One-Pot Reductive N-Alkylation with Carbonyl Compounds To Give Tertiary Amines via Borane Reduction of Imines

Masashi Tokizane,^a Kaori Sato,^a Yuki Sakami,^a Yoichiro Imori,^a Chika Matsuo,^a Tetsuo Ohta,^{*b} Yoshihiko Ito^a

^a Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan

^b Department of Biomedical Information, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan Fax +81(774)656789; E-mail: tota@mail.doshisha.ac.jp

Received 5 August 2009; revised 7 September 2009

Dedicated to the hearty memory of the late Professor Yoshihiko Ito of Doshisha University. Deceased on December 23, 2006.

Abstract: One-pot synthesis of tertiary amines via borane-mediated reduction of imines and reductive N-alkylation with carbonyl compounds is described. This protocol's reducing agent is only borane in the reduction of imines, and additional reductant is not necessary in reductive N-alkylation step. When using more than two equivalents of aldehydes, reductive N-alkylation proceeded in good yield.

Key words: reductive N-alkylation, borane reduction, imines, tertiary amines, one-pot reaction

Reductive N-alkylation of primary and secondary amines with carbonyl compounds is a very useful reaction for the synthesis of a variety of amines. Various methods, such as metal hydride reactions¹ and catalytic hydrogenations,² have been developed thus far. The use of boron reagents has been especially widely investigated; NaBH₃CN,³ NaBH(OAc)₃,⁴ NaBH₄,⁵ and borane complexes⁶ have all been used as general reducing agents in this reaction. In many cases, however, these reagents have to be used either under acidic conditions or with molecular sieves and Lewis acids to generate iminium ions. Recently, Suginome et al. reported that aminoborane derivatives react as efficient iminium ion generators.⁷ These reagents can be used even in the absence of acid catalysts. In this method, however, reducing agents must be added into the reaction media. Since borane is often used as a reducing agent, reductive N-alkylation of aminoboranes with reducing ability with carbonyl compounds can be performed directly, without the need for externally added reducing agents. Such aminoboranes would seem to be generated in situ by borane reduction of the carbon-nitrogen double bond of imines (Scheme 1).

As a similar concept, Hosomi et al. reported reductive amination using silanes bearing an amino group and a hydride.⁸ Although Lewis acids are required when silanes are used as the reducing agent, it was anticipated that activators would be unnecessary in our case because of the nature of the Lewis acidity of boranes. We report herein the one-pot synthesis of tertiary amines from imines via borane reduction and reductive N-alkylation with carbonyl compounds.

SYNTHESIS 2010, No. 1, pp 0036–0042 Advanced online publication: 22.10.2009 DOI: 10.1055/s-0029-1217076; Art ID: F15609SS © Georg Thieme Verlag Stuttgart · New York

Scheme 1

Initially, the reduction of imine **1a** with 1.25 equivalents of $BH_3 \cdot SMe_2$ at 45 °C in toluene, followed by reductive N-alkylation reaction with 1.25 equivalents of aldehyde **3a**, afforded the desired tertiary amine **4aa** in only 24% yield based on imine **1a** (Table 1, entry 1). A large amount of 4-methoxybenzyl alcohol was found in the crude mixture. Using 2.5 equivalents of **3a**, the desired product **4aa** was obtained in almost quantitative yield (entry 2). When using $BH_3 \cdot SMe_2$ and aldehyde **3a** in a 1:2 ratio, good

Table 1Reductive N-Alkylation with 3a via Borane Reduction of $1a^a$

3a Ph ___ Ph __

	4aa				
Entry	BH ₃ ·SMe ₂ (equiv)	3a (equiv)	Yield (%) ^b		
1	1.25	1.25	24		
2	1.25	2.5	99		
3	1.0	2.0	89		
4	1.1	2.2	93		
5	1.4	2.9	99		

^a Reaction conditions: (1) imine **1a** (0.7–1.0 mmol), BH₃·SMe₂ (2 M in toluene, 1.0 mmol), toluene (2.0 mL), 45 °C, 24 h; (2) aldehyde **3a**, toluene (1.0 mL), 45 °C, 24 h.

^b Based on imine **1a**. Determined by ¹H NMR spectroscopy of the isolated compound after silica gel column chromatography. results were obtained (entries 3-5). Especially, in cases where more than 1.25 equivalents of BH₃·SMe₂ were used, excellent yields were achieved (entries 2 and 5).

The scope of the reaction with carbonyl compounds 3 was next examined (Table 2). Benzaldehyde (3b) and its derivatives with electron-withdrawing or electron-donating substituents in the 4-position on the aromatic ring were successful reaction partners (entries 1-6). The introduction of a methoxy substituent in either the 2- or 3-position on the aromatic ring also showed good reactivity (entries 7 and 8). Using the more electron-rich aldehyde 3i gave reduced yield (entry 9). In the case of substrate 3j, bearing an acetyl group, amination proceeded only on the aldehyde group, with good yield (entry 10). 2-Pyridinecarboxaldehyde (3k) reacted to give a moderate yield of the expected product (entry 11). As with aromatic aldehydes, aliphatic aldehydes 31 and 3m were good substrates for this reaction (entries 12 and 13). Less sterically hindered ketones such as acetone (3n) and cyclohexanone (3o)were converted into the desired products in lower yields (entries 14 and 15). Slightly improved yield was obtained using N-methyl imine 1b (entry 16).

