Synthesis of Polysubstituted Pyrroles from Nitroso-Diels-Alder Cycloadducts

Géraldine Calvet, Nicolas Blanchard, Cyrille Kouklovsky*

Laboratoire de Synthèse des Substances Naturelles, ICMMO, UMR 8615, Batiment 410, Université d'Orsay, 91400 Orsay, France Fax +33(1)69154679; E-mail: cykouklo@icmo.u-psud.fr

Received 2 May 2005

Dedicated with much respect and admiration to Professor Steven V. Ley, FRS, on the occasion of his 60th birthday

Abstract: Nitroso-Diels–Alder cycloaddition of various dienes combined with a straightforward sequence including N–O bond cleavage and oxidation reaction of the resulting (Z)- γ -aminoenone (or enal) leads to polysubstituted pyrrolic units.

Key words: nitroso-Diels–Alder reactions, oxidations, pyrroles, ring closure

The chemistry of the pyrrole nucleus has been under close investigation due to the occurrence of this unique heterocycle in naturally and/or biologically active compounds.¹ Numerous methods for the synthesis of pyrroles have been reported in the literature and can be classified, for example, according to the bond disconnections (Figure 1).^{1a-c} The N-C2 disconnection method includes cyclization reactions,² metal-mediated cyclization reactions (catalytic³ or non-catalytic⁴), and N-H insertion reactions.⁵ The classical Knorr and Hantzch pyrrole synthesis (N-C2, C3-C4 disconnections) or the Paal-Knorr cyclocondensation (N-C2, N-C5 disconnections) are still the object of active research aimed at increased efficiency and simplicity.⁶ New methods for the synthesis of pyrroles include multicomponent reactions based on Stetter (or sila-Stetter) Paal-Knorr domino processes7 or the sequential rearrangement of enol-protected propargylic alcohols.8 Cycloadditions (involving C2–C3, C4–C5 disconnections) of azomethine ylides,⁹ isonitriles,¹⁰ or oxazolium oxides (münchnones)¹¹ are also an important class of reactions which allow a straightforward access to polysubstituted pyrroles. Recently, a metathesis reaction¹² (with ruthenium trichloride as co-catalyst)¹³ has been studied, allowing the efficient conversion of diallylamines to 3-pyrrolines, which could be dehydrogenated in situ to pyrrole.

Figure 1 Bond disconnections for pyrrole synthesis

Contraction of an existing heterocyclic ring into pyrrole has also been reported. In this regard, 1,2-diazines¹⁴ or 3,6-dihydro-1,2-oxazines **3** can be viewed as direct pre-

SYNTHESIS 2005, No. 19, pp 3346–3354 Advanced online publication: 04.11.2005 DOI: 10.1055/s-2005-918457; Art ID: C04905SS © Georg Thieme Verlag Stuttgart · New York cursors. The latter are easily obtained by nitroso-Diels– Alder cycloaddition of electron-rich 1,3-dienes **1** with nitroso dienophiles **2** (Scheme 1).¹⁵ These cycloadducts can be converted into pyrrole **4** photochemically (when R = Ar);¹⁶ under high temperature and pressure;¹⁷ ruthenium or rhodium catalysis,¹⁸ Lewis acid,¹⁹ Brönsted acid,²⁰ or silica gel activation;²¹ fluoride-mediated desilylation of 6-silyl-3,6-dihydro-1,2-oxazine;²² or base-mediated rearrangement of 3,6-dihydro-1,2-oxazine bearing an electron withdrawing group in the 6-position.²³ These methods suffer either from a lack of generality, drastic conditions, or require very specific substitution of the nitroso-Diels– Alder cycloadduct.

Scheme 1 Literature synthesis of pyrroles 4 from 3,6-dihydro-1,2-oxazines $\mathbf{3}^{16-23}$

To the best of our knowledge, no systematic studies have been reported to explore the scope of pyrrole formation from diversely substituted dihydrooxazine **6** under mild conditions. The latter can be viewed as a latent pyrrole: a simple two-step sequence, namely N–O bond cleavage followed by an oxidation–spontaneous cyclization reaction, should lead directly to pyrrolic units (Scheme 2). Since substitution of the starting 1,3-diene directly translates into the pyrrole, this approach should also be quite flexible. Moreover, regiochemical control during the [4+2] cycloaddition step is not considered to be an issue. In continuation of our interest in nitroso-Diels–Alder cycloadditions,²⁴ we would like to report a general and straightforward access to the pyrrole nucleus from cycloadducts **6**.

Scheme 2 A straightforward two-step synthesis of polysubstituted

pyrroles 5 from 3,6-dihydro-1,2-oxazines 6

or Bu_4NIO_4 , CH_2Cl_2 , 0 °C (conditions B)²⁵ (Scheme 3, Table 1).

We first examined the cycloaddition reaction of the nitroso dienophile derived from *tert*-butyl-*N*-hydroxycarbamate with mono- or disubstituted 1,3-dienes **7a–i**. The substitution of these dienes was chosen as representative of alkyl groups (**7a–c**), aromatic group (**7d**), hydroxymethyl (**7e–g**), and aminomethyl functions (**7h–i**). Two sets of oxidation conditions were evaluated according to the diene solubility: NaIO₄, MeOH, 0 °C (conditions A) Symmetrical 1,3-dienes were reacted first (Table 1, entries 1 and 2). In line with previous work, the corresponding cycloadducts **8a** and **8b** were obtained with moderate to good yields. Dissymmetrical 1,3-dienes **7c–i** were then submitted to the nitroso-Diels–Alder cycloaddition (Table 1, entries 3–9). Good yields of the corresponding cycloadducts were obtained, except for **8c**, as has been previously noted. The regioisomeric ratios ranges from

Table 1 Synthesis of 3,6-Dihydro-1,2-oxazines 8 and 9 by Nitroso-Diels–Alder Cycloaddition

Entry	Diene	Cycloadducts		Yield ^a	Ratio 8/9
1	Me Me 7a ^b	Me , N Boc Me 8a ^c		Conditions A: 84%	-
2	Me Me	Me O Me N. Boc		Conditions A: 42%	-
3	Me to the second		Me N Boc O	Conditions A: 25% Conditions B: 38%	45:55
4	Ph		Ph Boc	Conditions A: 80% Conditions B: 84%	20:80
5	OH Me 7e	OH OH N Boc Me	OH N-Boc O Me	Conditions B: 80%	67:33
6	OTBS Me 7f	OTBS	OTBS	Conditions A: 51% Conditions B: 97%	87:13
7	OTBS Ph 7g	OTBS OTBS N Boc Ph	OTBS	Conditions B: 74%	2:98
8	NHTs Me 7h	NHTs O N Boc Me	NHTs N ^{Boc} O Me	Conditions B: 89%	73:27
9	Ph 7i	NHTs NHTs N Ph Boc Ph	NHTs NHTs N Ph	Conditions B: 67%	2:98
		01	71		

^a Isolated yield. Conditions A: NaIO₄, MeOH, 0 °C; Conditions B: Bu₄NIO₄, CH₂Cl₂, 0 °C to r.t.

^b As commercially available 70:30 (E,E)/(Z,E) mixture.

° With 20% trans isomer.

