max}(film)/ cm⁻¹ 3600m (OH, free), 3347br (OH, hydrogen bonded), 2833m (C-H, OCH₃), 1587s and 1573s (ArC=C) and 1266s (C-O-C); δ_H (400 MHz; CDCl₃; Me₄Si) 7.64 (1H, d, J 0.8, 8-H), 7.61 (1H, d, J 8.3, 2-H), 6.83 (1H, d, J 0.8, 6-H), 6.74 (1H, d, J 8.3, 3-H), 4.76 (2H, br s, CH₂OH), 4.49 [1H, sept, J 6.1, CH(CH₃)₂], 3.90 (3H, s, OCH₃), 2.42 (1H, br s, OH) and 1.39 [6H, d, J 6.1, $CH(CH_3)_2$]; δ_C (100.625 MHz; CDCl₃) 157.4 (4-C^a), 154.8 (5-Ca), 140.4 (7-C), 134.8 (8a-C), 130.6 (2-C), 119.9 (4a-C), 117.4 (8-C), 114.4 (1-C), 113.0 (6-C), 105.9 (3-C), 73.3 [CH(CH₃)₂], 65.3 (CH₂OH), 56.3 (OCH₃) and 21.9 [CH(CH₃)₂]; m/z (EI) 326, 324 (M⁺, 31%), 284, 282 (100), 269, 267 (19), 203 (6) and 115 (20).

5-Bromo-3-bromomethyl-8-isopropoxy-1-methoxynaphthalene 32

1,2-Dibromotetrachloroethane (0.48 g, 1.47 mmol) was added to a solution of alcohol 31 (0.478 g, 1.47 mmol) and triphenylphosphine (0.39 g, 1.47 mmol) in dichloromethane (10 cm³). The reaction mixture was stirred under argon at room temperature for 30 min, after which the solvent was removed in vacuo. Column chromatography (5% ethyl acetate-hexane) afforded the product 32 (0.49 g, 86%) as a white solid, with identical spectroscopic properties to those reported in the literature.^{3e} Mp 124–126 °C (from acetone) (lit.,^{3e} 126 °C, from acetone); δ_H (200 MHz; CDCl₃; Me₄Si) 7.80 (1H, d, J 1.6, 4-H), 7.65 (1H, d, J 8.4, 6-H), 6.89 (1H, d, J 1.6, 2-H), 6.79 (1H, d, J 8.4, 7-H), 4.63 (2H, s, CH₂Br), 4.51 [1H, sept, J 6.1, CH(CH₃)₂], 3.97 (3H, s, OCH₃) and 1.39 [6H, d, J 6.1, CH(CH₃)₂]; $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 158.0 (8-C^a), 155.1 (1-C^a), 136.9 (3-C), 134.8 (4a-C), 131.0 (6-C), 120.4 (8a-C), 120.0 (4-C), 114.3 (5-C), 113.7 (2-C), 107.5 (7-C), 73.3 [CH(CH₃)₂], 56.4 (OCH₃), 34.0 (CH₂Br) and 22.0 [CH(CH₃)₂].

5-Bromo-8-isopropoxy-1-methoxy-3-methylnaphthalene 4

L-Selectride (1 M in tetrahydrofuran; 0.26 cm³, 0.26 mmol) was added dropwise to a stirred solution of dibromide 32 (0.100 g, 0.26 mmol) in dry dichloromethane (5 cm³) under an argon atmosphere at 0 °C. The reaction mixture was stirred for a further 2 h, after which the solvent was removed in vacuo. Purification by column chromatography afforded the naphthalene 4 (0.08 g, 100%) as a white solid, with identical spectroscopic properties to those reported in the literature.^{3e} Mp 74-76 °C (from propan-2-ol) (lit.,^{3e} 78 °C); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 7.62-7.58 (1H, m, 4-H), 7.60 (1H, d, J 8.3, 6-H), 6.72-6.68 (1H, m, 2-H), 6.70 (1H, d, J 8.3, 7-H), 4.49 [1H, sept, J 6.1, CH(CH₃)₂], 3.92 (3H, s, OCH₃), 2.49 (3H, d, J 0.5, ArCH₃) and 1.37 [6H, d, J 6.1, CH(CH₃)₂]; $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 157.1 (8-Ca), 154.9 (1-Ca), 137.6 (3-C), 135.0 (4a-C), 130.3 (6-C), 119.4 (4-C), 118.9 (8a-C), 113.8 (5-C), 112.2 (2-C^b), 109.4 (7-C^b), 73.1 [CH(CH₃)₂], 56.4 (OCH₃), 22.1 (ArCH₃) and 22.0 $[CH(CH_3)_2]$

6,8-Dimethoxy-trans-1,3-dimethylisochroman-5-ol 33

Method A. 10% Palladium on carbon (0.07 g, 10% by mass) was added to a solution of isochromane 25 (0.656 g, 2.00 mmol) in dry methanol (40 cm³) and the mixture was stirred at room temperature under a hydrogen pressure of one atmosphere. After 4 h the mixture was filtered through a small Celite plug and the solvent was removed in vacuo to afford the isochromanol 33 as a dark oil (0.48 g, 100%) (Found: M⁺, 238.1193. C₁₃H₁₈O₄ requires M, 238.1205); v_{max}(film)/cm⁻¹ 3300br (OH), 1626s (ArC=C), 1260s and 1087s (C–O–C); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 6.39 (1H, s, 7-H), 5.07 (1H, q, *J* 6.5, 1-H), 4.55 (1H, br s, OH), 4.15-3.95 (1H, m, 3-H), 3.86 and 3.77 (each 3H, s, OCH₃), 2.81 (1H, dd, J 17.0 and 3.4, 4-H pseudo-equatorial), 2.36 (1H, dd, J 17.0 and 10.8, 4-H pseudo-axial), 1.48 (3H, d, J 6.5, 1-CH₃) and 1.33 (3H, d, J 6.1, 3-CH₃); $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 148.5, 144.3 and 136.4 (3 \times ArC–O), 120.9 and 120.5 (2 \times ArC-C), 93.8 (7-C), 68.1 (1-C), 62.2 (3-C), 56.2 and 55.8 $(2 \times OCH_3)$, 30.1 (4-C), 21.9 (1-CH₃) and 19.7 (3-CH₃); m/z (EI) 238 (M⁺, 24%), 223 (100), 208 (14) and 193 (7).

Method B. A small scoop of palladium black (≈ 0.050 g) in water was washed with methanol (2 × 20 cm³) followed by dry methanol (2 × 2 cm³). (CAUTION: dry palladium black is very pyrophoric and the catalyst must stay wet with solvent.) A formic acid-methanol mixture (10%; 2 cm³) was added and the reaction mixture was stirred vigorously for 10 min. The benzylprotected compound 25 (0.088 g, 0.27 mmol) was added to the catalyst in a formic acid-methanol mixture (10%; 2 cm³) and the reaction mixture was stirred for 45 min at ambient temperature under an argon atmosphere. The palladium black was removed by filtration and the catalyst was washed with methanol (2 × 20 cm³). The solvent was removed *in vacuo* to afford the *isochromanol* 33 as a dark oil (0.064 g, 100%). Spectral data for this product were identical to those obtained in method A.