 Table 2
 Reductive N-Alkylation with Carbonyl Compounds^a

PhN.	BH₃·SMe₂ (1.25 equiv)	$ \begin{array}{c} O \\ R^2 \\ R^3 \\ 3 \\ (2.5 \text{ equiv}) \\ Ph \\ N_{p1} \end{array} $	
1 R ¹	toluene 45 °C, 24 h	45 °C, 24 h 4	

Several imines reacted in the above way with aldehyde **3c**, and the results are presented in Table 3. Using *N*-methyl imine **1b**, an improved yield was observed compared to that using *N*-benzyl imine **1a** (entry 2 vs. entry 1). Compound **1c**, derived from aniline, reacted in good yield (entry 3). Even when using sterically hindered *N*-tert-butyl imine **1d**, the reaction proceeded smoothly (entry 4). However, ketimine **1e**, derived from benzophenone, showed low reactivity, and a complex mixture was obtained (entry 5). As these results show, reductive N-alky-lation seemed to be affected by steric hindrance on the imine, in other words, on the aminoborane intermediate of the borane reduction.

We presumed that aminoborane **2**, generated by the borane reduction of imine **1**, is the key intermediate in this reaction.⁹ Table 1, however, shows that when using approximately one equivalent of aldehyde **3** with respect to **2**, the major product was benzyl alcohol, derived from **3**; in contrast, using more than two equivalents of **3**, the desired reaction proceeded with satisfactory yield. It therefore follows that aminoborane **2**, bearing excess hydride,

Entry	Imine	Carbonyl compound	R ²	R ³	Product	Yield (%) ^b
1	$\mathbf{1a} (\mathbf{R}^1 = \mathbf{Bn})$	3a	4-MeOC ₆ H ₄	Н	4 aa	99
2	1a	3b	Ph	Н	4ab	90
3	1a	3c	$4-O_2NC_6H_4$	Н	4ac	86
4	1a	3d	$4-NCC_6H_4$	Н	4ad	90
5	1a	3e	$4-FC_6H_4$	Н	4ae	99
6	1a	3f	$4-F_3CC_6H_4$	Н	4af	88
7	1a	3g	2-MeOC ₆ H ₄	Н	4ag	92
8	1a	3h	3-MeOC ₆ H ₄	Н	4ah	95
9	1a	3i	2,4,6-(MeO) ₃ C ₆ H ₂	Н	4ai	73
10	1a	3j	4-MeCOC ₆ H ₄	Н	4aj	82
11	1a	3k	2-pyridyl	Н	4ak	69
12	1a	31	cyclohexyl	Н	4al	98
13	1a	3m	Et	Н	4am	88
14	1a	3n	Me	Me	4an	35
15	1a	30	(CH ₂) ₅		4 ao	31
16	1b ($R^1 = Me$)	30	(CH ₂) ₅		4bo	47

^a Reaction conditions: (1) imine **1** (0.8 mmol), $BH_3 \cdot SMe_2$ (2M in toluene, 1.0 mmol), toluene (2.0 mL), 45 °C, 24 h; (2) compound **3** (2.0 mmol), toluene (1.0 mL), 45 °C, 24 h.

^b Based on imine **1**. Determined by ¹H NMR spectroscopy of the isolated compound after silica gel column chromatography.

Synthesis 2010, No. 1, 36-42 © Thieme Stuttgart · New York

 Table 3
 Reductive N-Alkylation with 3c via Borane Reduction of Various Imines^a

Entry	Substrate	K'	R²	Product	Yield $(\%)^{6}$
1	1a	Bn	Н	4ac	86
2	1b	Me	Н	4bc	91
3	1c	Ph	Н	4cc	81
4	1d	t-Bu	Н	4dc	74
5	1e	Ph	Ph	4ec	11

^a Reaction conditions: (1) imine **1** (0.8 mmol), $BH_3 \cdot SMe_2$ (2M in toluene, 1.0 mmol), toluene (2.0 mL), 45 °C, 24 h; (2) aldehyde **3c** (2.0 mmol), toluene (1.0 mL), 45 °C, 24 h.

^b Based on imine **1**. Determined by ¹H NMR spectroscopy of the isolated compound after silica gel column chromatography.

reacted with one equivalent of aldehyde **3** to give the intermediate, such as **5**, followed by reductive N-alkylation with additional aldehyde **3** (Scheme 2). In this reaction mechanism, one hydride of $-N-BH_2$ in aminoborane **2** is unnecessary in the objective reaction.

Next, the addition of proton sources before reaction with aldehydes (in order to consume excess hydride) was examined (Table 4). In these experiments, an evolution of gas was observed when proton sources were added. When using 1.25 equivalents of 4-methoxybenzaldehyde (3a), yields were increased by adding benzyl alcohols 6 (entries 1–3). Using 4-nitrobenzaldehyde (3c) as a substrate, how-

ever, only the addition of 4-nitorobenzyl alcohol (**6b**) improved the yield (entries 4–6). Notably, other proton sources such as 4-nitrophenol (**7**) and aliphatic alcohol **8** were ineffective (entries 7 and 8).

