Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and PKCθ inhibitory activity of a series of 5-vinyl phenyl sulfonamide-3-pyridinecarbonitriles

Jaechul Shim^{a,*}, Clark Eid^a, Julie Lee^b, Erica Liu^b, Divya Chaudhary^b, Diane H. Boschelli^a

^a Chemical Sciences, Wyeth Research, 401 N. Middletown Road, Pearl River, NY 10965, USA
 ^b Inflammation, Wyeth Research, 200 Cambridge Park Drive, Cambridge, MA 02140, USA

ARTICLE INFO

Article history: Received 15 September 2009 Revised 5 October 2009 Accepted 7 October 2009 Available online 13 October 2009

Keywords: Kinase PKCθ 3-Pyridinecarbonitrile

ABSTRACT

A series of 5-vinyl phenyl sulfonamide-3-pyridinecarbonitriles were prepared and evaluated as PKC θ inhibitors. Optimization resulted in the identification of compound **15** with an IC₅₀ value 0.44 nM for the inhibition of PKC θ with 150-fold selectivity over PKC δ .

© 2009 Elsevier Ltd. All rights reserved.

The protein kinase C (PKC) family of serine–threonine kinases share sequence homology but vary in their activation requirements, expression and regulation.¹ Conventional PKCs (α , β , and γ) require calcium and diacylglycerol as secondary messengers, the novel PKCs (δ , ε , η , and θ) do not require calcium, and the atypical isoforms (ζ and λ) require neither calcium nor diacylglycerol.² PKC θ was first characterized in 1993 and is predominantly expressed in T cells.³ Studies using PKC θ knock-out (KO) mice have established the role of this kinase in diseases such as multiple sclerosis, arthritis, asthma, inflammatory bowel disease and organ transplantation.⁴ PKC θ displays particularly high homology to PKC δ . PKC δ deficiency in mice led to a hyperproliferation of B cells and overproduction of inflammatory cytokines.⁵ Therefore we used PKC δ as the primary counter assay in our inflammation project.

Several chemical series have been shown to be ATP-competitive inhibitors of PKC θ including 2,4-diamino pyrimidines,⁶ thieno[2,3-*b*]pyridinecarbonitriles⁷⁻⁹ and 3-pyridinecarbonitriles.¹⁰⁻¹⁵ We

earlier reported that the 5-phenyl-3-pyridine carbonitrile 1a had an IC_{50} value of 7.4 nM for the inhibition of PKC 12

Insertion of a vinyl group at C-5 to provide **1b** increased the PKC θ inhibitory activity (IC₅₀ = 3.6 nM) and also increased the selectivity for PKC θ over PKC δ from sevenfold to 11-fold (Table 1).¹⁵ This increased potency and selectivity of **1b** compared to **1a** prompted a study of replacing the ethoxy tether between the phenyl ring and the amine with additional groups. This Letter focuses on sulfon-amide replacements for the ethoxy moiety that would have the potential of forming multiple hydrogen bonding interactions.¹⁶

The desired sulfonamides were prepared by Heck coupling of the corresponding bromobenzenesulfonamides with the 5-vinyl-3-pyridinecarbonitrile $2a^{15}$ (Scheme 1). The bromobenzenesulfonamides were prepared from the corresponding sulfonyl chlorides and amines. The *p*-*N*-Methylpiperazinesulfonamide analog **3** inhibited PKC θ with an IC₅₀ of 23 nM with 6.1-fold selectivity over PKC δ Table 1. The pyrrolidine and piperidine analogs **4** and **5** had

^{*} Corresponding author. Tel.: +1 845 602 1681; fax: +1 845 602 5561. *E-mail address*: shimj@wyeth.com (J. Shim).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \circledcirc 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2009.10.031

Table 1

 $\mathsf{PKC}\vartheta$ and $\mathsf{PKC}\delta$ inhibitory activity of 5-vinyl phenyl sulfonamide-3-pyridinecarbonitriles