6,8-Dimethoxy-*trans*-1,3-dimethylisochroman-5-yl trifluoromethanesulfonate 35

Dry pyridine (0.27 cm³, 0.26 g, 3.3 mmol) was added to a solution of isochromanol 33 (0.71 g, 3.00 mmol) in dry chloroform (20 cm³) under an argon atmosphere in a Schlenk tube. This mixture was added through a cannula to a Schlenk tube containing trifluoromethanesulfonic anhydride (0.95 g, 3.30 mmol), forming a purple-red reaction mixture. The reaction mixture was then stirred for 18 h under argon. Ice-water (10 cm³) were added and the water layer was extracted with chloroform $(3 \times 10 \text{ cm}^3)$, which was separated, dried (MgSO₄), and removed in vacuo. Column chromatography (dichloromethane) yielded the triflate 35 as a white semi-solid (0.98 g, 88%) (Found: M⁺, 370.0699. C₁₄H₁₇F₃O₆S requires *M*, 370.0698); v_{max} (KBr pellet)/cm⁻¹ 1618m and 1589m (ArC=C), 1207vs and 1135vs (R-SO₂-OR), 1086s (C-O-C) and 763m (C-F, CF₃); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 6.46 (1H, s, 7-H), 5.03 (1H, q, J 6.6, 1-H), 4.11–3.96 (1H, m, 3-H), 3.87 and 3.83 (each 3H, s, OCH₃), 2.77 (1H, dd, J 16.8 and 3.3, 4-H pseudo-equatorial), 2.44 (1H, dd, J 16.8 and J 10.6, 4-H pseudo-axial), 1.47 (3H, d, J 6.6, 1-CH₃) and 1.33 (3H, d, J 6.1, 3-CH₃); $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 155.0 and 150.1 (2 × ArC-O), 128.8 (5-C), 121.8 and 120.7 (2 × ArC-C), 118.6 (q, J 320.2, CF₃), 94.1 (7-C), 67.8 (1-C), 61.9 (3-C), 56.0 and 55.5 (2 × OCH₃), 30.5 (4-C), 21.6 (1-CH₃) and 19.4 (3-CH₃); m/z (EI) 370 (M⁺, 22%), 355 (100), 237 (72), 222 (22), 207 (22) and 193 (95).

6,8-Dimethoxy-*trans*-1,3-dimethylisochroman-5-yl diethyl phosphate 36

Isochromanol **33** (0.18 g, 0.76 mmol) was added to a suspension of sodium hydride (50% in oil; 0.044 g, 0.91 mmol) in THF (5 cm³) and the mixture was stirred for 20 min under an argon atmosphere. Diethyl phosphorochloridate (0.12 cm³, 0.91

mmol) was added dropwise by syringe and the mixture was stirred under argon for 20 h. Diethyl ether (50 cm³) was added and the organic phase was washed with aq. sodium hydroxide $(10\% m/v; 3 \times 20 \text{ cm}^3)$. The organic solvent was dried (MgSO₄), and removed in vacuo to give a light yellow residue. This compound was subjected to column chromatography (50% ethyl acetate-hexane to 10% methanol-hexane) to give the phosphate ester 36 (0.28 g, 100%) as a light pink solid, mp 74.5-75.5 °C (from chloroform) (Found: C, 54.28; H, 7.32; M⁺, 374.1483. C₁₇H₂₇O₇P requires C, 54.54; H, 7.32%; M, 374.1494); v_{max}(KBr pellet)/cm⁻¹1618 (ArC=C), 1280s (P=O), 1225m (C-O-C, ArC-O-C), 1050s (P-O-CAr) and 1032vs and 825w (P-O-C); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 6.38 (1H, s, 7-H), 5.04 (1H, q, J 6.5, 1-H), 4.29-4.20 (2H, m, CH₂CH₃), 4.18-3.98 (3H, m, CH₂CH₃ and 3-H), 3.87 and 3.80 (each 3H, s, OCH₃), 2.89 (1H, dd, J 17.0 and 3.2, 4-H pseudo-equatorial), 2.46 (1H, dd, J 17.0 and 10.9, 4-H pseudo-axial) and 1.48-1.29 (12H, m, 1- and 3-CH₃ and 2 × OCH₂CH₃); $\delta_{\rm C}$ (50.32 MHz; CDCl₃) (values in brackets refer to minor diastereomer) 152.6 (152.5) (149.4), 149.4, 131.3 and (131.1) (3 × ArC-O), 127.5, (127.5), 120.1 and (120.0) (2 × ArC–C), (94.3), 94.3 (7-C), 67.7 (1-C), 64.2, (64.0), (63.1) and 63.0 $(2 \times OCH_2)$, 61.9 (3-C), 55.9 and 55.2 (2 × OCH₃), 30.7 (4-C), 21.6 (1-CH₃), 19.4 (3-CH₃), 16.0 (15.9), 15.8 and (15.7) (2 × OCH₂CH₃); m/z (EI) 374 (M⁺, 13%), 359 (100) and 205 (32).

6,8-Dimethoxy-trans-1,3-dimethylisochroman 38

Phosphate 38 (0.28 g, 0.75 mmol) was dissolved in diethyl ether (5 cm³) and added to a stirred solution of liquid ammonia (50 cm³) at -78 °C. Potassium metal was added in small pieces until a dark blue colour persisted for 15 min. Excess of ammonium chloride was then added and propan-2-ol (50 cm³) was added to destroy excess of potassium metal. The ammonia was allowed to evaporate overnight and water (20 cm³) was added to the mixture. The aqueous layer was extracted with diethyl ether $(5 \times 20 \text{ cm}^3)$, which was dried (MgSO₄), and concentrated in vacuo. Column chromatography gave the isochromane 38 as a clear oil (0.17 g, 100%) (Found: M⁺, 222.1268. C₁₃H₁₈O₃ requires *M*, 222.1256); v_{max} (film)/cm⁻¹ 2850m (OCH₃), 1608m and 1600 (ArC=C) and 1212s and 1090s (C–O–C); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 6.29 (1H, d, J 2.3, 5-H), 6.21 (1H, d, J 2.3, 7-H), 5.03 (1H, q, J 6.5, 1-H), 4.16–4.00 (1H, m, 3-H), 3.78 (6H, s, 2 × OCH₃), 2.68–2.49 (2H, m, 4-H₂), 1.48 (3H, d, J 6.5, 1-CH₃) and 1.30 (3H, d, J 6.1, 3-CH₃); $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 158.9 and 156.5 (2 × ArC–O), 135.1 and 120.6 (2 × ArC–C), 104.0 (5-C), 96.3 (7-C), 68.3 (1-C), 62.6 (3-C), 55.2 and 55.1 $(2 \times OCH_3)$, 36.4 (4-C), 21.8 (1-CH₃) and 19.8 (3-CH₃); m/z (EI) 222 (M⁺, 18%), 207 (100), 192 (6) and 177 (6).

5-Bromo-6,8-dimethoxy-trans-1,3-dimethylisochromane 12

Isochromane 38 (0.155 g, 0.70 mmol) was dissolved in a mixture of chloroform (5 cm³) and acetic acid (5 cm³) and the solution was cooled to 0 °C under an atmosphere of argon. Bromine (0.036 cm³, 0.11 g, 0.70 mmol) was dissolved in acetic acid (2.5 cm³) and added slowly by syringe to the stirred solution. After 105 min, water (10 cm³) was added and the mixture was extracted with chloroform $(3 \times 20 \text{ cm}^3)$. The organic layer was washed successively with water $(2 \times 10 \text{ cm}^3)$, saturated aq. sodium bicarbonate (10 cm³) and brine (10 cm³). After drying of the organic phase (MgSO₄), the solvent was removed in vacuo and the product 12 was obtained after column chromatography as a clear oil (0.19 g, 93%) (Found: M⁺, 300.0353. $C_{13}H_{17}^{79}BrO_3$ requires *M*, 300.0361); $v_{max}(film)/cm^{-1}$ 2850m (OCH₃), 1598m and 1575m (ArC=C) and 1212vs and 1078m (C–O–C); δ_H (200 MHz; CDCl₃; Me₄Si) 6.38 (1H, s, 7-H), 5.04 (1H, q, J 6.6, 1-H), 4.14-3.92 (1H, m, 3-H), 3.89 and 3.82 (each 3H, s, OCH₃), 2.83 (1H, dd, J 17.3 and 3.5, 4-H pseudoequatorial), 2.37 (1H, dd, J 17.3 and 10.9, 4-H pseudo-axial), 1.47 (3H, d, J 6.6, 1-CH₃) and 1.34 (3H, d, J 6.1, 3-CH₃);

 $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 155.2 and 154.9 (2 × ArC–O), 134.7 and 122.3 (2 × ArC–C), 104.4 (5-C), 94.2 (7-C), 67.9 (1-C), 62.6 (3-C), 56.3 and 55.3 (2 × OCH₃), 36.9 (4-C), 21.7 (1-CH₃) and 19.5 (3-CH₃); *m/z* (EI) 302, 300 (M⁺, 11%), 287, 285 (100), 221 (4) and 206 (7).