These results suggest that one hydride in aminoborane 2 is dispensable and that such active species as 5 affect the present reaction. However, we considered that proton sources affect the N–B bond cleavage in addition to the B–H bond consumption. For that reason, although the addition of benzyl alcohols leads to improved yield of the reductive N-alkylation, these results were unsatisfactory compared to using 2.5 equivalents of aldehyde substrate. Based on the above results, we can surmise that aldehydes react with excess hydrides rather than amines of intermediate 2. After the excess hydrides of intermediate 2 are consumed, the amination of aldehydes proceeds prior to the reduction.

We then conducted a one-pot synthesis of the tertiary amines from the primary amines (Scheme 3). For this reaction, we chose electron-rich aromatic aldehyde 3i as one of the alkylating agents that showed low reactivity in various reductive N-alkylations.8 In the presence of molecular sieves, benzylamine (9) reacted with benzaldehyde (3b) to give imine 1a. Subsequently, a reduction of derived imine 1a with BH₃·SMe₂ was followed by reductive N-alkylation with aldehyde 3i to obtain the target compound 4ai in 67% yield based on amine 9 (route 1). This result was comparable to using imine 1a as a starting material (cf Table 2, entry 9). The reaction proceeded in the same yield when the addition order of aldehydes 3b and 3i was reversed (route 2). Imine 1f was obtained quantitatively since the alcohol derived from **3i** was not observed. These results show that our reductive N-alkylation method includes the synthesis from primary amines in a onepot reaction.

In conclusion, we have demonstrated one-pot reductive N-alkylation with carbonyl compounds via reduction of imines using borane. Although the yields of tertiary

Scheme 2

Synthesis 2010, No. 1, 36-42 © Thieme Stuttgart · New York

		онс-	R		
Ph、 N、 Ph	BH ₃ ·SMe₂ (1.25 equiv)	proton source (1.25 equiv), 3 (1.25 equiv)	Ph_N_Ph		
1a	solvent 45 °C, 24 h	45 °C, 2 h	4		
Entry	Aldehyde	Proton source	Solvent	Product	Yield (%) ^b
1 ^c	3a (R = OMe)	none	toluene	4aa	24
2 ^d	3a	МеО	toluene	4 aa	76
3°	3a	ба _{О2} N ОН	THF	4 aa	80
4 ^c	$3\mathbf{c} (\mathbf{R} = \mathbf{NO}_2)$	6b none	toluene	4ac	42
5	3c	6a	THF	4ac	48
6	3c	6b	THF	4ac	77
7	3c	O ₂ N OH	THF	4ac	52
8	3c	7 OH	THF	4ac	54
		8			

Table 4	Reductive	N-Alkylation	with	Various	Proton	Sources
---------	-----------	--------------	------	---------	--------	---------

^a Reaction conditions: (1) imine **1a** (0.8 mmol), BH₃·SMe₂ (2 M in toluene, 1.0 mmol), solvent (2.0 mL), 45 °C, 24 h; (2) proton source (1.0 mmol), aldehyde **3** (1.0 mmol), solvent (1.0–2.0 mL), 45 °C, 2 h.

^b Based on imine **1a**. Determined by ¹H NMR spectroscopy of the isolated compound after silica gel column chromatography.

^c Step 2 reaction time: 24 h.

^d Step 2 reaction time: 20 h.

^e Step 2 reaction time: 14 h.

Synthesis 2010, No. 1, 36-42 © Thieme Stuttgart · New York

amines in this reaction were affected by the steric hindrance of substrates, the desired reaction proceeded in good yield when using aldehydes. The present method features two modes of borane reactivity, which acts both in the reduction of imines and in the reductive N-alkylation. We have thus demonstrated the intriguing reactivities of the hydride and the amine of the intermediate derived from the imine by borane reduction.

NMR spectra were measured using a Varian Mercury Plus 300-4N (¹H NMR: 300 MHz, ¹³C NMR: 75 MHz) spectrometer with TMS as an internal standard for ¹H NMR and CDCl₃ (δ = 77.0 ppm) for ¹³C NMR and a JEOL JNM-ECA500 (¹¹B NMR: 160.5 MHz) spectrometer with BF₃·OEt₂ as an external standard. IR spectra were measured on a Shimadzu FTIR-8400 spectrometer in the transmission mode or a Horiba FT-710 spectrometer equipped with Dura-Sample IR in the ATR mode. High resolution mass spectra (FAB) were measured using a JEOL JMS-700 with 3-nitrobenzyl alcohol as the matrix and PEG-200 or PEG-600 as the calibration standard. All reactions were performed under an argon atmosphere using standard Schlenk techniques. All solvents were dried by standard methods and distilled under argon.¹⁰ Commercially available compounds were used without further purification.

N-Benzhydrylideneaniline (1e)¹¹

To a solution of benzophenone (1.82 g, 10 mmol) and activated 4 Å molecular sieves (4.0 g) in toluene (4 mL), aniline (1.12 g, 12 mmol) was added, and the reaction was stirred at r.t. for 4 h. The mixture was then filtered through a Celite pad and the filtrate was concentrated using a rotary evaporator. Recrystallization of the residue from toluene–EtOH gave compound **1e**.