55:45 (Table 1, entry 3) to 2:98 (Table 1, entries 7 and 9), depending on the diene. The structure of each regioisomer was unambiguously deduced from multidimensional NMR experiments (HMBC and HSQC). The presence of a phenyl substituent on C2 in diene 7d led to an increase in the regioisomeric ratio of the corresponding cycloadducts compared to the C2-methyl substituted dienes 7c (Table 1, entries 4 and 3, 20:80 vs. 45:55). That the phenyl moiety was a stronger directing group than the methyl group in this cycloaddition was confirmed with 1,3-dienes 7g and 7i. The regioisomeric ratio of nitroso-Diels-Alder cycloadducts was 87:13 and 73:27 with 5-methyl-1,3dienes 7f and 7h (Table 1, entries 6 and 8) whereas a 2:98 ratio was observed with 5-phenyl-1,3-dienes 7g and 7i (Table 1, entries 7 and 9). It has been previously shown for the nitroso-Diels-Alder cycloaddition that a substituent at the C1-position had a stronger directing effect than a substituent at C2.26

3,6-Dihydro-1,2-oxazines **8a–i** and **9c–i** were then subjected to N–O bond cleavage, mediated by $Mo(CO)_6$ in aqueous acetonitrile.²⁷ The corresponding (*Z*)-hydroxy-carbamate were obtained as mixture of regioisomers, in good yields (Scheme 4, Table 2).

Hydroxycarbamates **10a–d** and **11c–d** were oxidized with MnO_2 in dichloroethane (Table 3, conditions A); a smooth oxidation occurred, followed by a spontaneous cyclization reaction. In some cases, it was necessary to heat the reaction mixture to promote the ring closure. Both 2,5- and 3,4-disubstituted pyrroles **12a** and **12b** were obtained in 60% isolated yield under these conditions (Table 3, entries 1 and 2). Monosubstituted pyrrole could also be obtained in good yield (Table 3, entry 3) except in the case of the 3-phenyl substitution which proved detrimental to the yield (Table 3, entry 4, conditions A, 28%). Hydroxycarbamates **10e** and **11e**, possessing a primary alcohol moiety, led to a complex mixture of products (Table 3, entry 5).

In some cases, pyrrole synthesis by MnO_2 oxidation proved unsuccessful. When hydroxycarbamates **10g** and **11g** (Table 2, entry 7) were treated with MnO_2 at 30 °C, a

Synthesis 2005, No. 19, 3346-3354 © Thieme Stuttgart · New York

 Table 2
 N–O Bond Cleavage of 3,6-Dihydro-1,2-oxazines 8 and 9

Entry	Oxazine	Carbamates 10 and 11		Yield
1	8a	Me		67%
		Me		
		10a		
2	8b	Мед_∩он		81%
		Me		
2	0.0	10b		650
3	8c + 9c		Me NHBoc OH	65%
		10c	11c	
4	8d + 9d	Ph OH NHBoc	Ph NHBoc OH	76%
		10d	11d	
5	8e + 9e	<u>_</u> OH	_OH	60%
		ОН	NHBoc	
		<nhboc< td=""><td><u></u>ОН Мо</td><td></td></nhboc<>	<u></u> ОН Мо	
		10e	11e	
6	8f + 9f	_OTBS	_OTBS	70%
		СОН		
		NHBoc	Сон	
		Me	Me	
7	8a + 9a			85%
,	05 1 25			00 /0
		Ph	Ph	
		10g	11g	
8	8h + 9h	_NHTs	NHTs	85%
		Me	Me	
0	0: 0:	10h	11h	6901
7	ði + 91	, NH I S	_NHTS	08%
		Ph 10:	Ph	
		101	111	

clean conversion to the corresponding (Z)- γ -aminoenone took place (89% yield). However, the latter decomposed under neutral, acidic, or basic cyclization conditions (MnO₂, CH₂C₁₂, 90 °C; anhyd HCl, CH₂Cl₂^{2d} KHMDS, THF, -78 °C). Therefore, a second set of oxidation conditions using Dess–Martin periodinane was evaluated (Table 3, conditions B). Reactions were generally cleaner and better yields were obtained (Table 3, entry 4, 28% under conditions A, compared to 98% under conditions B; entry 6, 47% under conditions A, compared to 68% under conditions B). Under these modified conditions the sensitive pyrrole **12g** was obtained in 69% yield at 45 °C (Table 3, entry 7). The yield dropped to 33% when the oxidation took place at 90 °C, highlighting the sensitive nature of the transient (*Z*)- γ -aminoenone and/or pyrrole **12g**

(vide supra). It is interesting to note that **10h** and **11h** led to the same pyrrole in different yields. Regioisomer **10h** leads to **12h** in quantitative yield whereas **11h** gave only a 51% yield (Table 3, entry 8). Pyrrole **12i** was obtained in 61% yield, allowing further functionalization of the phenyl or tosylamino moieties (Table 3, entry 9).

10 + 11
Method A
or
Method B

$$R^2$$
 R^3
 R^4
Boc
12

Scheme 5

Table 3	Synthesis of P	yrroles 12 from	Carbamates	10 and 1	11
---------	----------------	-----------------	------------	----------	----

Entry	Carbamates 10 and 11	Pyrrole 12	Yield ^a
1	10a	Me Ne Boc	Conditions A: 60%
2	10b	12a Me Me N Boc	Conditions A: 60%
3	10c + 11c	12b Me N Boc	Conditions A: 63%
4	10d + 11d	12c Ph	Conditions A: 28% Conditions B: 98%
5	10e + 11e	12d -	b
6	10f + 11f	Me Notes	Conditions A: 47% Conditions B: 68%
7	10g + 11g	12f	Conditions B: 69%
8	10h + 11h	12g Ph	Conditions B: 100% ^c Conditions B: 51% ^d
9	10i + 11i	12h Me NHTs Boc	Conditions B: 61%
		12i	

^a Isolated yield of pyrrole; Conditions A: MnO₂, 1,2-dichloroethane, 30 °C; Conditions B: Dess–Martin periodinane, CH₂Cl₂–H₂O, 90 °C. ^b Complex mixture of products was obtained.

^c Carbamate 10h alone was used as starting material.

^d Carbamate 11h alone was used as starting material.

In conclusion, we have shown that protected 3,6-dihydro-1,2-oxazines can be viewed as latent pyrroles. Benefits include the wide scope of the nitroso-Diels–Alder cycloaddition combined with a straightforward sequence including N–O bond cleavage and oxidation reaction of the resulting (Z)- γ -aminoenone (or enal) leading directly to the desired pyrrole. Two sets of oxidation conditions have been successfully applied: MnO₂ or Dess–Martin periodinane according to the sensitivity of the reactants and/or the products. Owing to the mild conditions required and the diversity of substitution attainable, this transformation should prove useful for the synthesis of polysubstituted pyrrolic units.

All reactions were conducted in flame-dried or oven dried glassware under an atmosphere of dry nitrogen. All solvents were purified before use unless otherwise indicated. THF, Et₂O, and toluene were distilled over Na/benzophenone ketyl anion under argon. CH₂Cl₂ was distilled over CaH₂ under argon. All other reagents were purchased and used without further purification. Analytical TLC was performed on Kieselgel 60 F254 glass precoated with 0.25 mm of silica gel. Flash chromatography was performed on Kieselgel 60 (230-400 mesh) silica gel. IR spectra were recorded as thin films on NaCl plates using a Perkin-Elmer Spectrum One FT-IR spectrophotometer. ¹H NMR spectra were measured at 360 MHz on a Bruker AC360, at 250 MHz on a Bruker AC250 or AM250 and at 200 MHz on a Brucker AC200 using CDCl₃ as solvent. Chemical shifts are reported to 0.01 ppm precision with coupling constants reported to 0.1 Hz precision using residual CHCl₃ (7.27 ppm) as an internal reference. MS were measured on a MAT 95S Finnigan-Thermo spectrometer at the Institut de Chimie Moléculaire d'Orsay (ICMMO) Mass Spectrometry Laboratory. Elemental analyses were performed at the ICSN, CNRS, Gif sur Yvette, France. Spectroscopic data were in agreement with literature data for compounds 8a,²⁸ 8c,²⁹ 9c,²⁹ 10a,²⁴ 10b,²⁴ 11c,³¹ 12a,^{2d} and 12c.³⁰

Nitroso-Diels-Alder Cycloaddition – Method A; Typical Procedure

To a soln of 2,6-hexadiene **7a** (*E*,*E*/*E*,*Z* = 70:30 as determined by ¹H NMR analysis of the commercial compound, 0.27 mL, 2.3 mmol) in MeOH (15 mL) at 0 °C was added portionwise NaIO₄ (497 mg, 2.3 mmol) and BocNHOH (310 mg, 2.3 mmol) over 4 h. The reaction mixture was stirred at 0 °C for 2 h and then quenched with a sat. aq soln of Na₂S₂O₃ (10 mL). The aqueous phase was extracted with EtOAc (3 × 20 mL), the combined organic phases were washed with brine (30 mL), dried over MgSO₄, filtered, and concentrated. The crude oil was purified by flash chromatography (heptane–EtOAc, 90:10) to give **8a** (412 mg, 84%) as a colorless oil.