5-Iodo-6,8-dimethoxy-trans-1,3-dimethylisochromane 10

Sublimed iodine (0.23 g, 0.89 mmol) and silver(I) sulfate (0.28 g, 0.89 mmol) in absolute ethanol (10 cm³) were added dropwise to a stirred solution of 38 (0.17 g, 1.08 mmol) in absolute ethanol (10 cm³). Additional absolute ethanol (10 cm³) was used to wash residues from the dropping funnel into the reaction mixture. The mixture was stirred under argon at room temperature for 3 h, during which time the mixture colour changed from an orange to a bright yellow. The precipitate was filtered off, and washed with ethanol (20 cm³). The organic solvent was then removed under vacuum and replaced with dichloromethane (10 cm³) to give a bright yellow solution. This solution was washed successively with aq. sodium hydroxide $(10\% \text{ m/v}; 20 \text{ cm}^3)$ and water (20 cm^3) . The organic phase was separated, dried (MgSO₄), and then evaporated in vacuo. Purification by flash chromatography afforded the *iodide* 10 as a white solid (0.25 g, 94%), mp 111-112 °C (from ethanol; sublimes above 85 °C and goes green with time) (Found: M⁺, 348.0221. C₁₃H₁₇IO₃ requires *M*, 348.0222); v_{max}(KBr pellet)/ cm⁻¹ 2850w (OCH₃), 1600m and 1566 (ArC=C) and 1215s, 1171m, 1069s and 816m (C–O–C); $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 6.34 (1H, s, 7-H), 5.02 (1H, q, J 6.6, 1-H), 4.08-4.03 (1H, m, 3-H), 3.87 and 3.83 (each 3H, s, OCH₃), 2.74 (1H, dd, J 17.0 and 3.5, 4-H pseudo-equatorial), 2.35 (1H, dd, J 17.0 and 10.8, 4-H pseudo-axial), 1.46 (3H, d, J 6.6, 1-CH₃) and 1.35 (3H, d, J 6.1, 3-CH₃); δ_c (100.63 MHz; CDCl₃) 157.1 and 156.5 (2 × ArC-O), 137.5 and 122.9 (2 × ArC-C), 93.5 (7-C), 82.2 (5-C), 68.0 (1-C), 63.1 (3-C), 56.4 and 55.3 (2 × OCH₃), 42.3 (4-C), 21.7 (1-CH₃) and 19.5 (3-CH₃); m/z (EI) 348 (M⁺, 16%) and 333 (100).

6,8-Diisopropoxy-trans-1,3-dimethylisochroman-5-ol 34

10% Palladium on carbon (0.11 g; 10% by mass) was added to a solution of isochromane 26 (1.09 g, 2.83 mmol) in dry methanol (50 cm^3) and the mixture was stirred at room temperature in an autoclave at a hydrogen pressure of one atmosphere. After 2 h the mixture was filtered through a small Celite plug and the solvent was removed in vacuo to afford the isochromanol 34 (0.82 g, 100%) as a brown oily, low melting solid (Found: M^+ , 294.1844. $C_{17}H_{26}O_4$ requires *M*, 294.1831); $v_{max}(film)/cm^{-1}$ 3547br (OH), 1617s (ArC=C), 1383m and 1373m [CH₃, CH-(CH₃)₂], 1244m (C–O–C), 1121vs (C–OH) and 1100m, 1064m and 814m (C–O–C); $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 6.35 (1H, s, 7-H), 5.36 (1H, s, OH), 5.03 (1H, q, J 6.6, 1-H), 4.47 [1H, sept, J 6.1, CH(CH₃)₂], 4.39 [1H, sept, J 6.0, CH(CH₃)₂], 4.07–4.02 (1H, m, 3-H), 2.79 (1H, dd, J 17.0 and 3.4, 4-H pseudoequatorial), 2.36 (1H, dd, J 17.0 and 10.9, 4-H pseudo-axial), 1.49 (3H, d, J 6.6, 1-CH₃), 1.36–1.32 [12H, m, 2 × CH(CH₃)₂] and 1.26 (3H, d, J 6.0, 3-CH₃); $\delta_{\rm C}$ (100.63 MHz; CDCl₃) 146.3, 142.0 and 137.7 (3 × ArC-O), 122.3 and 120.8 (2 × ArC-C), 99.1 (7-C), 72.2 and 70.5 $[2 \times CH(CH_3)_2]$, 68.4 (1-C), 62.2 (3-C), 30.3 (4-C), 22.3, 22.3, 22.1 and 22.0 $[2 \times CH(CH_3)_2^a]$, 22.0 (1-CH₃^a) and 19.8 (3-CH₃); m/z (EI) 294 (M⁺, 34%), 279 (57), 237 (56), 195 (100) and 167 (10).

6,8-Diisopropoxy-*trans*-1,3-dimethylisochroman-5-yl diethyl phosphate 37

Sodium hydride (60% in oil; 0.13 g, 3.24 mmol) was added to a solution of isochromanol **34** (0.79 g, 2.7 mmol) in THF (50 cm^3) and the mixture was stirred for 20 min under an argon atmosphere. Diethyl phosphorochloridate (0.43 cm^3 , 0.51 g, 3.0 mmol) was added dropwise by syringe and the mixture was

stirred at room temperature for 20 h. Diethyl ether (50 cm³) was added and the organic phase was washed successively with aq. sodium hydroxide (10% m/v; $3 \times 20 \text{ cm}^3$) and water (50 cm^3). The organic layer was dried (MgSO₄), and removed in vacuo to give a light yellow residue. This was purified by column chromatography (50% ethyl acetate-hexane to 10% methanol-hexane) to give the phosphate ester 37 as a clear oil (0.93 g, 81%) (Found: M⁺, 430.2111. C₂₁H₃₅O₇ requires *M*, 430.2120); v_{max} (film)/cm⁻¹ 2860w (OCH₂), 1610m (ArC=C), 1367m (CH₃), 1295m (P=O), 1124s (C–O–C) and 1035s (P–O–C); $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 6.36 (1H, s, 7-H), 5.00 (1H, q, J 6.5, 1-H), 4.54–4.44 [2H, m, $2 \times CH(CH_3)_2$], 4.28–4.21 (4H, m, $2 \times$ CH₂CH₃), 4.05–4.00 (1H, m, 3-H), 2.90 (1H, dd, J 16.9 and 3.1, 4-H pseudo-equatorial), 2.46 (1H, dd, J 16.9 and 10.9, 4-H pseudo-axial), 1.47 (3H, d, J 6.6, 1-CH₃), 1.37-1.33 (15H, m, 5 × CH₃), 1.31 (3H, d, J 6.1, CH₃) and 1.29 (3H, d, J 6.0, 3-CH₃); $\delta_{\rm C}$ (100.63 MHz; CDCl₃) (values in parentheses refer to the minor stereoisomer) 150.5 (150.4), 147.4 (147.4) (132.3) and 132.2, (3 × ArC-O), 127.8 (127.8) and 121.3 (2 × ArC-C), 99.0 (7-C), 71.1 and 69.8 $[2 \times CH(CH_3)]$, 67.9 (1-C), (64.0), 63.9, 63.9 and (63.9) $(2 \times OCH_2CH_3)$, 62.0 (3-C), 30.9 (4-C), 21.9 $(1-CH_3^{a})$, 21.9, 21.8, 21.8 and 21.7 $[2 \times CH(CH_3)_2^{a}]$, 19.4 $(3-CH_3^{a})$ and 15.9 and 15.9 (2 × OCH₂CH₃); m/z (EI) 430 (M⁺, 31%), 415 (62), 373 (100), 331 (33) and 43 (20).