Yield: 1.38 g (54%); yellow crystals; mp 112-114 °C.

¹H NMR (CDCl₃): δ = 6.69–6.72 (m, 2 H), 6.88–6.93 (m, 1 H), 7.08–7.16 (m, 4 H), 7.20–7.27 (m, 3 H), 7.36–7.49 (m, 3 H), 7.72–7.76 (m, 2 H).

¹³C NMR (CDCl₃): δ = 120.8, 123.0, 127.8, 128.1, 128.3, 128.4, 129.2, 129.4, 130.6, 136.1, 139.6, 151.1, 168.1.

Tertiary Amines 4 by Reductive N-Alkylation; General Procedure

Under an argon atmosphere, imine **1** (0.8 mmol), $BH_3 \cdot SMe_2$ (2 M in toluene, 1.0 mmol), and toluene (2.0 mL) were added to an 80 mL Schlenk tube. After stirring at 45 °C for 24 h, aldehyde **3** (2.0 mmol) and toluene (1.0 mL) were added to the mixture, which was then allowed to react at 45 °C for 24 h. MeOH (20 mL) was then added to stop the reaction. The solution was concentrated using a rotary evaporator and then separated by silica gel column chromatography (hexane–EtOAc, 20:1) to give products **4**. The yields were determined by ¹H NMR analysis of a mixture of the isolated products and anthracene (17.8 mg, 0.1 mmol).

N,N-Dibenzyl-N-(4-methoxybenzyl)amine (4aa)¹²

Yield: 99%; colorless oil.

IR (neat): 3061, 3026, 2930, 2793, 1611, 1583, 1510, 1495, 1454, 1366, 1248, 1036, 737, 698 cm⁻¹.

¹H NMR (CDCl₃): δ = 3.48 (s, 2 H), 3.53 (s, 4 H), 3.77 (s, 3 H), 6.84 (d, *J* = 8.7 Hz, 2 H), 7.18–7.23 (m, 2 H), 7.27–7.32 (m, 6 H), 7.38 (d, *J* = 6.9 Hz, 4 H).

¹³C NMR (CDCl₃): δ = 55.3, 57.2, 57.7, 113.5, 126.7, 128.1, 128.6, 129.7, 131.4, 139.6, 158.4.

Tribenzylamine (4ab)¹³

Yield: 90%; white solid; mp 91-93 °C.

Synthesis 2010, No. 1, 36–42 $\,$ © Thieme Stuttgart \cdot New York

IR (ATR): 3062, 3026, 2920, 2802, 1603, 1493, 1446, 1365, 1248, 739, 694 $\rm cm^{-1}.$

¹H NMR (CDCl₃): δ = 3.55 (s, 6 H), 7.18–7.23 (m, 3 H), 7.28–7.33 (m, 6 H), 7.40 (d, *J* = 7.2 Hz, 6 H).

¹³C NMR (CDCl₃): δ = 57.9, 126.7, 128.1, 128.6, 139.5.

N,*N*-Dibenzyl-*N*-(4-nitrobenzyl)amine (4ac) Yield: 86%; yellow oil.

IR (neat): 3061, 3028, 2924, 2800, 1599, 1518, 1493, 1454, 1344, 845, 745, 698 cm⁻¹.

¹H NMR (CDCl₃): δ = 3.56 (s, 4 H), 3.63 (s, 2 H), 7.21–7.26 (m, 2 H), 7.30–7.39 (m, 8 H), 7.56 (d, *J* = 8.4 Hz, 2 H), 8.16 (d, *J* = 8.4 Hz, 2 H).

¹³C NMR (CDCl₃): δ = 57.3, 58.2, 123.4, 127.1, 128.3, 128.6, 129.1, 138.7, 146.9, 147.7.

HRMS (FAB⁺): m/z [M + H]⁺ calcd for C₂₁H₂₁N₂O₂: 333.1603; found: 333.1618.

N-(**4**-Cyanobenzyl)-*N*,*N*-dibenzylamine (4ad) Yield: 90%; light-yellow oil.

IR (neat): 3063, 3028, 2924, 2800, 2228, 1609, 1495, 1454, 1367, 735, 698 $\rm cm^{-1}.$

¹H NMR (CDCl₃): δ = 3.54 (s, 4 H), 3.58 (s, 2 H), 7.20–7.25 (m, 2 H), 7.28–7.38 (m, 8 H), 7.49 (d, *J* = 8.4 Hz, 2 H), 7.57 (d, *J* = 8.4 Hz, 2 H).

¹³C NMR (CDCl₃): δ = 57.5, 58.2, 110.6, 118.9, 127.0, 128.2, 128.6, 129.1, 132.0, 138.8, 145.5.

HRMS (FAB⁺): m/z [M + H]⁺ calcd for C₂₂H₂₁N₂: 313.1705; found: 313.1689.

N,N-Dibenzyl-N-(4-fluorobenzyl)amine (4ae)

Yield: 99%; white solid; mp 44–46 °C.

IR (KBr): 3061, 3026, 2924, 2800, 1601, 1506, 1493, 1448, 1364 1221, 745, 696 $\rm cm^{-1}.$

¹H NMR (CDCl₃): δ = 3.49 (s, 2 H), 3.52 (s, 4 H), 6.98 (t, *J* = 9.0 Hz, 2 H), 7.18–7.24 (m, 2 H), 7.27–7.39 (m, 10 H).