Nitroso-Diels-Alder Cycloaddition - Method B; Typical Procedure

To a soln of diene **7h** (603 mg, 2.4 mmol) and BocNHOH (320 mg, 2.4 mmol) in CH_2Cl_2 (7 mL) at 0 °C was added a soln of Bu_4NIO_4 (520 mg, 1.2 mmol) in CH_2Cl_2 (5 mL) dropwise over 40 min. The reaction mixture was stirred at 0 °C for 1.5 h and at r.t. for 2 h before being quenched with a sat. aq $Na_2S_2O_3$ soln (5 mL). The aqueous phase was extracted with CH_2Cl_2 (3 × 10 mL), the combined organic phases were washed with brine (15 mL), dried over MgSO₄, filtered, and concentrated. The crude oil was purified by flash chromatography (heptane–EtOAc, 90:10) to give **8h** (32.2 mg) and a mixture of **8h** and **9h** (782 mg, 89% combined yield) as colorless oils.

tert-Butyl 4,5-Dimethyl-3,6-dihydro-2*H*-1,2-oxazine-2-carboxy-late (8b)

 $R_f 0.27$ (heptane–EtOAc, 90:10).

IR: 2979, 2930, 1728, 1708, 1393, 1368, 1239, 1173, 1140, 1089, 865 cm⁻¹.

¹H NMR (benzene- d_6 , 250 MHz): δ = 4.03 (s, 2 H), 3.86 (s, 2 H), 1.42 (s, 6 H, CH₃-4, CH₃-5), 1.24 (s, 9 H, 3 × CH₃).

¹³C NMR (benzene- d_6 , 100 MHz): δ = 155.2, 147.9, 123.2, 122.3, 84.5, 80.6, 70.9, 48.6, 28.3, 27.1, 14.9, 13.4.

tert-Butyl 5-Methyl-3,6-dihydro-2*H*-1,2-oxazine-2-carboxylate (8c)

Isolated as a mixture with **9c**; $R_f 0.22$ (heptane–EtOAc, 90:10).

¹H NMR (CDCl₃, 400 MHz): δ = 5.54 (m, 1 H, H-4), 4.24 (br s, 2 H, H-6), 4.02 (br s, 2 H, H-3), 1.65 (s, 3 H, CH₃-5), 1.49 (s, 9 H, 3 × CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ = 154.8 or 154.7 (CO), 131.3 or 130.0 (C-5), 116.2, 81.3, 70.9, 44.5, 28.0, 18.0.

tert-Butyl 4-Methyl-3,6-dihydro-2*H*-1,2-oxazine-2-carboxylate (9c)

Isolated as a mixture with 8c; $R_f 0.22$ (heptane–EtOAc, 90:10).

IR: 1728, 1704, 1393, 1367, 1243, 1165, 1102, 858, 760 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): δ = 5.54 (m, 1 H, H-5), 4.35 (br s, 2 H, H-6), 3.93 (m, 2 H, H-3), 1.72 (s, 3 H, CH₃-4), 1.49 (s, 9 H, 3 × CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ = 154.8 or 154.7 (CO), 131.3 or 130.0 (C-5), 117.8, 81.3, 67.7, 48.3, 28.0, 19.5.

tert-Butyl 5-Phenyl-3,6-dihydro-2*H*-1,2-oxazine-2-carboxylate (8d)

 $R_f 0.23$ (heptane–EtOAc, 90:10).

IR: 2978, 1704, 1367, 1246, 1165, 749, 693 cm⁻¹.

¹H NMR (CDCl₃, 250 MHz): δ = 7.36–7.26 (5 H, Ar), 6.19 (m, 1 H, H-4), 4.78 (dd, *J* = 4.0, 2.0 Hz, 2 H, H-6), 4.25 (dd, *J* = 9.2, 4.0 Hz, 2 H, H-3), 1.52 (s, 9 H, 3 × CH₃).

¹³C NMR (CDCl₃, 90 MHz): δ = 154.9, 136.5, 134.5, 128.6, 127.9, 124.7, 118.4, 81.7, 69.2, 45.1, 28.2.

tert-Butyl 4-Phenyl-3,6-dihydro-2*H*-1,2-oxazine-2-carboxylate (9d)

 $R_f 0.23$ (heptane–EtOAc, 90:10).

IR: 2978, 1704, 1367, 1246, 1165, 749, 693 cm⁻¹.

¹H NMR (CDCl₃, 250 MHz): δ = 7.39–7.28 (5 H, Ar), 6.19 (m, 1 H, H-5), 4.61 (dd, *J* = 5.3, 2.6 Hz, 2 H, H-6), 4.48 (dd, *J* = 4.0, 2.1 Hz, 2 H, H-3), 1.52 (s, 9 H, 3 × CH₃).

¹³C NMR (CDCl₃, 90 MHz): δ = 154.9, 137.1, 133.1, 128.6, 127.9, 124.7, 120.0, 81.7, 68.1, 46.2, 28.2.

MS (ESI, Na⁺): m/z (%) = 545.3 ([2 M + Na]⁺, 36), 284.2 ([M + Na]⁺, 100), 162.1 (68).

HRMS-ESI: m/z calcd for $C_{15}H_{19}NO_3Na$ [M + Na]⁺: 284.1257; found: 284.1259.

tert-Butyl 6-Hydroxymethyl-3-methyl-3,6-dihydro-2*H*-1,2-oxazine-2-carboxylate (8e)

 $R_f 0.14$ (heptane–EtOAc, 70:30).

IR: 3428, 1651, 1369 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): $\delta = 5.81$ (ddd, J = 10.2, 4.4, 2.2 Hz, 1 H), 5.66 (d, J = 10.2 Hz, 1 H), 4.57 (br m, 1 H, H-6), 4.33 (br m, 1 H, H-3), 3.85 (br s, 1 H, OH), 3.62 (d, J = 5.1 Hz, 2 H, CH_2OH), 1.42 (s, 9 H, 3 × CH₃), 1.22 (d, J = 6.7 Hz, 3 H, CH₃-3).

¹³C NMR (CDCl₃, 100 MHz): δ = 154.4, 129.6, 124.1, 81.4, 78.5, 63.2, 50.4, 28.1, 17.8.

MS (ESI, Na⁺): m/z (%) = 196.0 ([M + Na]⁺, 100).

HRMS-ESI: m/z calcd for $C_{11}H_{19}NO_4Na$ [M + Na]⁺: 252.1206; found: 252.1209.

tert-Butyl 3-Hydroxymethyl-6-methyl-3,6-dihydro-2*H*-1,2-oxazine-2-carboxylate (9e)

 $R_f 0.18$ (heptane–EtOAc, 70:30).

IR: 3430, 1683, 1704, 1695, 1369, 1164 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): $\delta = 5.81$ (d, J = 10.4 Hz, 1 H), 5.77 (ddd, J = 10.4, 3.8, 1.8 Hz, 1 H), 4.64 (m, 1 H), 4.46 (m, 1 H), 3.77–3.71 (2 H, CH₂OH), 2.36 (br s, 1 H, OH), 1.48 (s, 9 H, 3 × CH₃), 1.24 (d, J = 6.8 Hz, 3 H, CH₃-6).