6,8-Diisopropoxy-trans-1,3-dimethylisochromane 39

Liquid ammonia (50 cm³) was distilled into a solution of isochromane 37 (0.53 g, 1.23 mmol) in diethyl ether (5 cm³) at -78 °C. Potassium metal was added in small pieces until a dark blue colour persisted for 15 min. Excess of ammonium chloride was then added and propan-2-ol (50 cm³) was added to destroy excess of potassium metal. The ammonia was allowed to evaporate overnight and water (50 cm³) was added to the mixture. The aqueous layer was extracted with diethyl ether (3×50) cm³), which was dried (MgSO₄), and concentrated in vacuo. Column chromatography gave the *isochromane* 39 as a clear oil (0.31 g, 91%) (Found: M⁺, 278.1875. C₁₇H₂₆O₃ requires M, 278.1882); v_{max}(film)/cm⁻¹ 1610s and 1591 (ArC=C), 1383m and 1372m [CH₃, CH(CH₃)₂] and 1204m, 1069s and 829m (C-O-C); δ_H (400 MHz; CDCl₃; Me₄Si) 6.25 (1H, d, J 2.1, 5-H), 6.18 (1H, d, J 2.1, 7-H), 5.00 (1H, q, J 6.6, 1-H), 4.53-4.45 [2H, m, 2×CH(CH₃)₂], 4.09–4.04 (1H, m, 3-H), 2.62–2.51 (2H, m, 4-H2), 1.48 (3H, d, J 6.6, 1-CH3), 1.34-1.31 [9H, m, CH(CH3)-CH₃, CH(CH₃)₂], 1.30 [3H, d, J 6.0, CH(CH₃)CH₃] and 1.28 (3H, d, J 6.1, 3-CH₃); $\delta_{\rm C}$ (100.63 MHz; CDCl₃) 157.0 and 154.6 (2 × ArC-O), 135.1 and 121.1 (2 × ArC-C), 106.0 (5-C), 99.5 (7-C), 69.8 and 69.5 $[2 \times CH(CH_3)_2]$, 68.5 (1-C), 62.6 (3-C), 36.5 (4-C), 22.2, 22.1, 22.1 and 21.8 $[2 \times CH(CH_3)_2]$, 21.8 (1-CH₃^a) and 19.8 (3-CH₃); *m/z* (EI) 278 (M⁺, 18%), 263 (100), 221 (40), 179 (89) and 43 (17).

5-Iodo-6,8-diisopropoxy-trans-1,3-dimethylisochromane 11

Sublimed iodine (0.30 g, 1.19 mmol) and silver(I) sulfate (0.37 g, 1.19 mmol) in absolute ethanol (15 cm³) were added dropwise to a stirred solution of 39 (0.30 g, 1.08 mmol) in absolute ethanol (25 cm³). After 3 h the reaction mixture was treated in the same manner as for 10 to afford, after purification by flash chromatography (10% ethyl acetate-hexane), the iodide 11 as a colourless oil (0.41 g, 94%) (Found: M⁺, 404.0851. C₁₇H₂₅IO₃ requires M, 404.0848); v_{max} (film)/cm⁻¹ 1586s and 1560s (ArC=C), 1380s and 1373s [CH₃, CH(CH₃)₂], 1212s, 1105s and 1071 (C–O–C) and 614m (C–I); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) 6.34 (1H, s, 7-H), 4.99 (1H, q, J 6.6, 1-H), 4.58–4.43 [2H, m, 2 × CH(CH₃)₂], 4.11–4.01 (1H, m, 3-H), 2.73 (1H, dd, J 17.0 and 3.6, 4-H pseudo-equatorial), 2.35 (1H, dd, J 17.0 and 10.9, 4-H pseudo-axial), 1.48 (3H, d, J 6.6, 1-CH₃), 1.40-1.33 [12H, m, $2 \times CH(CH_3)_2$] and 1.30 (3H, d, J 6.0, 3-CH₃); δ_C (100.63 MHz; CDCl₃) 155.7 and 154.4 (2 × ArC–O), 137.8 and 124.4 $(2 \times ArC-C)$, 99.2 (7-C), 85.2 (5-C), 72.6 and 69.8 $[2 \times$

 $CH(CH_3)_2$], 68.3 (1-C), 63.2 (3-C), 42.7 (4-C), 22.2, 22.2, 22.0 and 21.9 [2 × $CH(CH_3)_2^{a}$], 21.8 (1- CH_3^{a}) and 19.6 (3- CH_3); *m/z* (EI) 404 (M⁺, 36%), 389 (100), 347 (70), 305 (92) and 178 (7).

6,7-Dimethoxy-*trans*-1,3-dimethyl-5-(1-naphthyl)isochromane 43

Method 1. Bromide 12 (0.090 g, 0.30 mmol), 1-naphthylboronic acid 40 (0.10 g, 0.60 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.035 g, 0.03 mmol, 10 mol%) were added under a stream of argon to a Pyrex culture tube. Degassed toluene (1.5 cm³) and saturated aq. sodium bicarbonate (1.5 cm³) were added and the tube was sealed. The tube was then heated at 110 °C for 20 h, and then allowed to cool to ambient temperature. Brine (10 cm^3) was added and the mixture was extracted with ethyl acetate $(3 \times 5 \text{ cm}^3)$. The organic extracts were combined, dried (MgSO₄), and then the solvent was removed in vacuo. Purification of the residue by preparative thin-layer chromatography (PLC) (5% ethyl acetate-hexane) afforded the *biaryl compound* **43** as a brown oil (0.029 g, 28%) (diastereomeric ratio 66:34), naphthalene (0.020 g, 26%) and unreacted bromoisochromane 12 (0.033 g, 37%) (Found: M⁺, 348.1717. $C_{23}H_{24}O_3$ requires *M*, 348.1725); $v_{max}(film)/cm^{-1}$ 3055w (ArC-H), 2837w (C-H, OCH₃), 1597s (ArC=C), 1485m (ArC–C) and 1210s, 1087s and 1070m (C–O–C); $\delta_{\rm H}$ (400 MHz; CDCl₃) (assignments in brackets are for the minor diastereoisomer) 7.90-7.84 (2H, m, 2 × ArH), 7.55-7.24 (5H, m, 5 × ArH), 6.49 (1H, s, 7-H), 5.18–5.14 (1H, m, 1-H), 3.90–3.80 (1H, m overlapping with OCH₃, 3-H) (3.92), 3.91 (3H, s, OCH₃) (3.61), 3.60 (3H, s, OCH₃), 2.25-2.17 (1H, m, 4-H pseudoequatorial), 1.93-1.87 (1H, m, 4-H pseudo-axial), 1.56 (1.55) (3H, d, J 6.5, 1-CH₃) and 1.07 (1.04) (3H, d, J 6.1, 3-CH₃); $\delta_{\rm C}$ (100.63 MHz; CDCl₃) (156.8), 156.7, 155.8 (3 × ArC–O), 135.1, 134.6 (134.5), 133.7 (133.7), 132.7 (4a-, 1'-, 4a'-, 8a'-C), 128.2 (128.2), 128.0 (127.6), 127.3 (125.9) (125.8), 125.8, 125.7 (125.6), 125.6, 125.6 and (125.5) (7 × ArC-H), 120.4 (120.3) 120.2 and 120.1 (8a- and 5-C), 93.3 (93.3) (7-C), 68.4 (68.3) (1-C), 62.8 (62.7) (3-C) (56.1), 56.0 and 55.3 (2 × OCH₃), 34.7 (33.8) (4-C), 21.8 (21.7) (1-CH₃) and 20.0 (19.9) (3-CH₃); m/z (EI) 348 (M⁺, 75%), 334 (100) and 166 (45).