¹³C NMR (CDCl₃): δ = 57.1, 57.8, 114.9 (d, *J* = 21 Hz), 126.8, 128.1, 128.6, 130.0 (d, *J* = 8 Hz), 135.1 (d, *J* = 3 Hz), 139.3, 161.7 (d, *J* = 242 Hz).

HRMS (FAB⁺): m/z [M + H]⁺ calcd for C₂₁H₂₁FN: 306.1658; found: 306.1642.

N,*N*-**Dibenzyl**-*N*-(**4**-trifluoromethylbenzyl)amine (4af) Yield: 88%; colorless oil.

IR (neat): 3063, 3028, 2926, 2800, 1618, 1585, 1495, 1454, 1367, 1325, 1163, 1103, 1067, 746, 698 cm⁻¹.

¹H NMR (CDCl₃): δ = 3.55 (s, 4 H), 3.58 (s, 2 H), 7.19–7.25 (m, 2 H), 7.28–7.33 (m, 4 H), 7.38 (d, *J* = 6.9 Hz, 4 H), 7.50 (d, *J* = 8.4 Hz, 2 H), 7.55 (d, *J* = 8.4 Hz, 2 H).

¹³C NMR (CDCl₃): δ = 57.5, 58.1, 124.2 (q, *J* = 270 Hz), 125.1 (q, *J* = 4 Hz), 127.0, 128.2, 128.6, 128.7, 129.0 (q, *J* = 32 Hz), 139.0, 143.9.

HRMS (FAB⁺): m/z [M + H]⁺ calcd for C₂₂H₂₁F₃N: 356.1626; found: 356.1633.

N,N-Dibenzyl-N-(2-methoxybenzyl)amine (4ag)

Yield: 92%; white solid; mp 44-46 °C.

IR (ATR): 3057, 3030, 2906, 2804, 1599, 1587, 1489, 1439, 1377, 1362, 1238, 1026, 737, 696 cm⁻¹.

¹H NMR (CDCl₃): δ = 3.58 (s, 4 H), 3.61 (s, 2 H), 3.78 (s, 3 H), 6.82 (d, *J* = 8.1 Hz, 1 H), 6.95 (t, *J* = 7.5 Hz, 1 H), 7.15–7.22 (m, 3 H), 7.26–7.31 (m, 4 H), 7.41 (d, *J* = 7.2 Hz, 4 H), 7.60 (d, *J* = 7.5 Hz, 1 H).

¹³C NMR (CDCl₃): δ = 51.3, 55.2, 58.3, 110.1, 120.4, 126.6, 127.4, 127.6, 128.0, 128.5, 129.5, 139.9, 157.5.

HRMS (FAB⁺): m/z [M + H]⁺ calcd for C₂₂H₂₄NO: 318.1858; found: 318.1853.

N,N-Dibenzyl-N-(3-methoxybenzyl)amine (4ah)

Yield: 95%; colorless oil.

IR (ATR): 3060, 3026, 2931, 2792, 1601, 1585, 1487, 1452, 1365, 1261, 1049, 739, 694 $\rm cm^{-1}.$

¹H NMR (CDCl₃): δ = 3.53 (s, 2 H), 3.55 (s, 4 H), 3.80 (s, 3 H), 6.74–6.78 (m, 1 H), 6.96–6.99 (m, 2 H), 7.18–7.23 (m, 3 H), 7.27–7.32 (m, 4 H), 7.39 (d, *J* = 6.9 Hz, 4 H).

¹³C NMR (CDCl₃): δ = 55.2, 57.9, 58.0, 112.0, 114.2, 121.0, 126.7, 128.1, 128.6, 129.0, 139.5, 141.3, 159.5.

HRMS (FAB⁺): m/z [M + H]⁺ calcd for C₂₂H₂₄NO: 318.1858; found: 318.1871.

N,N-Dibenzyl-N-(2,4,6-trimethoxybenzyl)amine (4ai)

Yield: 73%; white solid; mp 84–86 °C.

IR (ATR): 3060, 3022, 2997, 2939, 2833, 2804, 2787, 1604, 1593, 1495, 1460, 1452, 1415, 1367, 742, 694 cm⁻¹.

¹H NMR (CDCl₃): δ = 3.53 (s, 4 H), 3.60 (s, 2 H), 3.74 (s, 6 H), 3.79 (s, 3 H), 6.09 (s, 2 H), 7.13–7.18 (m, 2 H), 7.23–7.27 (m, 4 H), 7.38 (d, *J* = 6.9 Hz, 4 H).

¹³C NMR (CDCl₃): δ = 45.6, 55.3, 55.5, 57.9, 90.4, 108.1, 126.2, 127.6, 128.6, 141.0, 160.1, 160.2.

HRMS (FAB⁺): m/z [M + H]⁺ calcd for C₂₄H₂₈NO₃: 378.2069; found: 378.2058.

N-(4-Acetylbenzyl)-N,N-dibenzylamine (4aj)

Yield: 82%; yellow oil.

IR (ATR): 3060, 3028, 2922, 2796, 1680, 1606, 1493, 1452, 1412, 1356, 1265, 742, 696 cm⁻¹.