¹³C NMR (CDCl₃, 100 MHz): δ = 155.1, 131.2, 130.2, 81.9, 72.3, 63.3, 56.1, 28.2, 18.7.

MS (ESI, Na⁺): m/z (%) = 252.1 ([M + Na]⁺, 100), 196 (75).

HRMS-ESI: m/z calcd for $C_{11}H_{19}NO_4Na$ [M + Na]⁺: 252.1206; found: 252.1209.

tert-Butyl 6-[*(tert*-Butyldimethylsilyl)oxy]methyl-3-methyl-3,6dihydro-2*H*-1,2-oxazine-2-carboxylate (8f) R_f 0.37 (heptane–EtOAc, 90:10).

IR: 2957, 2930, 1728, 1704, 1393, 1367, 1313, 1256, 1174, 1118, 839, 778 $\rm cm^{-1}.$

¹H NMR (CDCl₃, 400 MHz): $\delta = 5.85$ (ddd, J = 10.2, 4.4, 2.2 Hz, 1 H), 5.76 (d, J = 10.2 Hz, 1 H), 456 (br s, 1 H, H-6), 4.43 (br s, 1 H, H-3), 3.75 (dd, J = 10.7, 5.6 Hz, 1 H, CHHOSi), 3.59 (dd, J = 10.7, 5.4 Hz, 1 H, CHHOSi), 1.48 (s, 9 H, 3 × CH₃), 1.28 (d, J = 6.8 Hz, 3 H, CH₃-3), 0.88 (s, 9 H, 3 × CH₃), 0.06 (s, 6 H, 2 × CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ = 154.4, 129.3, 124.8, 81.1, 77.6, 63.7, 50.1, 28.3, 25.8, 18.2, 18.0, -5.4, -5.5.

MS (ESI, Na⁺): m/z (%) = 366.2 ([M + Na]⁺, 46), 310.2 (31), 244.2 (100).

HRMS-ESI: m/z calcd for $C_{17}H_{33}NO_4SiNa [M + Na]^+$: 366.2071; found: 366.2084.

tert-Butyl 3-[(*tert*-Butyldimethylsilyl)oxy]methyl-6-methyl-3,6dihydro-2*H*-1,2-oxazine-2-carboxylate (9f) R_f 0.34 (heptane–EtOAc, 90:10).

IR: 2931, 2858, 1704, 1367, 1255, 1111, 838, 777 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): $\delta = 5.91$ (ddd, J = 10.3, 4.2, 1.9 Hz, 1 H), 5.77 (d, J = 10.3 Hz, 1 H), 4.62 (m, 1 H), 4.42 (m, 1 H), 3.81 (dd, J = 9.8, 7.5 Hz, 1 H, CHHOSi), 3.66 (dd, J = 9.8, 6.9 Hz, 1 H, CHHOSi), 1.48 (s, 9 H, $3 \times CH_3$), 1.24 (d, J = 6.8 Hz, 3 H, CH₃-6), 0.89 (s, 9 H, $3 \times CH_3$), 0.06 (s, 6 H, $2 \times CH_3$).

¹³C NMR (CDCl₃, 100 MHz): δ = 154.3, 130.4, 123.9, 81.2, 72.5, 63.8, 55.3, 28.3, 25.8, 18.8, 18.3, -5.4 (2 C).

MS (ESI, Na⁺): m/z (%) = 366.2 ([M + Na]⁺, 100), 310.1 (69), 266.1 (44)

HRMS-ESI: m/z calcd for C₁₇H₃₃NO₄SiNa [M + Na]⁺: 366.2071; found: 366.2080.

tert-Butyl 3-[(*tert*-Butyldimethylsilyl)oxy]methyl-6-phenyl-3,6dihydro-2*H*-1,2-oxazine-2-carboxylate (9g)

 $R_f 0.22$ (heptane–EtOAc, 98:2).

IR: 2955, 2929, 2857, 1706, 1368, 1254, 1170, 1105, 837, 777, 716, 698 $\rm cm^{-1}$

¹H NMR (CDCl₃, 400 MHz): δ = 7.38–7.33 (5 H), 6.09 (ddd, J = 10.5, 4.3, 2.0 Hz, 1 H), 5.98 (ddd, J = 10.4, 10.4, 1.2 Hz, 1 H), 5.52 (br s, 1 H, H-6), 4.57 (br s, 1 H, H-3), 3.94 (dd, J = 9.9, 7.4 Hz, 1 H, CHHOSi), 3.81 (dd, J = 9.9, 6.8 Hz, 1 H, CHHOSi), 1.54 (s, 9 H, 3 × CH₃), 0.93 (s, 9 H, 3 × CH₃), 0.10 (s, 6 H, 2 × CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ = 154.3, 137.0, 128.7, 128.6, 128.4, 128.0, 124.6, 81.1, 78.1, 63.8, 55.5, 28.2, 25.7, 18.1, -5.4, -5.6.

MS (ESI, Na⁺): m/z (%) = 428.4 ([M + Na]⁺, 42), 306.3 (100).

HRMS-ESI: m/z calcd for C₂₂H₃₅NO₄SiNa [M + Na]⁺: 428.2228; found: 428.2229.

tert-Butyl 3-Methyl-6-(tosylamino)methyl-3,6-dihydro-2*H*-1,2-oxazine-2-carboxylate (8h)

R_f 0.28 (heptane–EtOAc, 70:30).

IR: 3267, 2978, 1699, 1369, 1329, 1161, 1119, 816, 665 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): δ = 7.74 (d, *J* = 8.0 Hz, 2 H), 7.30 (d, *J* = 8.0 Hz, 2 H), 5.86 (ddd, *J* = 10.4, 4.4, 2.0 Hz, 1 H), 5.62 (d, *J* = 10.4 Hz, 1 H), 5.13 (br s, 1 H, NH), 4.57 (br s, 1 H, H-6), 4.39 (br s, 1 H, H-3), 3.24 (ddd, *J* = 13.2, 7.3, 3.2 Hz, 1 H, CH*H*N), 3.01 (ddd, *J* = 13.2, 7.1, 5.4 Hz, 1 H, CH*H*N), 2.42 (s, 3 H, CH₃Ph), 1.49 (s, 9 H, 3 × CH₃), 1.25 (d, *J* = 6.8 Hz, 3 H, CH₃-3).

 ^{13}C NMR (CDCl₃, 100 MHz): δ = 154.2, 143.4, 136.8, 130.6, 129.7, 127.0, 123.9, 81.9, 75.8, 50.5, 45.1, 28.2, 21.5, 18.0.

MS (ESI, Na⁺): *m*/*z* (%) = 405.2 ([M + Na]⁺, 96), 283.2 (100).

HRMS-ESI: m/z calcd for $C_{18}H_{26}NO_5SNa [M + Na]^+$: 405.1455; found: 405.1462.

tert-Butyl 6-Methyl-3-(tosylamino)methyl-3,6-dihydro-2*H*-1,2-oxazine-2-carboxylate (9h)

Isolated as a mixture with **8h**; $R_f 0.26$ (heptane–EtOAc, 70:30).

¹H NMR (CDCl₃, 250 MHz): δ = 7.75 (d, *J* = 8.1 Hz, 2 H), 7.30 (d, *J* = 8.1 Hz, 2 H), 5.81 (d, *J* = 10.4 Hz, 1 H), 5.71 (ddd, *J* = 10.4, 4.3, 1.9 Hz, 1 H), 4.83 (m, 1 H, NH), 4.59 (m, 1 H, H-6 or H-3), 4.48 (m, 1 H, H-3 or H-6), 3.17 (ddd, *J* = 9.3, 5.0, 2.0 Hz, 2 H, CH₂N), 2.42 (s, 3 H, CH₃-Ph), 1.54 (s, 9 H, 3 × CH₃), 1.22 (d, *J* = 6.8 Hz, 3 H, CH₃-3).