Compd	NR'R"	PKC0 IC ₅₀ ª, nM	PKCδ IC ₅₀ ª, nM	δ/θ
1a		7.4	51	6.9
1b		3.6	41	11
3	p-N-Methylpiperazine	23	140	6.1
4	<i>p</i> -Pyrrolidine	6.0	450	75
5	p-Piperidine	12	20,000	1700
6	p-NH ₂	5.4	114	21
7	p-NMe ₂	11	1,300	120
8	p-NEt ₂	8.7	3,300	380
9	$p-N(n-Pr)_2$	350	51,000	150
10	p-N(iso-Pr) ₂	410	9,400	23
11	p-NH(sec-Bu)	121	NT ^b	-
12	<i>m</i> -Pyrrolidine	6.0	120	20
13	<i>m</i> -Piperidine	3.0	390	130
14	m-N-Methylpiperazine	0.49	18	37

Assay protocols are described in Ref. 10.

^a Values are the mean of at least two determinations.

^b NT = not tested.

Scheme 1. Reagents and conditions: (a) R'R''NH, CH_2Cl_2 , 23 °C (b) $P(o-tol)_3$, $Pd(OAc)_2$, NEt_3 , DMF, 100 °C.

improved PKC θ activity and selectivity over PKC δ , with **5** exhibiting an exceptional 1700-fold selectivity. In the case of acyclic sulfonamides (compounds **6–11**), the activity fell off sharply with the increasing size of the amine. The best profile was seen with the diethylamino analog **8** which had an IC₅₀ value of 8.7 nM for the inhibition of PKC θ with 380-fold selectivity over PKC δ . It was notable that the acidic unsubstituted sulfonamide **6** showed similar potency to **3** which contains a basic amine as polar group.

When the substitution pattern was changed from *para* to *meta* with cyclic amines, a general improvement in PKC θ activity resulted with a concomitant increase in PKC δ activity. The *m*-*N*-methylpiperazine analog, **14**, was particularly active with an IC₅₀ value of 0.49 nM against PKC θ and 37-fold selectivity over PKC δ .

Compounds in Table 1 showed half lives of less than 10 min in rat liver microsome stability assays. Metabolism studies of **14** identified a major site of oxidation to be the 6-position of the 3-pyridinecarbonitrile core.

In order to block the site of metabolism, a 6-methyl moiety was introduced by employing compound $2b^{18}$ (R = Me) in the Heck coupling with the bromobenzenesulfonamides. The SAR of the 6-methyl analogs (Table 2) generally corresponded to that of the unsubstituted derivatives. In all cases, except **20**, the selectivity of PKC θ over PKC δ was greatly enhanced. Compound **15** inhibited

Table 2

 $PKC\theta$ and $PKC\delta$ inhibitory activity of 5-vinyl phenyl sulfonamide-6-methyl-3-pyridine-carbonitriles

Compd	NR'R″	PKC0 IC ₅₀ ^a , nM	PKCδ IC ₅₀ ^a , nM	δ/θ
15	m-N-Methylpiperazine	0.44	65	150
16	<i>m</i> -Pyrrolidine	2.4	850	350
17	<i>m</i> -Piperidine	4.8	2,000	420
18	p-N-Methylpiperazine	9.3	4,400	470
19	<i>p</i> -Pyrrolidine	21	7,100	340
20	p-Piperidine	68	21,000	310

^a Values are the mean of at least two determinations.

PKC θ with an IC₅₀ value of 0.44 nM with 150-fold selectivity over PKC δ . Unfortunately, the microsomal half lives were not improved. Compound **15** showed half lives of less than 30 min in mouse, rat, and human microsomal stability assays.

Another variation on the existing template was carried out by inserting a methylene unit between the sulfonamide and aryl moieties. Bromobenzyl bromides were refluxed with sodium sulfite and a catalytic amount of *N*,*N*,*N*,*N*-tetrabutylammonium iodide. Phosphorus pentachloride in phosphorus oxychloride was used to form the sulfonyl chlorides which were converted to the corresponding sulfonamides.¹⁷ The sulfonamides were coupled with **2a** and **2b** via a Heck reaction (see Scheme 2).