¹H NMR (CDCl₃): δ = 2.57 (s, 3 H), 3.55 (s, 4 H), 3.59 (s, 2 H), 7.19–7.25 (m, 2 H), 7.28–7.33 (m, 4 H), 7.38 (d, *J* = 7.2 Hz, 4 H), 7.49 (d, *J* = 8.4 Hz, 2 H), 7.90 (d, *J* = 8.4 Hz, 2 H).

¹³C NMR (CDCl₃): δ = 26.7, 57.6, 58.1, 126.9, 128.2, 128.3, 128.6, 128.6, 135.9, 139.1, 145.5, 197.6.

HRMS (FAB⁺): m/z [M + H]⁺ calcd for C₂₃H₂₄NO: 330.1858; found: 330.1877.

N,N-Dibenzyl-N-(2-pyridylmethyl)amine (4ak)¹⁴

Yield: 69%; colorless oil.

IR (neat): 3061, 3026, 2924, 2799, 1589, 1570, 1495, 1474, 1454, 1433, 1367, 735, 698 cm⁻¹.

¹H NMR (CDCl₃): δ = 3.61 (s, 4 H), 3.74 (s, 2 H), 7.08–7.12 (m, 1 H), 7.19–7.24 (m, 2 H), 7.28–7.33 (m, 4 H), 7.40 (d, *J* = 7.2 Hz, 4 H), 7.60–7.67 (m, 2 H), 8.48 (d, *J* = 5.1 Hz, 1 H).

¹³C NMR (CDCl₃): δ = 58.2, 59.8, 121.7, 122.5, 126.8, 128.1, 128.6, 136.3, 139.1, 148.6, 160.0.

N,N-Dibenzyl-N-cyclohexylmethylamine (4al)¹⁵

Yield: 98%; white solid; mp 56–60 °C.

IR (KBr): 3063, 3022, 2916, 2843, 2789, 1601, 1493, 1447, 1366, 743, 735, 698 cm⁻¹.

¹H NMR (CDCl₃): $\delta = 0.67-0.80$ (m, 2 H), 1.01-1.26 (m, 3 H), 1.50-1.68 (m, 4 H), 1.81-1.86 (m, 2 H), 2.18 (d, J = 6.9 Hz, 2 H), 3.50 (s, 4 H), 7.17-7.23 (m, 2 H), 7.26-7.31 (m, 4 H), 7.36 (d, J = 6.9 Hz, 4 H).

 13 C NMR (CDCl₃): δ = 26.3, 26.9, 31.7, 35.8, 58.8, 60.8, 126.5, 128.0, 128.6, 140.0.

N,N-Dibenzyl-N-propylamine (4am)¹⁶

Yield: 88%; light-yellow oil.

IR (neat): 3061, 3026, 2932, 2872, 2795, 1601, 1493, 1452, 1366, 743, 696 cm⁻¹.

¹H NMR (CDCl₃): δ = 0.84 (t, *J* = 7.2 Hz, 3 H), 1.52 (sext, *J* = 7.2 Hz, 2 H), 2.36 (t, *J* = 7.2 Hz, 2 H), 3.53 (s, 4 H), 7.15–7.22 (m, 2 H), 7.25–7.30 (m, 4 H), 7.35 (d, *J* = 6.9 Hz, 4 H).

¹³C NMR (CDCl₃): δ = 11.9, 20.3, 55.4, 58.3, 126.6, 128.0, 128.6, 139.9.

N,*N*-**Dibenzyl**-*N*-(**1-methylethyl**)**amine** (**4an**)¹⁷ Yield: 35%; light-yellow oil.

IR (ATR): 3064, 3024, 2962, 2929, 2827, 2794, 1601, 1493, 1452, 1362, 741, 723, 694 $\rm cm^{-1}.$

¹H NMR (CDCl₃): δ = 1.05 (d, *J* = 6.6 Hz, 6 H), 2.92 (hept, *J* = 6.6 Hz, 1 H), 3.55 (s, 4 H), 7.16–7.21 (m, 2 H), 7.25–7.30 (m, 4 H), 7.37 (d, *J* = 6.9 Hz, 4 H).

¹³C NMR (CDCl₃): δ = 17.6, 48.1, 53.2, 126.4, 128.0, 128.3, 140.9.

N-Cyclohexyl-*N*,*N*-dibenzylamine (4ao)¹⁸ Yield: 31%; pale-yellow solid; mp 57–58 °C.

IR (ATR): 3064, 3022, 2927, 2852, 2829, 2802, 1603, 1491, 1450, 1375, 741, 731, 696 cm⁻¹.

¹H NMR (CDCl₃): δ = 1.01–1.19 (m, 3 H), 1.25–1.36 (m, 2 H), 1.53–1.59 (m, 1 H), 1.75 (d, *J* = 11.4 Hz, 2 H), 1.88 (d, *J* = 12.6 Hz, 2 H), 2.46 (tt, *J* = 3.3, 11.4 Hz, 1 H), 3.62 (s, 4 H), 7.15–7.20 (m, 2 H), 7.24–7.28 (m, 4 H), 7.36 (d, *J* = 7.2 Hz, 4 H).

