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A convergent total synthesis of cytotoxic marine macrolide callipeltoside A is described. The synthesis highlights two stereoselective [4 +

2] annulations for the preparation of associated pyran rings.

Callipeltoside A is the first member of a family of novel
glycosidic macrolides isolated in 1996 from the shallow Scheme 1. Retrosynthetic Analysis of Callipeltoside A
water lithistid spongeCallipelta sp., collected in the waters

off the east coast of New Caledori&. is found to exhibit
moderate cytotoxic activity against NSCLC-N6 and P388

cell lines? Intriguing structural features of callipeltoside A Me.,
include a hydroxylated hemiacetal pyran ring embedded in we, 7!
a 14-membered macrolactone, which is connectedrians
chlorocyclopropane via a conjugated dienyne linkage. At-
tached to the macrolactone is a unique deoxyamino sugar calipettoside A, 1
callipeltose (Scheme 1). The initial structure assignment of
callipeltoside A disclosed the relative stereochemical rela- “/:51

tionship of callipeltose to the macrolactone; however, the Me< oiscoms
relative stereochemistry of the chlorocyclopropyl side chain o : H6

to the rest of the molecule and the absolute stereochemistry OBn

of callipeltoside A remained unresolved. The novel structure
of callipeltoside A, together with its stereochemical ambi-
guities and its intriguing biological activity, has prompted total syntheses reported by Tr§sand Evan® established

strated in Scheme 3In this communication, we report a
(1) Zampella, A.; D’'Auria, M. V.; Minale, L.; Debitus, C.; Roussakis, i i i
C. 3. Am. Chem. S0a996 118 1108511088, convergent total synthesis of callipeltoside A based on the
(2) For synthetic efforts towards callipeltoside aglycon, see: (a) Hoye,
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use of chiral organosilane methodology developed in our
laboratories.

Our retrosynthetic analysis of callipeltoside A led to three
subunits3—5. The tetrahydropyran-containing suburdtand
4 were thought to be obtained from dihydropyrans that were
available from formal [4+ 2] annulations of chiral orga-
nosilanes recently reported from our laboratoffgdn the
synthetic direction, union of and5 via a Julia-Kocienski
olefinatior? precedes macrocyclization. It was envisioned that
the anti stereochemical relationship at the C8 and C8 in
would be established utilizing a chelation-controlled anti
crotylation, and thetrans-chlorocyclopropane could be
accessed by an asymmetric Simmeosnith reaction.

Synthesis of intermediaté was initiated by an anti-
selective condensation of the-benzyloxyacetaldehyd8
with silane ©§-9. In the presence of Snglthe reaction
provided tetrahydrofuranl0 in 87% vyield (randcis
>30:1)8 Upon treatment with Sbg| tetrahydrofuran10
underwent B-type elimination, providing an anti homoallylic
alcohol. This intermediate was converted to aldehyt@ith
a two-step sequence in 92% vyield.

Under previously optimized conditiodthe annulation
of 11 and organosilan&2 provided dihydropyra® with high
diastereoselectivity; however, a significant amount of un-
desired dihydropyrai3 was also obtained. We suspected
that the generation df3 was associated with thgelimina-
tion of aldehydel 1. Gratifyingly, the use of TfOH afforded
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6 in 85% yield as a single diastereomer. Despite our pre- reaction of allylic alcoholl7. The use of Charette’sS(S)-
vious success on the stereoselective epoxidation of a similargioxoborolane ligand provided the cyclopropyl alcoid

pyran system giving the epoxidss to the adjacent methyl
group! epoxidation of dihydropyra under various con-
ditions resulted in low selectivities that were circumvented
by an oxidation/hydride reduction sequence. Epoxidation
using mCPBA was followed by epoxide ring opening
(K,COy/MeOH), and oxidation of the resulting alcohol (PDC)
afforded enond4. The C5 stereocenter was installed by 1,2-
reduction of the enone under Luche’s conditidifsotection

of the emerging alcohol as a TBS ether was followed by
one-carbon homologation of the methyl esié In that
regard, an ArndtEistert reaction provided the homologated
methyl este 6in good yield. Debenzylation (#Pd—C) and
oxidation of the primary alcohol (PDC) completed the
preparation of aldehydé The synthesis of suburbtutilizes

a stereoselective HorneEmmons olefination and a Stille
coupling reaction to install theE(E)-dienyne moiety. The
construction ob began with an asymmetric SimmenSmith