¹³C NMR (CDCl₃, 62.5 MHz): δ = 154.0, 143.4, 136.8, 131.7, 129.7, 127.1, 122.7, 82.4, 72.3, 65.9, 45.0, 28.3, 18.7, 15.3.

tert-Butyl 6-Phenyl-3-(tosylamino)methyl-3,6-dihydro-2*H*-1,2-oxazine-2-carboxylate (9i)

 $R_f 0.31$ (heptane–EtOAc, 70:30).

IR: 3278, 2978, 1704, 1395, 1369, 1331, 1161, 1094, 815, 757, 700, 662 cm^{-1} .

¹H NMR (CDCl₃, 250 MHz): δ = 7.72 (d, *J* = 8.3 Hz, 2 H), 7.36–7.29 (7 H), 6.01 (d, *J* = 10.3 Hz, 1 H), 5.93 (ddd, *J* = 10.4, 4.1, 2.3 Hz, 1 H), 5.49 (m, 1 H, H-6), 4.99 (m, 1 H, NH), 4.60 (m, 1 H, H-3), 3.25 (t, *J* = 6.0 Hz, 2 H, CH₂N), 2.40 (s, 3 H, CH₃-Ph), 1.52 (s, 9 H, 3 × CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ = 154.5, 143.2, 136.8, 136.4, 129.5, 129.4, 129.0, 128.5, 128.2, 126.9, 123.9, 82.3, 78.0, 53.0, 45.0, 28.1, 21.3.

MS (ESI, Na⁺): m/z (%) = 467.3 ([M + Na]⁺, 79), 411.2 (47), 345.3 (100).

HRMS-ESI: m/z calcd for $C_{23}H_{28}N_2O_5SNa$ [M + Na]⁺: 467.1611; found: 467.1619.

N-O Bond Cleavage; Typical Procedure

To a soln of **8g** (626 mg, 1.54 mmol) in CH₃CN–H₂O (7:1, 12 mL) was added Mo(CO)₆ (653 mg, 2.47 mmol). After 10 min at r.t., NaBH₄ (29 mg, 0.77 mmol) was added and the suspension was heated at 90 °C overnight. The reaction mixture was cooled and Et₂O (10 mL) was added. The suspension was filtered through a bed of celite and thoroughly rinsed with Et₂O (3 × 5 mL). The filtrate was concentrated and the crude oil was purified by flash chromatography (heptane–EtOAc, 85:15 to 80:20) to give **11g** (535 mg, 85%) as a colorless oil.

tert-Butyl (Z)-4-Hydroxy-3-phenylbut-2-en-1-yl Carbamate (10d)

Isolated as a minor isomer as a mixture with 11d.

¹H NMR (CDCl₃, 250 MHz): δ = 7.49 (d, *J* = 6.8 Hz, 2 H), 7.36–7.26 (3 H), 5.78 (t, *J* = 7.8 Hz, 1 H, H-2), 4.98 (s, 1 H), 4.55 (s, 1 H), 3.94 (dd, *J* = 7.8, 6.1 Hz, 2 H, H-1), 3.74 (s, 1 H), 1.42 (s, 9 H, 3 × CH₃).

tert-Butyl (Z)-4-Hydroxy-2-phenylbut-2-en-1-yl Carbamate (11d)

IR: 3332, 1689, 1514, 1367, 1251, 1166, 767, 698 cm⁻¹.

¹H NMR (CDCl₃, 250 MHz): δ = 7.38–7.26 (m, 5 H), 6.10 (t, *J* = 6.8 Hz, 1 H, H-3), 4.87 (s, 1 H), 4.34 (d, *J* = 7.3 Hz, 2 H), 4.21 (d, *J* = 5.9 Hz, 2 H), 1.38 (s, 9 H, 3 × CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ = 156.2, 140.2, 139.3, 129.7, 128.6, 127.7, 126.6, 80.0, 58.0, 38.8, 28.3.

MS (ESI, Na⁺): m/z (%) = 286.3 ([M + Na]⁺, 64), 230.2 (45), 186.2 (24).

HRMS-ESI: m/z calcd for $C_{15}H_{21}NO_3Na$ [M + Na]⁺: 286.1414; found: 286.1420.

tert-Butyl (2S,5S)-(Z)-6-(*tert*-Butyldimethylsilyl)oxy-5hydroxyhex-3-en-2-yl Carbamate (10f) $R_f 0.28$ (heptane–EtOAc, 80:20).

 $R_f 0.28$ (neptane–EtOAc, 80)

IR: 3334, 2957, 2931, 1689, 1520, 1367, 1252, 1174, 1115, 1055, 837, 778 $\rm cm^{-1}.$

¹H NMR (CDCl₃, 360 MHz): $\delta = 5.51$ (dd, app. br t, J = 9.2 Hz, 1 H, H-4), 5.31 (br t, J = 10.1 Hz, 1 H, H-3), 4.58–4.50 (3 H, H-5, H-2, OH or NH), 3.97 (br s, 1 H, OH or NH), 3.65 (m, 1 H, H-6), 3.57 (dd, J = 9.4, 5.6 Hz, 1 H, H-6), 1.42 (s, 9 H, 3 × CH₃), 1.18 (d, J = 6.8 Hz, 3 H, H-1), 0.89 (s, 9 H, 3 × CH₃), 0.08 (s, 6 H, 2 × CH₃).

¹³C NMR (CDCl₃, 90 MHz): δ = 155.4, 134.5, 130.7, 79.9, 67.4, 66.8, 44.0, 28.4, 25.9, 21.1, 18.3, -5.3 (2 C).

MS (ESI, Na⁺): *m*/*z* (%) = 713.5 ([2 M + Na]⁺, 4), 368.2 ([M + Na]⁺, 100), 246.2 (12).

HRMS-ESI: m/z (%) calcd for $C_{17}H_{35}NO_4SiNa [M + Na]^+$: 368.2228; found: 368.2242.

tert-Butyl (2*S*,5*S*)-(*Z*)-1-(*tert*-Butyldimethylsilyl)oxy-5hydroxyhex-3-en-2-yl Carbamate (11f) Isolated as a mixture with 10f.

¹H NMR (CDCl₃, 360 MHz): δ = 5.58 (dd, app. br t, *J* = 9.5 Hz, 1 H), 5.37 (dd app. t, *J* = 10.3 Hz, 1 H), 4.69–4.66 (2 H), 4.11 (m, 1 H), 3.70 (dd, *J* = 9.7, 4.0 Hz, 1 H, H-1), 3.56 (m, 1 H, H-1), 1.40 (s, 9 H, 3 × CH₃), 1.22 (d, *J* = 6.1 Hz, 3 H, H-6), 0.88 (s, 9 H, 3 × CH₃), 0.08 (s, 6 H, 2 × CH₃).

¹³C NMR (CDCl₃, 90 MHz): δ = 156.0, 136.8, 127.8, 80.0, 64.9, 62.0, 49.1, 28.3, 25.8, 22.3, 18.2, -5.6 (2 C).

tert-Butyl (2S,5S)-(Z)-5-Hydroxy-5-phenyl-1-(*tert*-butyl-dimethylsilyl)oxyhex-3-en-2-yl Carbamate (11g)

 $IR: 3442, 1692, 1493, 1367, 1253, 1171, 1101, 837, 778, 700 \ cm^{-1}.$

¹H NMR (CDCl₃, 250 MHz): δ = 7.42–7.25 (m, 5 H), 5.80 (dd, J = 10.5, 9.0 Hz, 1 H), 5.67 (d, J = 9.3 Hz, 1 H), 5.53 (t, J = 10.5 Hz, 1 H), 5.18 (br d, J = 6.0 Hz, 1 H), 4.64 (m, 1 H), 3.78 (dd, J = 10.1, 3.6 Hz, 1 H, CHHOSi), 3.61 (dd, J = 10.1, 3.9 Hz, 1 H, CHHOSi), 1.46 (s, 9 H, 3 × CH₃), 0.91 (s, 9 H, 3 × CH₃), 0.07 (s, 6 H, 2 × CH₃).