¹³C NMR (CDCl₃): δ = 26.2, 26.6, 28.7, 53.8, 57.6, 126.4, 127.9, 128.3, 141.1.

N-Benzyl-*N*-methyl-*N*-(4-nitrobenzyl)amine (4bc)¹⁹ Yield: 91%; light-yellow oil.

IR (neat): 3061, 3028, 2945, 2845, 2789, 1601, 1520, 1495, 1454, 1344, 843, 739, 698 $\rm cm^{-1}.$

¹H NMR (CDCl₃): δ = 2.19 (s, 3 H), 3.55 (s, 2 H), 3.58 (s, 2 H), 7.22–7.37 (m, 5 H), 7.53 (d, *J* = 8.7 Hz, 2 H), 8.16 (d, *J* = 8.7 Hz, 2 H).

¹³C NMR (CDCl₃): δ = 42.4, 60.9, 62.1, 123.4, 127.1, 128.2, 128.7, 129.1, 138.5, 146.9, 147.3.

N-Benzyl-N-cyclohexyl-N-methylamine (4bo)¹³

Yield: 47%; light-yellow oil.

IR (ATR): 3062, 3026, 2925, 2852, 2783, 1603, 1495, 1450, 1360, 733, 696 $\rm cm^{-1}.$

¹H NMR (CDCl₃): δ = 1.04–1.36 (m, 5 H), 1.63 (d, *J* = 11.7 Hz, 1 H), 1.78–1.90 (m, 4 H), 2.19 (s, 3 H), 2.39–2.48 (m, 1 H), 3.56 (s, 2 H), 7.18–7.32 (m, 5 H).

¹³C NMR (CDCl₃): δ = 26.1, 26.5, 28.7, 37.7, 57.8, 62.5, 126.5, 128.0, 128.7, 140.2.

N-Benzyl-*N*-(4-nitrobenzyl)-*N*-phenylamine (4cc) Yield: 81%; yellow solid; mp 145–147 °C.

IR (ATR): 3082, 3060, 3030, 2931, 2862, 1597, 1506, 1491, 1450, 1342, 843, 727, 690 $\rm cm^{-1}.$

¹H NMR (CDCl₃): δ = 4.66 (s, 2 H), 4.69 (s, 2 H), 6.69–6.77 (m, 3 H), 7.15–7.35 (m, 7 H), 7.39 (d, *J* = 8.7 Hz, 2 H), 8.16 (d, *J* = 8.7 Hz, 2 H).

¹³C NMR (CDCl₃): δ = 54.1, 54.7, 112.7, 117.5, 123.8, 126.7, 127.1, 127.3, 128.6, 129.3, 137.8, 146.6, 147.0, 148.4.

HRMS (FAB⁺): m/z [M + H]⁺ calcd for C₂₀H₁₉N₂O₂: 319.1447; found: 319.1438.

N-Benzyl-*N*-tert-butyl-*N*-(4-nitrobenzyl)amine (4dc)

Yield: 74%; yellow oil.

IR (neat): 3061, 3024, 2970, 2839, 1597, 1516, 1493, 1342, 1200, 854, 743, 698 cm⁻¹.

¹H NMR (CDCl₃): δ = 1.16 (s, 9 H), 3.72 (s, 2 H), 3.77 (s, 2 H), 7.05–7.18 (m, 3 H), 7.25 (d, *J* = 6.6 Hz, 2 H), 7.34 (d, *J* = 8.7 Hz, 2 H), 7.96 (d, *J* = 8.7 Hz, 2 H).

¹³C NMR (CDCl₃): δ = 27.4, 53.7, 55.1, 55.8, 122.8, 126.5, 127.8, 128.2, 128.6, 141.0, 146.1, 151.3.

HRMS (FAB⁺): m/z [M + H]⁺ calcd for C₁₈H₂₃N₂O₂: 299.1760; found: 299.1754.

N-Benzhydryl-*N*-(4-nitrobenzyl)-*N*-phenylamine (4ec) Yield: 11%; yellow oil.

IR (ATR): 3059, 3026, 2937, 2852, 1597, 1516, 1500, 1452, 1340, 837, 733, 696 cm⁻¹.

¹H NMR (CDCl₃): δ = 4.68 (s, 2 H), 6.35 (s, 1 H), 6.70–6.78 (m, 3 H), 7.13–7.25 (m, 14 H), 7.94 (d, *J* = 8.7 Hz, 2 H).

 ^{13}C NMR (CDCl₃): δ = 51.7, 67.0, 114.1, 118.1, 123.0, 127.1, 127.4, 128.3, 129.1, 129.2, 139.9, 146.4, 147.4, 148.8.

HRMS (FAB⁺): m/z [M + H]⁺ calcd for C₂₆H₂₃N₂O₂: 395.1760; found: 395.1747.