(4) (@) Huang, H.; Panek, J. 3. Am. Chem. So200Q 122 9836-
9837. (b) We have reported the synthesis of methgéllipeltose: Huang,
H.; Panek, J. SOrg. Lett. 2003 5, 1991-1993. For other syntheses of
callipeltose, see: (c) Smith, G. R.; Finley, J. J., IV; Giuliano, R. M.
Carbohydr. Res1998 308 223-237. (d) Gurjar, M. K.; Reddy, R.
Carbohydrate Lett1998 3, 169-172. (e) Pihko, A. J.; Nicolaou, K. C;
Koskinen, A. M. PTetrahedron: Asymmet001, 12, 937-942. (f) Evans,
D. A;; Hu, E.; Tedrow, J. SOrg. Lett 2001, 3, 3133-3136. (g) Trost, B.
M.; Gunzner, J. L; Dirat, O.; Rhee, Y. HJ. Am. Chem. So2002 124
10396-10415.

(5) Blakemore, P. R.; Cole, W. J.; Kociensky, P. J.; Morley SAnlett
1998 26-28.

(6) Panek, J. S.; Yang, Ml. Am. Chem. Sod 991 26, 9868-9870.

(7) Huang, H.; Panek, J. ®rg. Lett.2001, 3, 1693-1696.

(8) Gemal, A. L.; Luche, J. LJ. Am. Chem. Sod 981, 103 5454
5459.

4384

in 97% ee’ Oxidation to the aldehyde followed by dibro-
moolefination afforded vinyldibromidd9. Stille coupling
betweerl9 and vinylstannan20 under conditions developed
by Shen and Wang gave enyB&in moderate yield® The
allylic alcohol was converted to phosphonagin a straight-
forward manner. The HornelEmmons reaction between
phosphonate22 and aldehyde23 resulted in exclusive
(E)-olefin formation providing E,E)-dienyne 24 in 89%
yield.** Deprotection of TBDPS silyl ether followed by a
Mitsunobu reaction and oxidation of the intermediate sulfide
gave sulfone?5. The preparation 06 was completed after
protecting group manipulation. With the synthesis of subunits
4 and5 completed, conditions for their union were investi-
gated. It was found that sulfong was a very sensitive
substrate in the JuliaKociensky olefination. Reliable condi-
tions were developed using THF as the solvent and LIHMDS
as the base. The use of a more polar solvent (DME, DMF)
and other bases (KHMDS, NaHMDS) led only to the de-
composition of the sulfone. After deprotection of the eth-
oxyethyl ether (PPTS, MeOH), the alcol&8 was obtained

in 20% overall yield. After hydrolysis of the methyl ester to
the seco acid, the crucial macrolactonization was undertaken
using Yamaguchi conditiori.The reaction provided a 1:1
mixture of dihydropyran containing lacton27 and the

(9) (a) Charette A. B.; Juteau, H. Am. Chem. S04.994 116, 2651~
2652. (b) Charette A. B.; Prescaott, S.; Brochu JCOrg. Chem1995 60,
1081-1083.

(10) Shen, W.; Wang, LJ. Org. Chem1999 64, 8873-8879.

(11) Nicolaou, K. C.; Zipkin, R. E.; Dolle, R. E.; Harris B. . Am.
Chem. Soc1984 106, 3548-3551.
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desired lacton@8in 90% yield. Gratifyingly, the dihydro-
pyran 27 was converted to lactol in quantitative yield by
treating with a catalytic amount of triphenylphosphine
hydrogen bromide and wat&t The aglycon was obtained
in 85% vyield after deprotecting TBS silyl ether. Lactdzt
was also transformed to aglyc@y a two-step sequence:
TBS deprotection (TBAF) and hydrolysis of the methyl lactol
ether (cat. PPTS, #/CHCN). The total synthesis of
callipeltoside A was completed by a Schmidt glycosidatigh,
followed by deprotection (TBAF/AcOH) of N-TBS protect-
ing group. The analytical data were fully consistent in all ) ) , ,
aspects with those reported for natural callipeltoside A. In  SUPporting Information Available: General experimen-
conclusion, a convergent enantioselective synthesis of Ca|_tal_procedu_res_, lnclu_dmg sSpectroscopic an_d analytical data.
lipeltoside A has been completed with a longest linear se- This material is available free of charge via the Internet at
quence of 25 steps. Our approach highlights an enantioseN{tP://pubs.acs.org.
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lective [4+ 2] annulation to assemble dihydropyrans suitably

functionalized for complex molecule synthesis. Further ex-

periments aimed at the development of the scope of the
annulation are currently under investigation.
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