¹³C NMR (CDCl₃, 62.5 MHz): δ = 156.1, 143.0, 135.3, 128.3, 127.1, 126.0, 80.3, 68.3, 64.8, 49.1, 28.4, 25.8, 18.3, -5.5.

MS (ESI, Na⁺): m/z (%) = 430.4 ([M + Na]⁺, 60), 290.3 (100).

HRMS-ESI: m/z calcd for C₂₂H₃₇NO₄SiNa [M + Na]⁺: 430.2384; found: 430.2389.

Synthesis 2005, No. 19, 3346-3354 © Thieme Stuttgart · New York

tert-Butyl (2*S*,5*S*)-(*Z*)-6-Tosylamino-5-hydroxyhex-3-en-2-yl Carbamate (10h)

 $R_f 0.26$ (heptane–EtOAc, 60:40).

IR: 3364, 2978, 1683, 1516, 1506, 1328, 1161, 914, 815, 734 cm⁻¹.

¹H NMR (CDCl₃, 360 MHz): δ = 7.70 (d, *J* = 8.3 Hz, 2 H), 7.24 (d, *J* = 8.3 Hz, 2 H), 5.41–5.34 (m, 2 H, H-4, OH or NH), 5.20 (t, *J* = 10.4 Hz, 1 H, H-3), 4.89–4.82 (m, 2 H, NH, OH), 4.53 (m, 1 H, H-5), 4.32 (br s, 1 H, H-2), 3.02 (ddd, *J* = 12.3, 7.8, 3.5 Hz, 1 H, H-6), 2.84 (ddd, *J* = 12.3, 7.6, 4.6 Hz, 1 H, H-6), 2.35 (s, 3 H, CH₃Ph), 1.33 (s, 9 H, 3 × CH₃), 1.09 (d, *J* = 6.8 Hz, 3 H, H-1).

¹³C NMR (CDCl₃, 90 MHz): δ = 155.6, 143.1, 136.8, 135.3, 129.5, 129.1, 126.9, 80.0, 64.5, 47.6, 43.6, 28.1, 21.3, 20.1.

MS (ESI, Na⁺): m/z (%) = 407.3 ([M + Na]⁺, 100), 184.2 (43).

HRMS-ESI: m/z calcd for $C_{18}H_{28}N_2O_5SNa$ [M + Na]⁺: 407.1611; found: 407.1621.

tert-Butyl (2S,5S)-(Z)-1-Tosylamino-5-hydroxyhex-3-en-2-yl Carbamate (11h)

 $R_f 0.28$ (heptane–EtOAc, 60:40).

IR: 3364, 2978, 1683, 1516, 1506, 1328, 1161, 914, 815, 734 cm⁻¹.

¹H NMR (CDCl₃, 250 MHz): δ = 7.72 (d, *J* = 8.3 Hz, 2 H), 7.29 (d, *J* = 8.3 Hz, 2 H), 5.64–5.53 (m, 2 H), 5.26 (d, *J* = 7.5 Hz, 1 H), 5.13 (t, *J* = 10.4 Hz, 1 H), 4.58–4.44 (m, 2 H), 4.05 (br s, 1 H), 2.97 (t, *J* = 6.4 Hz, 2 H, H-1), 2.41 (s, 3 H, CH₃Ph), 1.38 (s, 9 H, 3 × CH₃), 1.18 (d, *J* = 6.5 Hz, 3 H, H-6).

¹³C NMR (CDCl₃, 62.5 MHz): δ = 156.0, 143.6, 137.8, 136.6, 129.8, 127.3, 126.9, 80.4, 62.3, 47.7, 46.1, 28.2, 22.4, 21.5.

MS (ESI, Na⁺): m/z (%) = 407.3 ([M + Na]⁺, 100), 250.2 (22), 184.2 (29).

HRMS-ESI: m/z calcd for $C_{18}H_{28}N_2O_5SNa \ [M + Na]^+$: 407.1611; found: 407.1622.

tert-Butyl (2*S*,5*S*)-(*Z*)-5-Hydroxy-5-phenyl-1-tosylaminohex-3en-2-yl Carbamate (11i)

 $R_f 0.25$ (heptane–EtOAc, 80:20).

IR: 3362, 2978, 1689, 1516, 1328, 1161, 1093, 815, 743, 701, 662 cm⁻¹.

¹H NMR (CDCl₃, 250 MHz): δ = 7.70 (d, *J* = 7.8 Hz, 2 H), 7.32–7.24 (7 H), 5.74 (dd, *J* = 10.8, 9.3 Hz, 1 H), 5.65 (t, *J* = 6.4 Hz, 1 H), 5.50 (d, *J* = 8.8 Hz, 1 H), 5.34 (d, *J* = 7.0 Hz, 1 H), 5.23 (t, *J* = 10.4 Hz, 1 H), 4.63 (m, 1 H), 4.40 (br s, 1 H), 3.01–2.92 (2 H), 2.39 (s, 3 H, CH₃Ph), 1.41 (s, 9 H, 3 × CH₃).

¹³C NMR (CDCl₃, 62.5 MHz): δ = 156.0, 143.6, 142.6, 136.5, 136.2, 129.8, 128.4, 127.8, 127.3, 126.9, 126.0, 80.4, 68.5, 47.7, 46.0, 28.3, 21.4.

MS (ESI, Na⁺): m/z (%) = 469.3 ([M + Na]⁺, 100), 329.3 (23).

HRMS-ESI: m/z calcd for $C_{23}H_{30}N_2O_5SNa \ [M + Na]^+$: 469.1768; found: 469.1772.

tert-Butyl 2,5-Dimethyl-1*H*-Pyrrole-1-carboxylate (12a) – Method A; Typical Procedure

To a soln of **10a** (55.4 mg, 0.26 mmol) in CH_2Cl_2 (2.6 mL) was added MnO₂ (1.12 g, 12.9 mmol) and the resulting suspension was stirred at 30 °C overnight. The reaction mixture was filtered through a bed of celite and rinsed with CH_2Cl_2 (3 × 5 mL). The filtrate was concentrated and the crude oil was purified by flash chromatography (heptane–EtOAc, 95:5) to give **12a** (29.8 mg, 60%) as a colorless oil.

 $R_f 0.13$ (heptane).

IR: 2978, 2930, 1739, 1371, 1335, 1313, 1125 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): δ = 5.80 (s, 2 H, H-3, H-4), 2.39 (s, 6 H, CH₃-2, CH₃-5), 1.60 (s, 9 H, 3 × CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ = 150.5, 131.2, 110.1, 83.2, 28.1, 16.5.

MS (ESI, Na⁺): *m*/*z* (%) = 413.2 ([2 M + Na]⁺, 100), 219.1 (32), 138 (53), 118 (32).

tert-Butyl 2-(*tert*-Butyldimethylsilyloxymethyl)-5-Methyl-1*H*-pyrrole-1-carboxylate (12f) – Method B; Typical Procedure

To a soln of **10f** and **11f** (73.2 mg, 0.21 mmol) in CH_2Cl_2 (4.2 mL) was added Dess–Martin periodinane (180 mg, 0.42 mmol) and the resulting suspension was stirred at 90 °C for 8 h. The reaction mixture was cooled and poured into a sat. aq soln of NaHCO₃ (5 mL). The aqueous phase was extracted with CH_2Cl_2 (3 × 5 mL), the combined organic phases were washed with a sat. aq soln of $Na_2S_2O_3$ (10 mL), dried over MgSO₄, filtered, and concentrated. The crude oil was purified by flash chromatography (heptane–EtOAc, 98:2) to give **12f** (47 mg, 68%) as colorless oil.