Method 2. Isochromane 12 (0.050 g, 0.17 mmol) and 1-naphthylboronic acid pinacol ester 41 (0.063 g, 0.25 mmol) were dissolved in DMF (3 cm³) in a Schlenk tube under an argon atmosphere. The reaction mixture was degassed with argon for a further 30 min. Dichloro-[1,1'-bis(diphenylphosphino)ferrocene]palladium(II) [PdCl₂(dppf)]³⁰ (0.006 g, 0.0083 mmol, 5 mol%) and degassed aq. sodium carbonate (2 M; 0.42 cm³, 0.083 mol) were added, forming a white precipitate which dissolved when heated at 80 °C for 18 h. Water (10 cm³) was added and the reaction mixture was extracted with diethyl ether $(3 \times 10 \text{ cm}^3)$. The organic phase was separated and washed sequentially with water (10 cm³), brine (10 cm³) and water (10 cm³), before being dried (MgSO₄) and the solvent removed in vacuo. Purification by PLC (5% ethyl acetatehexane) afforded the desired naphthylisochromane 43 (8.0 mg, 14% based on bromoisochromane 12) (diastereomeric ratio 58:42), racemic 1,1'-binaphthyl (21.0 mg, 66% based on boronic ester 41) and debrominated pyran 38 (17.0 mg, 46%) based on bromoisochromane 12). The product 43 was identical to that synthesized by Method 1.

5-(4-Isopropoxy-5-methoxy-7-methyl-1-naphthyl)-6,8dimethoxy-*trans*-1,3-dimethoxyisochromane 7

The bromonaphthalene 4 (0.10 g, 0.32 mmol) was dissolved in dry THF (5 cm³) and the solution was cooled to -78 °C under an argon atmosphere. *n*-Butyllithium (1.4 M; 0.27 cm³, 0.38 mmol) was added by syringe over a period of 10 min and the solution became yellow. After stirring of the mixture for a further 7 min, triisopropyl borate (0.22 cm³, 0.95 mmol) was

added by syringe and the mixture was stirred at -78 °C for a further 5 min. The reaction mixture was then warmed to room temperature over a period of 18 h. Saturated aq. ammonium chloride (10 cm³) and ice (10 cm³) were added and the reaction mixture was stirred for a further 10 min before being extracted successively with diethyl ether (2 × 10 cm³) and dichloromethane (2 × 10 cm³). The organic phases were combined, dried (MgSO₄), and the solvent removed under vacuum to afford a residue of 4-isopropoxy-5-methoxy-7-methyl-1naphthylboronic acid 9 which was used without further purification and without delay.

The boronic acid 9 (assume 0.31 mmol) was transferred to a small round-bottomed flask with DMF (1 cm³) and oxygen was excluded by three freeze-thaw cycles. The flask was sealed and transferred to an argon tent. Iodide 10 (0.054 g, 0.15 mmol), tribasic potassium phosphate (K₃PO₄) (0.10 g, 0.48 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.036 g, 0.031 mmol, 20 mol% based on iodide 10) were added sequentially under flowing argon. The flask was sealed, and then heated, with stirring, under an argon atmosphere at 100 °C for 65 h. The mixture was then cooled and brine (10 cm³) was added. The reaction mixture was extracted with diethyl ether $(4 \times 10 \text{ cm}^3)$, which was dried (MgSO₄), and removed in vacuo. Purification by column chromatography (5–20% ethyl acetate-hexane) afforded the biaryl compound 7 as a dark oil (0.069 g, 96%) (diastereoisomeric ratio 60:40) (Found: M⁺, 450.2411. $C_{28}H_{34}O_5$ requires *M*, 450.2406); $v_{max}(film)/cm^{-1}$ 2837w (CH, OCH₃), 1583vs (ArC=C), 1372s [-CH₃, CH(CH₃)₂], 1277s (C-O-C), 1175s [-CH₃, CH(CH₃)₂] and 1110s and 812m (C–O–C); $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) (assignments in brackets are for the minor diastereoisomer) 6.99 (6.97) (1H, d, J 7.9, 2'-H) (6.83), 6.82 (1H, d, J 7.9, 3'-H), 6.68–6.66 and 6.60– 6.55 (2H, m, 6'-H and 8'-H), 6.40 (1H, s, 7-H), 5.09 (5.07) (1H, q, J 6.5, 1-H), (4.51) 4.51 [1H, sept, J 6.1, CH(CH₃)₂], (3.86) 3.86 (3H, s, OCH₃), 3.86–3.83 (1H, m overlapping with OCH₃, 3-H), 3.84 (3.83) (3H, s, OCH₃), 3.55 (3.54) (3H, s, OCH₃), (2.25) 2.23 (3H, s, ArCH₃), 2.12 (1H, dd, J 17.1 and 3.3, 4-H pseudo-equatorial), (2.06) (1H, d, J 17.1, 4-H pseudo-equatorial), (1.85) (1H, dd, J 17.1 and 7.3, 4-H pseudo-axial), 1.83 (1H, d, J 17.1, 4-H pseudo-axial), (1.48) 1.47 (3H, d, J 6.5, 1-CH₃), (1.36) 1.35 [6H, d, J 6.1, CH(CH₃)₂] and (1.00) 0.98 (3H, d, J 6.1, 3-CH₃); $\delta_{\rm C}$ (100.63 MHz; CDCl₃) 157.1 (157.1), 156.9 (156.8), 155.5, 154.3 and (154.3) (4 × ArC-O), 136.6 (136.5), 135.8 (135.6), 135.0 (134.9) and 128.5 (4 × ArC-C), 128.1 (2'-C), 127.1 (127.2), 121.3 (121.2) (120.3) and 120.0 (3 × ArC–C), (117.9), 117.8 (8'-C^a), 111.5 (111.4) (3'-C^a), 108.9 (108.9) (6'-C^a), 93.5 (93.5) (2 × 7-C), 72.6 (72.6) [2 × CH(CH₃)₂], 68.3 (68.3) (1-C), 62.8 (3-C), (56.5) 56.4, 56.2 (56.2) and 55.2 (3 × OCH₃), (34.6) 33.6 (4-C), 22.3 (22.2) (ArCH₃^b), 22.0 [CH(CH₃)₂^b], 21.7 (21.7) (1-CH₃) and 20.0 (20.0) (3-CH₃); m/z (EI) 450 (M⁺, 74%), 435 (18), 408 (13), 393 (100) and 196 (32).

When this experiment was conducted with bromoisochromane 12 rather than the iodide 10, a lower yield of biaryl 7 was obtained (24%) (diastereomeric ratio 60:40).