The effect of inserting a methylene between the phenyl and 4-methylpiperaziny-1-ylsulfonyl groups is shown in Table 3. In general, the activity against PKC θ and the selectivity against PKC δ

Scheme 2. Reagents and conditions: (a) Na₂SO₃, (*n*-Bu)₄NI, water, reflux (b) PCI₅, POCI₃, 120 °C; R'R"NH, CH₂CI₂ (c) 2a or 2b, P(*o*-tol)₃, Pd(OAC)₂, NEt₃, DMF, 100 °C.

Table 3

 $\mathsf{PKC}\vartheta$ and $\mathsf{PKC}\vartheta$ inhibitory activity of 5-vinyl benzyl sulfonamide-3-pyridinecarbonitriles

Compd	R	<i>m/p-</i>	PKC0 IC ₅₀ ª, nM	PKCõ IC ₅₀ ª, nM	δ/θ
21 22 23 24	H H Me Me	p m p m	7.9 6.2 4.3 4.4	320 94 110 97	41 15 26 22

^a Values are the mean of at least two determinations.

Table 4Kinase selectivity of 14 and 15

Kinase	IC_{50}^{a} (nM) of 14	IC_{50}^{a} (nM) of 15
ΡΚϹε	1.6	36
РКСη	100	490
ΡΚCβ	41,000	>50,000
ΡΚϹζ	>100,000	>100,000
PKA	130	1300
НСК	550	>50,000
LYN A	290	>50,000
SRC	220	>50,000
FYN	140	>50,000
GCK	1,300	>50,000
VEGFR2	2,400	>50,000
CDK1/cyclinB	>50,000	>50,000
CDK2/cyclinA	44,000	>50,000
Aurora B	>50,000	>50,000
ROCK1	>50,000	>50,000
CK1γ1	>50,000	>50,000
MK2	>50,000	>50,000
Ρ38α	>50,000	>50,000
ERK2	>50,000	>50,000
CHK1	>50,000	>50,000
RSK1	>50,000	>50,000
PDGFRa	>50,000	>50,000

^a Values are the mean of at least two determinations.

were both diminished. Methylene insertion did not change the pattern of low microsomal stability.

Table 4 illustrates the kinase selectivity profile for the two most active compounds **14** and **15**. While compound **14** was found to exhibit a high affinity for PKC ε , another novel PKC, both were very selective (more than 100-fold) over PKC η a novel PKC, PKC β a conventional PKC and PKC ζ an atypical PKC. Enhanced selectivity across the board was exhibited for the C-6 methyl analog **15**.

In summary, a series of 3-pyridinecarbonitriles containing a C-5 vinyl phenyl sulfonamide group were found to be potent and selective inhibitors of PKC θ . Small changes in either the amino group, the position of the sulfonamide on the phenyl ring or the presence of a methyl group at C-6 affected activity and selectivity. The source of the selectivity observed with these analogs is unclear given our current structural biology knowledge. There is very high identity in the ATP binding sites of PKC θ and PKC δ . The amino acid residues relatively close to the binding cleft that vary include the Tyr460 of PKC θ that corresponds to a Phe in PKC δ and the Ile510 of PKC θ that corresponds to a Val in PKC δ , neither of which makes an apparent direct contact with the inhibitors.

Acknowledgments

We thank the Wyeth Chemical Technologies department for compound characterization and the microsome stability results, Drs. James Atherton and Jack Wang for metabolite ID of **14**, Drs. Natasja Brooijmans and Jack Bikker for molecular modeling, Screening Sciences for kinase profiling and Dr. Tarek Mansour for his support.