 $R_f 0.40$ (heptane–EtOAc, 95:5).

IR: 2980, 1767, 1716, 1369, 1153 cm⁻¹.

¹H NMR (CDCl₃, 250 MHz): $\delta = 6.06$ (d, J = 2.7 Hz, 1 H), 5.84 (d, J = 2.7 Hz, 1 H), 4.81 (s, 2 H, CH₂O), 2.38 (s, 3 H, CH₃-5), 1.58 (s, 9 H, 3 × CH₃), 0.91 (s, 9 H, 3 × CH₃), 0.05 (s, 6 H, 2 × CH₃).

¹³C NMR (CDCl₃, 62.5 MHz): δ = 150.1, 135.0, 110.4, 109.8, 83.4, 60.6, 28.0, 25.9, 18.5, 16.2, -5.3.

MS (ESI, Na⁺): *m*/*z* (%) = 348.2 ([M + Na]⁺, 100), 301.2 (41), 275.1 (57), 231.1 (38).

tert-Butyl 3,4-Dimethyl-1*H*-pyrrole-1-carboxylate (12b)

Prepared under conditions A; yield: 60%; $R_f 0.10$ (heptane).

IR: 2980, 2934, 1738, 1402, 1345, 1254 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): δ = 6.94 (s, 2 H, H-2, H-5), 1.98 (s, 6 H, CH₃-3, CH₃-4), 1.57 (s, 9 H, 3 × CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ = 148.9, 122.7, 117.0, 82.6, 28.0, 10.1.

MS (ESI, Na⁺): *m/z* (%) = 413.2 ([2 M + Na]⁺, 68), 301 (28), 250 (45), 234 (100), 178 (55), 150 (48), 134 (51).

tert-Butyl 3-Methyl-1H-pyrrole-1-carboxylate (12c)

Prepared under conditions A; yield: 63%. IR: 3151, 1741, 1343, 1251, 972 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): δ = 7.13 (t, *J* = 2.5 Hz, 1 H, H-2 or H-5), 6.97 (m, 1 H, H-5 or H-2), 6.05 (m, 1 H, H-4), 2.06 (s, 3 H, CH₃-3), 1.58 (s, 9 H, 3 × CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ = 148.9, 122.4, 119.9, 117.1, 114.0, 83.1, 28.0, 11.9.

tert-Butyl 3-Phenyl-1*H*-pyrrole-1-carboxylate (12d)

Prepared under conditions B; yield: 98%; R_f 0.24 (heptane–EtOAc, 98:2).

IR: 1743, 1392, 1355, 1142, 975 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): δ = 7.55 (d, *J* = 6.8 Hz, 4 H), 7.43 (t, *J* = 6.8 Hz, 2 H), 7.35 (m, 1 H, H-2 or H-5), 6.59 (m, 1 H, H-4), 1.65 (s, 9 H, 3 × CH₃).

¹³C NMR (CDCl₃, 100 MHz): δ = 148.8, 134.3, 128.7, 127.8, 126.6, 125.5, 120.9, 115.7, 110.4, 83.8, 28.0.

MS (EI): m/z (%) = 243.1 ([M]⁺, 9), 143.0 (100), 115 (34), 57 (65).

HRMS-EI: m/z (%) calcd for $C_{23}H_{30}N_2O_5SNa$ [M]⁺: 243.1254; found: 243.1265.

tert-Butyl [2-(*tert*-Butyldimethylsilyl)oxy]methyl-5-phenyl-1*H*-pyrrole-1-carboxylate (12g)

Prepared under conditions B; yield: 69%; R_f 0.45 (heptane–EtOAc, 95:5); mp < 50 °C (waxy solid).

IR: 2930, 1737, 1339, 1313, 1256, 1148, 1061, 838, 777, 698 cm⁻¹.

¹H NMR (CDCl₃, 250 MHz): $\delta = 7.29-7.21$ (m, 5 H), 6.20 (d, J = 3.5 Hz, 1 H), 6.08 (d, J = 3.5 Hz, 1 H), 4.87 (s, 2 H, CH₂O), 1.21 (s, 9 H, 3 × CH₃), 0.90 (s, 9 H, 3 × CH₃), 0.07 (s, 6 H, 2 × CH₃).

¹³C NMR (CDCl₃, 62.5 MHz): δ = 149.8, 136.6, 135.5, 135.2, 128.7, 127.6, 126.8, 112.4, 110.0, 83.5, 59.9, 27.3, 25.9, 18.3, -5.3.

MS (ESI, Na⁺): m/z (%) = 410.2 ([M + Na]⁺, 100), 301.2 (27).

HRMS-ESI: m/z calcd for C₂₂H₃₃NO₃SiNa [M + Na]⁺: 410.2122; found: 410.2118.

Anal. Calcd for $C_{22}H_{33}NO_3Si:$ C, 68.17; H, 8.58; N, 3.61. Found: C, 68.19; H, 8.58; N, 3.46.

tert-Butyl 2-(Tosylamino)methyl-5-methyl-1*H*-pyrrole-1carboxylate (12h)

Prepared under conditions B; yield: 100% (from **10h**), 51% (from **11h**); R_f 0.43 (heptane–EtOAc, 70:30); mp 73 °C.

IR: 3304, 1733, 1392, 1338, 1260, 1163, 1129, 1093, 850, 814, 790, 737 $\rm cm^{-1}$

¹H NMR (CDCl₃, 250 MHz): δ = 7.57 (d, *J* = 8.1 Hz, 2 H), 7.16 (d, *J* = 8.1 Hz, 2 H), 5.91 (d, *J* = 3.2 Hz, 1 H), 5.67–5.61 (m, 2 H), 4.21 (d, *J* = 6.5 Hz, 2 H, CH₂N), 2.37 (s, 3 H, CH₃-Ar), 2.18 (s, 3 H, CH₃-5), 1.53 (s, 9 H, 3 × CH₃).

¹³C NMR (CDCl₃, 62.5 MHz): δ = 150.3, 142.4, 137.7, 132.3, 129.7, 129.5, 129.1, 126.7, 113.6, 110.6, 84.4, 41.7, 27.8, 21.3, 16.5.

MS (ESI, Na⁺): m/z (%) = 387.2 ([M + Na]⁺, 100).

HRMS-ESI: m/z calcd for $C_{18}H_{24}N_2O_4SNa \ [M + Na]^+$: 387.1349; found: 387.1353.

Anal. Calcd for $C_{18}H_{24}N_2O_4S{:}$ C, 59.32; H, 6.64; N, 7.69. Found: C, 59.30; H, 6.71; N, 7.50.

tert-Butyl 2-(Tosylamino)methyl-5-phenyl-1*H*-pyrrole-1carboxylate (12i)

Prepared under conditions B; yield: 61%; $R_f 0.25$ (heptane–EtOAc, 80:20).

IR: 3305, 1732, 1371, 1318, 1149, 1693, 812, 759, 735, 700 cm⁻¹.

¹H NMR (CDCl₃, 250 MHz): δ = 7.65 (d, *J* = 8.3 Hz, 2 H), 7.32– 7.26 (m, 3 H), 7.19 (d, *J* = 8.0 Hz, 2 H), 7.08 (d, *J* = 7.5 Hz, 2 H), 6.08 (d, *J* = 2.9 Hz, 1 H), 5.93 (d, *J* = 2.9 Hz, 1 H), 5.83 (dd, app. t, *J* = 6.6 Hz, 1 H, NH), 4.29 (d, *J* = 7.3 Hz, 2 H, CH₂N), 2.34 (s, 3 H, CH₃-Ar), 1.12 (s, 9 H, 3 × CH₃).