6,8-Diisopropoxy-5-(4-isopropoxy-5-methoxy-7-methyl-1-naphthyl)-*trans*-1,3-dimethylisochromane 8

2,6-Di-*tert*-butyl-4-methylphenol (0.054 g, 0.25 mmol), tribasic potassium phosphate (0.22 g, 0.11 mmol) and tetrakis-(triphenylphosphine)palladium(0) (0.081 g, 0.07 mmol, 20 mol%) were placed in a two-necked flask. The vessel was purged with argon and iodide **11** (0.142 g, 0.35 mmol) and boronic acid **9** (0.192 g, 0.70 mmol) were added sequentially in degassed DMF (2×1 cm³). The dropping funnel was washed with degassed DMF (0.5 cm³) and the reaction mixture was stirred and heated at 100–105 °C under argon for 94 h. During this time the reaction mixture colour changed from a dark green to a bright blue and finally became a dark purple. The reaction

mixture was cooled to ambient temperature, diluted with brine (10 cm³) and extracted with diethyl ether (4×10 cm³). The organic layers were then combined, dried (MgSO₄), and the solvent removed in vacuo. Column chromatography (5-20%) ethyl acetate-hexane) and subsequent PLC (5% ethyl acetatehexane) afforded the biaryl compound 8 as a yellow oil (0.026 g, 15% based on iodide 11, diastereomeric ratio 62:38) (Found: M⁺, 506.3020. $C_{32}H_{42}O_5$ requires M, 506.3032); $v_{max}(film)/cm^{-1}$ 2860m (C–H, OCH₂), 1584s (ArC=C) and 1274m (C–O–C); $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) (assignments in brackets are for the minor diastereoisomer) 7.09 (7.05) (1H, d, J 7.9, 2'-H), 6.90 (6.85) (1H, d, J 7.9, 3'-H), 6.78 (6.69) (1H, br s, 8'-Ha), 6.64 (6.63) (1H, d, J 1.3, 6'-H^a), 6.56 (1H, s, 7-H), 5.13 (5.12) (1H, d, J 6.6, 1-H), 4.65–4.53 [2H, m, $2 \times CH(CH_3)_2$], 4.03 [1H, sept, J 6.0, CH(CH₃)₂], 4.00–3.95 (1H, m, 3-H), 3.95 (3H, s, OCH₃), (2.32) 2.31 (3H, 2×s, 7'-CH₃), 2.23 (1H, dd, J 17.1 and 3.1, 4-H pseudo-equatorial), (2.19-2.14) (1H, m, 4-H, pseudoequatorial), 2.00-1.93 (1H, m, 4-H pseudo-axial), (1.57) 1.55 (3H, d, J 6.6, 1-CH₃) and 1.44–0.87 [21H, m, 3 × CH(CH₃)₂ and 3-CH₃]; $\delta_{\rm C}$ (100.63 MHz; CDCl₃) (156.8), 156.8, 155.3 (155.2) (153.9), 153.9 (153.4) and 153.3 $(4 \times ArC-O)$, 136.8 (136.6), 135.4 (135.2), 134.9 and (134.8) (3 × ArC-C), (128.7) 128.4 (2'-C), 127.9 (127.8), 123.6 (123.4) (122.0) and 121.8 (3 × ArC-C), 118.1 (118.0) (8'-C^a), 117.8 (ArC-C), 112.2 (112.1) (3'-C), (108.4) 108.4 (6'-C^a), 100.4 (100.3) (7-C), 72.9 (72.8), 72.3 (72.2) (69.6) and 69.4 $[3 \times CH(CH_3)_2]$, (68.6) 68.5 (1-C), 62.8 (3-C) (56.3), 56.2 (OCH₃), (34.9) 34.5 (4-C), 22.3-21.7 $[3 \times CH(CH_3)_2, ArCH_3, 1-CH_3]$ and (20.0) 20.0 (3-CH_3); *m*/*z* (EI) 506 (M⁺, 100%), 491 (52), 449 (64), 407 (33), 365 (27) and 183 (31).

4-(6,8-Dimethoxy-*trans*-1,3-dimethylisochroman-5-yl)-8methoxy-6-methyl-1-naphthol 44

Isopropyl-protected naphthol 7 (0.050 g, 0.11 mmol) was dissolved in dry dichloromethane (5 cm³) and the solution was cooled to -78 °C under an argon atmosphere. Boron trichloride (1 M; 0.33 cm³, 0.33 mmol) was added dropwise over a period of 5 min. The reaction mixture was stirred for 30 min, during which time it assumed a dark red colour. The mixture was then warmed to room temperature and methanol (2 cm³) was added. The solvent was removed under vacuum and the residue was purified by column chromatography (5-20% ethyl acetate-hexane) to afford the phenol 44 as a brown oil (0.023 g, 51%) (diastereoisomeric ratio 66:34) (Found: M⁺, 408.1944. $C_{25}H_{28}O_5$ requires *M*, 408.1937); $\nu_{max}(film)/cm^{-1}$ 3407br (OH), 1616s and 1589s (ArC=C) and 1257s, 1092m, 1079s, 1049m and 834m (C–O–C); $\delta_{\rm H}$ (200 MHz; CDCl₃; Me₄Si) (assignments in brackets are for the minor diastereoisomer) 9.40 (9.39) (1H, s, OH), 7.11 (7.06) (1H, d, J 7.9, 3-H), 6.87 (6.86) (1H, d, J 7.9, 2-H), 6.69-6.67 (1H, m, 5-H^a), 6.63-6.59 (1H, m, 7-H^a), 6.48 (1H, s, 7'-H), 5.17 (5.14) (1H, q, J 6.6, 1-H), 4.06 (3H, s, OCH₃), 4.05-3.80 (1H, m, overlapping with OCH₃, 3'-H), 3.92 (3H, s, OCH₃), 3.63 (3.62) (3H, s, OCH₃), (2.33) 2.32 (3H, d, J 0.7, ArCH₃), 2.24 (1H, dd, J 17.0 and 3.3, 4'-H pseudo-equatorial), (2.20) (1H, dd, J 17.0, 4'-H pseudo-equatorial), 1.98-1.84 (1H, m, 4'-H pseudo-axial), (1.56) 1.55 (3H, d, J 6.6, 1-CH₃) and (1.09) 1.07 (3H, d, J 6.1, 3-CH₃); $\delta_{\rm C}$ (50.32 MHz; CDCl₃) 156.2, 153.8 and 146.0 (3 × ArC-O), 136.0, 135.5, 135.0 and 130.0 (4 × ArC-C), 129.6 (3-C), 124.8, 120.0 and 118.5 $(3 \times ArC-C)$, 118.6 (5-C^a), (109.6), 109.4 (2-C^a), 106.3 (7-C^a), 93.4 (7'-C), 68.3 (1'-C), 62.8 (3'-C) (56.2), 56.2, 56.0 and 55.2 $(3 \times \text{OCH}_3)$, (34.6) 33.7 (4'-C), 22.2 (ArCH_3) , 21.7 $(1'-\text{CH}_3)$ and 19.9 (3'-CH₃); m/z (EI) 408 (M⁺, 54%), 393 (100) and 349 (7).

4',4"-Bis(6,8-dimethoxy-1,3-*trans*-dimethylisochroman-5-yl)-8',8"-dimethoxy-6',6"-dimethyl-2',2"-bi-(1'-naphthol) 6

(a) Dimerisation. Phenol 44 (0.015 g, 0.037 mmol) was dissolved in freshly dried chloroform (3 cm^3) containing triethylamine (0.2%). Silver(I) oxide (0.15 g, 10 mass equiv.) was added and the mixture was stirred under air for 9 days in the dark until all the starting material had been consumed with an extra portion of silver(I) oxide (0.10 g) added after 2 days. During this time the reaction mixture assumed a dark purple colour. The mixture was filtered through a short Celite plug and the solvent was removed *in vacuo*. The residue was purified by column chromatography (5% methanol–dichloromethane) to afford the intermediate *ene-dione* **45** (0.016 g, 100%) as a dark, purple semi-solid (Found: M⁺, 812.3551. C₅₀H₅₂O₁₀ requires *M*, 812.3561); *m/z* (EI) 812 (M⁺, 100%) and 391 (17).