References and notes

- 1. Spitaler, M.; Cantrell, D. A. Nat. Immunol. 2004, 5, 785.
- 2. Hug, H.; Sarre, T. F. Biochem. J. 1993, 291, 329.
- Berg-Brown, N. N.; Gronski, M. A.; Jones, R. G.; Elford, A. R.; Deenick, E. K.; Odermatt, B.; Littmann, D. R.; Ohashi, P. S. J. Exp. Med. 2004, 199, 743.
- Baier, G.; Wagner, J. Curr. Opin. Cell Biol. 2009, 21, 262.
 Miyamoto, A.; Nakayama, K.; Imaki, H.; Hirose, S.; Jiang, Y.; Abe, M.; Tsukiyama, The second secon
- T.; Nagahama, H.; Ohno, S.; Hatakeyama, S.; Nakayama, K. I. Nature 2002, 416, 865.
 Cywin, C. L.; Dahmann, G.; Prokopowicz, A. S.; Young, E. R. R.; Magolda, R. L.;
- 6. Cywin, C. L., Daimani, G., Piokopowicz, A. S., Toung, E. K. K., Magolda, K. L., Cardozo, M. G.; Cogan, D. A.; DiSalvo, D.; Ginn, J. D.; Kashem, M. A.; Wolak, J. P.; Homon, C. A.; Farrell, T. M.; Grbic, H.; Hu, H.; Kaplita, P. V.; Liu, L. H.; Spero, D. M.; Jeanfavre, D. D.; O'Shea, K. M.; White, D. M.; Woska, J. R.; Brown, M. L. Bioorg. Med. Chem. Lett. 2007, 17, 225.
- Boschelli, D. H.; Wu, B.; Barrios Sosa, A. C.; Chen, J.; Asselin, M.; Cole, D. C.; Lee, J.; Yang, X.; Chaudhary, D. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 2850.
- Tumey, L. N.; Boschelli, D. H.; Lee, J.; Chaudhary, D. Bioorg. Med. Chem. Lett. 2008, 18, 4420.
- Wu, B.; Boschelli, D. H.; Lee, J.; Yang, X.; Chaudhary, D. Bioorg. Med. Chem. Lett. 2009, 19, 766.
- Cole, D. C.; Asselin, M.; Brennan, A.; Czerwinski, R.; Ellingboe, J. W.; Fitz, L.; Greco, R.; Huang, X.; Joseph-McCarthy, D.; Kelly, M. F.; Kirisits, M.; Lee, J.; Li, Y.; Morgan, P.; Stock, J. R.; Tsao, D. H. H.; Wissner, A.; Yang, X.; Chaudhary, D. J. Med. Chem. 2008, 51, 5958.
- Dushin, R. G.; Nittoli, T.; Ingalls, C.; Boschelli, D. H.; Cole, D. C.; Wissner, A.; Lee, J.; Yang, X.; Morgan, P.; Brennan, A.; Chaudhary, D. *Bioorg. Med. Chem. Lett.* 2009, 19, 2461.
- Boschelli, D. H.; Wang, D.; Prashad, A. S.; Subrath, J.; Wu, B.; Niu, C.; Lee, J.; Yang, X.; Brennan, A.; Chaudhary, D. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 3623.
- Subrath, J.; Wang, D.; Wu, B.; Niu, C.; Boschelli, D. H.; Lee, J.; Yang, X.; Brennan, A.; Chaudhary, D. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 5423.
- Prashad, A. S.; Wang, D.; Subrath, J.; Wu, B.; Lin, M.; Zhang, M.-Y.; Kagan, N.; Lee, J.; Yang, X.; Brennan, A.; Chaudhary, D.; Xu, X.; Leung, J.; Wang, J.; Boschelli, D. H. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 5799.
- Niu, C.; Boschelii, D. H.; Tumey, N.; Bhagirath, N.; Subrath, J.; Shim, J.; Wang, Y.; Wu, B.; Eid, C.; Lee, J.; Yang, X.; Brennan, A.; Chaudhary, D. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 5829.
- 16. Adsmond, D. A.; Grant, D. J. W. J. Pharm. Sci. 2001, 90, 2058.
- 17. Walker, G.; Rana, R.; Kishore, K. Synth. Commun. 2003, 33, 627.
- Tumey, L. N.; Boschelli, D. H.; Bhagirath, N.; Chen, J.J.; Floyd, M. B.; Li, Z.; Niu, C.; Shim, J.; Wang, Y.; Wang, Y. D.; Wu, B.; Eid, C. N. PCT Int. Appl. 2009, WO 2009076602.