 ^{13}C NMR (CDCl₃, 62.5 MHz): δ = 150.3, 142.7, 138.0, 134.9, 131.2, 129.2, 128.5, 127.6, 126.9, 113.6, 112.4, 84.5, 41.4, 27.1, 21.4.

MS (ESI, Na⁺): m/z (%) = 449.2 ([M + Na]⁺, 100), 393.1 (41), 355.0 (23).

HRMS-ESI: m/z calcd for $C_{23}H_{26}N_2O_4SK [M + K]^+$: 465.1245; found: 465.1258.

Acknowledgment

We would like to thank Friederike Tewes for preliminary experiments. We thank the Ministère de la Recherche et de la Technologie for a grant (G.C.), the Université Paris-XI and the CNRS-UMR 8615 for financial support.

References

- (a) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 2001, 2491. (b) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1999, 2849. (c) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1998, 615. (d) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry II, Vol. 2; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996, 119. (e) Heterocyclic Chemistry, 4th ed.; Joule, J. A.; Mills, K., Eds.; Blackwell Science: London, 2000, Chap. 13. (f) Patterson, J. M. Synthesis 1976, 281.
- (2) (a) Nakamura, M.; Hara, K.; Sakata, G.; Nakamura, E. Org. Lett. 1999, 1, 1505. (b) Dieter, R. K.; Yu, H. Org. Lett.
 2000, 2, 2283. (c) Benetti, S.; De Risi, C.; Marchetti, P.; Pollini, G. P.; Zanirato, V. Synthesis 2002, 331. (d) Paulus, O.; Alcaraz, G.; Vaultier, M. Eur. J. Org. Chem. 2002, 2565.
- (3) (a) Ramanathan, B.; Keith, A. J.; Armstrong, D.; Odom, A. L. Org. Lett. 2004, 6, 2957. (b) Fürstner, A. Synlett 1999, 1523. (c) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1757. (d) Utimoto, K.; Miwa, H.; Nozaki, H. Tetrahedron Lett. 1981, 22, 4277.
- (4) (a) Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 2074. (b) Danks, T.; Velo-Rego, D. Tetrahedron Lett. 1994, 35, 9443.
- (5) Wang, S.; Zhu, S. Org. Lett. 2003, 5, 745.
- (6) (a) Nagafuji, P.; Cushman, M. J. Org. Chem. 1996, 61, 4999. (b) Banik, B. K.; Samajdar, S.; Banik, I. J. Org. Chem. 2004, 69, 213.
- (7) (a) Braun, R. U.; Muller, T. J. J. Synthesis 2004, 2391.
 (b) Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465. (c) For a recent review, see: Balme, G. Angew. Chem. Int. Ed. 2004, 43, 6238.
- (8) Tejedor, D.; Gonzalez-Cruz, D.; Garcia-Tellado, F.; Marrero-Tellado, J. J.; Rodriguez, M. L. J. Am. Chem. Soc. 2004, 126, 8390.
- (9) Reisser, M.; Maas, G. J. Org. Chem. 2004, 69, 4913.
- (10) (a) Takaya, H.; Kojima, S.; Murahashi, S.-I. Org. Lett. 2001, 3, 421. (b) Dijkstra, H. P.; ten Have, R.; van Leusen, A. M. J. Org. Chem. 1998, 63, 5332. (c) van Leusen, D.; van Leusen, A. M. Org. React. 2001, 57, 417.
- (11) Dhawan, R.; Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468.
- (12) Yang, C.; Murray, W. V.; Wilson, L. J. *Tetrahedron Lett.* 2003, 44, 1783.
- (13) Dieltiens, N.; Stevens, C. V.; De Vos, D.; Allaert, B.; Drozdzak, R.; Verpoort, F. *Tetrahedron Lett.* **2004**, *45*, 8995.
- (14) Boger, D. L.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin, Q. J. Am. Chem. Soc. **1998**, 121, 54.
- (15) (a) Vogt, P. F.; Miller, M. J. *Tetrahedron* 1998, *54*, 1317.
 (b) Tietze, L. F.; Kettschau, G. *Top. Curr. Chem.* 1997, *189*, 1. (c) Streith, J.; Defoin, A. *Synlett* 1996, 189. (d) Weinreb, S. M. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I.; Paquette, L. A., Eds.; Pergamon Press: New York, 1991, 401.
- (16) (a) Scheiner, P.; Chapman, O. L.; Lassila, J. D. J. Org. Chem. 1969, 34, 813. (b) Givens, R. S.; Choo, D. J.; Merchant, S. N.; Stitt, R. P.; Matuszewski, B. Tetrahedron Lett. 1982, 23, 1327.
- (17) Ragaini, F.; Cenini, S.; Brignolli, D.; Gasperini, M.; Gallo, E. J. Org. Chem. 2003, 68, 460.
- (18) (a) Okuro, K.; Dang, T.; Khumtaveeporn, K.; Alper, H. *Tetrahedron Lett.* **1996**, *37*, 2713. (b) Raigani, F.; Cenini, S.; Borsani, E.; Dompé, M.; Gallo, E. Organometallics **2001**, *20*, 3390.
- (19) McClure, K. F.; Danishefsky, S. J. J. Org. Chem. 1991, 56, 850.

- (20) Ring contraction of 6-trimethylsilyloxy substituted 3,6dihydrooxazine: Shi, G.-Q.; Schlosser, M. *Tetrahedron* **1993**, *49*, 1445.
- (21) Kresze, G.; Härtner, H. Justus Liebigs Ann. Chem. 1973, 650.
- (22) Kefalas, P.; Grierson, D. S. *Tetrahedron Lett.* **1993**, *34*, 3555.
- (23) (a) Kresze, G.; Braun, H. *Tetrahedron Lett.* 1969, 1743.
 (b) Defoin, A.; Fritz, H.; Geffroy, G.; Streith, J. *Tetrahedron Lett.* 1986, 27, 3135. (c) Firl, J.; Kresze, G. *Chem. Ber.* 1966, 99, 3695.
- (24) Calvet, G.; Dussaussois, M.; Blanchard, N.; Kouklovsky, C. *Org. Lett.* **2004**, *6*, 2449.
- (25) (a) Kirby, G. W.; Sweeny, J. G. J. Chem. Soc., Chem. Commun. 1973, 704. (b) Emery, T.; Neilands, J. B. J. Am. Chem. Soc. 1960, 82, 4903.

- (26) Leach, A. G.; Houk, K. N. J. Org. Chem. 2001, 66, 5192.
- (27) (a) Cicchi, S.; Goti, A.; Brandi, A.; Guarna, A.; De Sarlo, F. *Tetrahedron Lett.* **1990**, *31*, 3351. (b) Zhang, D.; Süling, C.; Miller, M. J. J. Org. Chem. **1998**, *63*, 885.
- (28) Defoin, A.; Joubert, M.; Heuchel, J.-M.; Strehler, C.; Streith, J. Synthesis 2000, 1719.
- (29) Tolman, V.; Hanus, J.; Sedmera, P. Collect. Czech. Chem. Commun. 1999, 64, 696.
- (30) Davies, H. M. L.; Matasi, J. J.; Hodges, L. M.; Huby, N. J. S.; Thornley, C.; Kong, N.; Houser, J. H. J. Org. Chem. 1997, 62, 1095.
- (31) Evidente, A.; Piccialli, G.; Sisto, A.; Ohba, M.; Honda, K.; Fuji, T. *Chem. Pharm. Bull.* **1992**, *40*, 1937.