(b) Reduction. *Method* 1.—10% Palladium on carbon (0.016 g, 1 mass equiv.) was added to a solution of the foregoing enedione 45 (0.016 g) in a dichloromethane (2.5 cm³)-methanol (2.5 cm³) mixture. The mixture was stirred at ambient temperature under hydrogen (1 atm) for 120 min. The catalyst was removed by filtration through a short Celite column in a Pasteur pipette. An additional amount of the dichloromethanemethanol mixture (50: 50; 10 cm³) was used to wash the Celite. The fractions were combined and the solvent removed in vacuo to afford a yellow, semi-solid compound (0.014 g) that went oily after a short period of time. The compound was further purified on C_{18} reversed-phase silica (methanol) to yield the *product* 6 as a semi-solid (0.012 g, 75% over two steps). Over a period of time the solid darkened to a deep purple colour (Found: M⁺, 814.3717. $C_{50}H_{54}O_{10}$ requires *M*, 814.3717); $v_{max}(film)/cm^{-1}$ 3372br (OH), 2830w (C-H, OCH₃) and 1240s and 1081s (C-O-C); $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) (assignments in brackets are for the minor diastereoisomer) (unprimed and triply primed locants refer to the isochromane ring carbons) 9.83-9.73 (2H, m, 1'-OH and 1"-OH), 7.35-7.30 (2H, m, 3'-H and 3"-H), 6.91-6.69 (2H, m, 7'-H and 7"-Ha), 6.65-6.60 (2H, m, 5'- and 5"-H), 6.47 (2H, s, 7- and 7"'-Ha), 5.17-5.14 (2H, m, 1- and 1"'-H), 4.03 (4.03) (6H, s, 6- and 6^{'''}-OCH₃^b), 3.97–3.86 (2H, m overlapping with OCH₃s, 3- and 3^{'''}-H), 3.90 (6H, s, 8- and 8^{'''}-OCH₃^b), 3.63 (6H, s, 8'- and 8"-OCH3), 2.45-2.30 (2H, m, 4- pseudoequatorial and 4"'-H pseudo-equatorial), 2.35, (2.34), (2.33), 2.32 (6H, 4 × s, 6'- and 6"-ArCH₃), 2.04–1.90 (2H, m, 4- pseudo-axial and 4"'-H pseudo-axial), 1.57-1.52 (6H, m, 1- and 1"'-CH3) and 1.12–1.08 (6H, m, 3- and 3"'-CH₃); $\delta_{\rm C}$ (100.63 MHz; CDCl₃) 157.0 (157.0) (8'- and 8"-C), 156.5, 156.5 (6-C and 6"'-C), 155.4 (155.4) (8- and 8"'-C), 150.6 (150.6) (1'- and 1"-C), 135.2 (6'and 6"-C^c), 135.1 (4a'- and 4a"-C^c), (135.0) 134.9 (3'- and 3"-C), 132.8 (132.7) (4a- and 4a"'-C), (124.1) 124.0 (4'- and 4"-C), (120.3) 120.2 (5- and 5"'-Cd), 120.0 (120.0) (5'- and 5"-Cd), 118.6 (2'- and 2"-Cd), 118.4 (8a'- and 8a"-C), (113.6) 113.5 (8aand 8a^{'''}-C), 106.3 (7'- and 7"-C), (93.6) 93.4 (7- and 7"'-C), 68.3 (68.3) (1- and 1"'-C), (62.9) 62.8 (3- and 3"'-C), 56.2 (56.2) (6and 6"'-OCH₃°), 56.1 (56.0) (8- and 8"'-OCH₃°), 55.2 (8'- and 8"-OCH₃), 33.7 (4- and 4"'-C), 22.1 (6' and 6"-CH₃), 21.7 (3- and 3"'-CH₃) and 20.0 (1- and 1"'-CH₃); m/z (EI) 816.3782 (18%) $(M + 2H)^+$, 815.3748 (57) $(M + H)^+$, 814 $(M^+$, 100) and 392 (22); m/z (ES) 853.3 (50%) (M + K)⁺, 837.5 (100) (M + Na)⁺, $815.5 (76) (M + H)^+$, 771.5 (48) and 407.3 (20).

Method 2. The foregoing ene-dione **45** (16 mg, 0.019 mmol) was dissolved in methanol (25 cm³) and irradiated (GEC Alsthom 1500 W 230 V Visible Light) for 4 min with stirring of the solution during which time the reaction mixture's colour changed from a dark purple to a clear yellow. The solvent was removed *in vacuo* and the residue was purified by column chromatography (5–30% ethyl acetate–hexane) to afford the product **6** as a yellow oil (0.007 g, 46%). The product **6** had the same spectroscopic properties as the product obtained from Method 1.

Acknowledgements

This work was supported by the Foundation for Research Development (FRD) and the University of the Witwatersrand.

W. A. L. v. O. would like to thank AECI for additional financial support. We thank Ms C. F. Broli for preparing some of the starting materials. Mrs S. Heiss of this University and Dr P. Boshoff (Cape Technikon) are thanked for recording NMR spectra and mass spectra, respectively.