One-Pot Syntheses of Tertiary Amines 4ai from Benzylamine (9); Representative Procedure (Route 1 in Scheme 3)

Under an argon atmosphere, benzylamine (9; 0.8 mmol), benzaldehyde (**3b**; 0.8 mmol), activated 4 Å molecular sieves (0.15 g), and toluene (2.0 mL) were added to an 80 mL Schlenk tube. After stirring at 45 °C for 3 h, BH₃·SMe₂ (2 M in toluene, 1.0 mmol) was added to the resulting mixture, and then the mixture was reacted at 45 °C for 24 h. After the reaction, aldehyde **3i** (2.0 mmol) and toluene (1.0 mL) were added to the mixture, which was then allowed to react at 45 °C for 24 h. MeOH (20 mL) was then added to stop the reaction and the mixture was filtered through a Celite pad. The filtrate was concentrated using a rotary evaporator and then separated by silica gel column chromatography (hexane–EtOAc, 15:1) to give product **4ai**. The yield was determined by ¹H NMR analysis of a mixture of the isolated product and anthracene (17.8 mg, 0.1 mmol).

Acknowledgment

This work was partially supported by a grant to RCAST at Doshisha University from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- (a) Hutchins, R. O.; Hutchins, M. K. In *Comprehensive* Organic Synthesis, Vol. 8; Trost, B. M., Ed.; Pergamon: Oxford, **1991**, 25. (b) Kato, H.; Shibata, I.; Yasaka, Y.; Tsunoi, S.; Yasuda, M.; Baba, A. *Chem. Commun.* **2006**, 4189. (c) Lee, O.-Y.; Law, K.-L.; Yang, D. Org. Lett. **2009**, 11, 3302.
- (2) (a) Rylander, P. N. In *Hydrogenation Methods*; Academic Press: London, **1985**, 82. (b) Imao, D.; Fujihara, S.; Yamamoto, T.; Ohta, T.; Ito, Y. *Tetrahedron* **2005**, *61*, 6988. (c) Xing, L.; Cheng, C.; Zhu, R.; Zhang, B.; Wang, X.; Hu, Y. *Tetrahedron* **2008**, *64*, 11783.
- (3) Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93, 2897.
- (4) (a) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849. (b) Matos, K.; Pichlmair, S.; Burkhardt, E. R. Chim. Oggi/Chem. Today 2007, 25, 17.
- (5) (a) Miriyala, B.; Bhattacharyya, S.; Williamson, J. S. *Tetrahedron* **2004**, *60*, 1463. (b) Cho, B. T.; Kang, S. K. *Tetrahedron* **2005**, *61*, 5725.
- (6) (a) Billman, J. H.; McDowell, J. W. J. Org. Chem. 1961, 26, 1437. (b) Trapani, G.; Reho, A.; Latrofa, A. Synthesis 1983, 1013. (c) Pelter, A.; Rosser, R. M.; Mills, S. J. Chem. Soc., Perkin Trans. 1 1984, 717. (d) Bomann, M. D.; Guch, I. C.; DiMare, M. J. Org. Chem. 1995, 60, 5995. (e) Johansson, A.; Lindstedt, E.-L.; Olsson, T. Acta Chem. Scand. 1997, 51, 351. (f) Peterson, M. A.; Bowman, A.; Morgan, S. Synth. Commun. 2002, 32, 443. (g) Sato, S.; Sakamoto, T.; Miyazawa, E.; Kikugawa, Y. Tetrahedron 2004, 60, 7899.
- (7) Suginome, M.; Tanaka, Y.; Hasui, T. Synlett 2006, 1047.
- (8) Miura, K.; Ootsuka, K.; Suda, S.; Nishikori, H.; Hosomi, A. Synlett 2001, 1617.
- (9) We attempted to detect aminoborane 2a (2; R¹ = Ph, R² = Bn in Scheme 2) by ¹¹B NMR spectroscopy of the reaction mixture of imine 1a and BH₃·SMe₂ in toluene-d₈. We obtained a complex mixture including 2a (¹¹B NMR: δ = 39.1 ppm), see: Maringgele, W.; Noltemeyer, M.; Teichgräber, J.; Meller, A. *Main Group Met. Chem.* 2000, 23, 735. Because of the detected existence of aminoboranes 2, these species could probably be related to the present reaction.
- (10) Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals*, 3rd ed.; Pergamon: Oxford, **1988**.
- (11) Taguchi, K.; Westheimer, F. H. J. Org. Chem. **1971**, *36*, 1570.
- (12) Barbe, G.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 18.
- (13) Fujita, K.; Enoki, Y.; Yamaguchi, R. *Tetrahedron* **2008**, *64*, 1943.
- (14) Shimazaki, Y.; Nogami, T.; Tani, F.; Odani, A.; Yamauchi, O. Angew. Chem. Int. Ed. **2001**, 40, 3859.
- (15) de Meijere, A.; Williams, C. M.; Kourdioukov, A.; Sviridov, S. V.; Chaplinski, V.; Kordes, M.; Savchenko, A. I.; Stratmann, C.; Noltemeyer, M. *Chem. Eur. J.* **2002**, *8*, 3789.
- (16) Shi, M.; Shen, Y.-M. Helv. Chim. Acta 2001, 84, 3357.
- (17) Zhang, M.; Flynn, D. L.; Hanson, P. R. J. Org. Chem. 2007, 72, 3194.
- (18) Ratcliff, M. A. Jr.; Kochi, J. K. Tetrahedron 1972, 28, 4467.
- (19) Brown, A. R.; Rees, D. C.; Rankovic, Z.; Morphy, J. R. J. Am. Chem. Soc. 1997, 119, 3288.