References and notes

- Reviews: (a) G. Bringmann and F. Pokorny, in *The Alkaloids. Chemistry and Pharmacology*, ed. G. A. Cordell, Academic Press, San Diego, 1995, Vol. 46, ch. 4, pp. 127–271; (b) G. Bringmann, R. Walter and R. Weirich, in *Houben-Weyl: Methods of Organic Chemistry*, ed. G. Helmchen, R. W. Hoffmann, J. Mulzer and E. Schaumann, Georg Thieme Verlag, Stuttgart and New York, 1995, Vol. E21a, pp. 567–586.
- 2 (a) J. B. McMahon, M. J. Currens, R. J. Gulakowski, R. W. Buckheit, Jr., C. Lackman-Smith, Y. F. Hallock and M. R. Boyd, *Antimicrob. Agents Chemother.*, 1995, **39**, 484; (b) J. G. Supko and L. Malspeis, *Antimicrob. Agents Chemother.*, 1995, **39**, 9; (c) M. Boyd, Y. F. Hallock, J. H. Cardellina II, K. P. Manfredi, J. W. Blunt, J. B. McMahon, R. W. Buckheit, Jr., G. Bringmann, M. Schäffer, G. M. Cragg, D. W. Thomas and J. G. Jato, *J. Med. Chem.*, 1994, **37**, 1740; (d) K. P. Manfredi, J. W. Blunt, J. H. Cardellina II, J. B. McMahon, L. L. Pannell, G. M. Cragg and M. R. Boyd, *J. Med. Chem.*, 1991, **34**, 3402.
- 3 Some recent syntheses: (a) T. R. Hoye, M. Chen, B. Hoang, L. Mi and O. P. Priest, J. Org. Chem., 1999, 64, 7184; (b) T. Watanabe and M. Uemura, Chem. Commun., 1998, 871; (c) G. Bringmann, R. Götz, P. A. Keller, R. Walter, M. R. Boyd, F. Lang, A. Garcia, J. J. Walsh, I. Tellitu, K. V. Bhaskar and T. R. Kelly, *J. Org. Chem.*, 1998, 63, 1090; (d) P. D. Hobbs, V. Upender and M. I. Dawson, Synlett, 1997, 965; (e) G. Bringmann, R. Götz, S. Harmsen, J. Holenz and R. Walter, Liebigs Ann., 1996, 2045; (f) T. R. Hoye and M. Chen, J. Org. Chem., 1996, 61, 7940; (g) P. Chau, I. R. Czuba, M. A. Rizzacasa, G. Bringmann, K.-P. Gulden and M. Schäffer, J. Org. Chem., 1996, 61, 7101; (h) V. Upender, D. J. Pollart, J. Liu, P. D. Hobbs, C. Olsen, W.-R. Chao, B. Bowden, J. L. Crase, D. W. Thomas, A. Pandey, J. A. Lawson and M. I. Dawson, J. Heterocycl. Chem., 1996, 33, 1371; (i) T. R. Hoye and L. Mi, Tetrahedron Lett., 1996, 37, 3097; (j) P. D. Hobbs, V. Upender, J. Liu, D. J. Pollart, D. W. Thomas and M. I. Dawson, Chem. Commun., 1996, 923; (k) A. V. R. Rao, M. K. Gurjar, D. V. Ramana and A. K. Chheda, *Heterocycles*, 1996, **43**, 1; (*l*) T. Watanabe, K. Kamikawa and M. Uemura, *Tetrahedron Lett.*, 1995, 36, 6695; (m) B. N. Leighton and M. A. Rizzacasa, J. Org. Chem., 1995, 60, 5702 and references therein; (n) G. Bringmann, S. Harmsen, J. Holenz, T. Geuder, R. Götz, P. A. Keller, R. Walter, Y. F. Hallock, J. H. Cardellina II and M. R. Boyd, Tetrahedron, 1994, 50, 9643; (o) T. R. Kelly, A. Garcia, F. Lang, J. J. Walsh, K. V. Bhaskar, M. R. Boyd, R. Götz, P. A. Keller, R. Walter and G. Bringmann, *Tetrahedron Lett.*, 1994, **35**, 7621; (*p*) G. Bringmann, R. Götz, P. A. Keller, R. Walter, P. Henschel, M. Schäffer, M. Stäblein, T. R. Kelly and M. R. Boyd, Heterocycles, 1994, 39, 503; (q) T. R. Hoye, M. Chen, L. Mi and O. P. Priest, Tetrahedron Lett., 1994, 35, 8747; (r) G. Bringmann, R. Weirich, H. Reuscher, J. R. Jansen, L. Kinzinger and T. Ortmann, Liebigs Ann. Chem., 1993, 877.
- 4 (a) T. Kametani, in *The Total Synthesis of Natural Products*, ed. J. ApSimon, John Wiley & Sons, Inc., New York, 1977, Vol. 3, pp. 1–272; (b) M. D. Rozwadowska, *Heterocycles*, 1994, **39**, 903.
- 5 T. R. Hoye and L. Mi, J. Org. Chem., 1997, 62, 8586.
- 6 (a) General reviews: (i) S. P. Stanforth, Tetrahedron, 1998, 54, 263;
 (ii) G. Bringmann, R. Walter and R. Weirich, Angew. Chem., Int. Ed. Engl., 1990, 29, 977; (b) Suzuki coupling reviews: (i) A. Suzuki, Acc. Chem. Res., 1982, 15, 178; (ii) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457; (iii) A. Suzuki, in Metal-Catalyzed Cross-Coupling Reactions, ed. F. Diederich and P. J. Stang, Wiley-VCH, Weinheim, 1998, pp. 49–97; (iv) A. Suzuki, J. Organomet. Chem., 1999, 576, 147.
- 7 Y. F. Hallock, K. P. Manfredi, J. W. Blunt, J. H. Cardellina II, M. Schäffer, K.-P. Gulden, G. Bringmann, A. Y. Lee, J. Clardy, G. François and M. R. Boyd, *J. Org. Chem.*, 1994, **59**, 6349.
- 8 Announcement in J. Nat. Prod., 1992, 55, 1018.
- 9 (a) G. Bringmann, M. Wenzel, T. R. Kelly, M. R. Boyd, R. J. Gulakowski and R. Kaminsky, *Tetrahedron*, 1999, **55**, 1731 and references therein; (b) H. Zhang, D. E. Zembower and Z. Chen, *Bioorg. Med. Chem. Lett.*, 1997, **7**, 2687; (c) ref. 3h.
- 10 C. B. de Koning, J. P. Michael and W. A. L. van Otterlo, *Tetrahedron Lett.*, 1999, 40, 3037.

- 11 C. F. Carvallio, A. V. Russo and M. V. Sargent, Aust. J. Chem., 1985, 38, 777.
- 12 A. H. Sommers, R. J. Michaels, Jr. and A. W. Weston, J. Am. Chem. Soc., 1952, 74, 5546.
- 13 R. I. Meltzer and J. Doczi, J. Am. Chem. Soc., 1950, 72, 4986.
- 14 (a) J. H. Gardner and J. R. Stevens, J. Am. Chem. Soc., 1947, 69, 3086; (b) H. H. Hodgson and H. Clay, J. Chem. Soc., 1932, 869.
- 15 (a) E. J. Bourne, M. Stacey, J. C. Tatlow and J. M. Tedder, J. Chem. Soc., 1951, 718; (b) R. G. F. Giles, S. C. Yorke, I. R. Green and V. I. Hugo, J. Chem. Soc., Chem. Commun., 1984, 554.
- 16 R. G. F. Giles, I. R. Green, V. I. Hugo and P. R. K. Mitchell, J. Chem. Soc., Chem. Commun., 1983, 51.
- 17 C. B. de Koning, R. G. F. Giles and I. R. Green, J. Chem. Soc., Perkin Trans. 1, 1991, 2743.
- 18 2-Bromo-5-isopropoxybenzaldehyde was prepared by bromination of 3-hydroxybenzaldehyde (R. Pschorr, *Justus Liebig's Ann. Chem.*, 1912, **391**, 23) followed by protection of the phenol by reaction with isopropyl bromide and potassium carbonate as also described in refs. 3*e* and 3*p*.
- 19 E. Brenna, C. Fuganti and S. Serra, Tetrahedron, 1998, 54, 1585.
- 20 (a) K. Smith, Organometallic Compounds of Boron, Chapman & Hall, London, New York, 1985, pp. 94 and 118; (b) W. König and W. Scharrnbeck, J. Prakt. Chem., 1930, 128, 153.
 21 J. K. Stille, A. M. Echavarren, R. M. Williams, J. A. Hendrix,
- 21 J. K. Stille, A. M. Echavarren, R. M. Williams, J. A. Hendrix, B. A. Merrill and L. E. Overman, *Org. Synth.*, 1993, **71**, 97.

- 22 A. M. Gilbert and W. D. Wulff, J. Am. Chem. Soc., 1994, **116**, 7449. 23 (a) G. W. Kenner and N. R. Williams, J. Chem. Soc., 1955, 522;
- (b) R. A. Rossi and J. F. Bunnett, J. Org. Chem., 1973, 38, 2314.
- 24 The results of the single X-ray crystal study confirmed the structure. Empirical formula $C_{17}H_{27}O_7P$; monoclinic; C_2/c ; a = 19.798, b = 11.232, c = 19.333 Å. These results will be reported in full elsewhere: L. Cook, C. B. de Koning, J. P. Michael and W. A. L. van Otterlo, manuscript in preparation.
- 25 W.-W. Sy, Tetrahedron Lett., 1993, 34, 6223.
- 26 (a) C. Coudret, Synth. Commun., 1996, 26, 3543 and personal communication; (b) M. H. Todd, S. Balasubramanian and C. Abell, *Tetrahedron Lett.*, 1997, 38, 6781.
- 27 (a) M. Murata, S. Watanabe and Y. Masuda, J. Org. Chem., 1997,
 62, 6458; (b) B. Schilling and D. E. Kaufmann, Eur. J. Org. Chem., 1998, 701.
- 28 T. Watanabe, N. Miyaura and A. Suzuki, Synlett, 1992, 207.
- 29 (a) C. Coudret and V. Mazenc, *Tetrahedron Lett.*, 1997, 38, 5293;
 (b) personal communication, B. H. Lipshutz, University of California, Santa Barbara.
- 30 T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi and K. Hirotsu, J. Am. Chem. Soc., 1984, 106, 158.

Paper a908367g