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Introduction
The recent development of microscopes

that allow for the examination of defects at
the atomic scale has made possible a more
direct connection between the defects and
the macroscopic response they engender
(see, e.g., the December 1999 issue of MRS
Bulletin1). Techniques ranging from high-
resolution electron microscopy, which
makes possible the determination of the
atomic-level structure of dislocation cores
and grain boundaries, to the atomic force
microscopes that enhance our understand-
ing of nanoindentation phenomena, all
pose deep challenges for the modeling of
the mechanics of materials. Each of these
experiments calls for renewed efforts to
strengthen the connection between defect
mechanics and macroscopic constitutive
descriptions. However, the link between
the defects themselves and the observed
macroscopic behavior is often a difficult
one to forge theoretically and remains an
active area of research.

Many of the fundamental mechanisms
underlying the inelastic behavior of mate-
rials are mediated by crystal-lattice defects
and are, therefore, accessible to direct atom-
istic simulation, either by means of empiri-

cal potentials or through ab initio quantum
mechanical calculations. However, the rele-
vance of atomistic calculations to the study
of the macroscopic behavior of materials
is often overstated. To be sure, there are
macroscopic phenomena that can be di-
rectly elucidated at the atomic scale. A
notable example is furnished by first-
principles calculations of the equation of
state and elastic moduli of bcc metals up
to high pressures and temperatures.2–6

However, atomic-scale mechanisms are in
general separated from the macroscopic
behavior they engender by a vast array of
intervening continuum scales. These meso-
scopic scales both filter (average) and
modulate (set the boundary conditions or
driving forces for) the atomic-scale phe-
nomena and are an essential part of the
constitution of materials.

Conversely, continuum theories rest on
the assumption that the relevant fields
that describe the state of the material vary
slowly on the atomic scale. Therefore, con-
tinuum theories a fortiori break down in
the vicinity of lattice defects or any other
entity possessing structure on the atomic
scale. Continuum theories can be “enriched”

in an attempt to incorporate additional
atomistic information and avert this break-
down. The notorious core cutoff radius
of the elastic theory of dislocations is a
case in point. Another notable example
is furnished by Mura’s theory of eigen-
distortions,7 which allows an otherwise
linear-elastic material or a harmonic lattice
to undergo crystallographic slip in discrete
Burgers vector quanta, thus substantially
extending the scope of linear elasticity.
Ultimately, however, a complete under-
standing of these phenomena, as well as
the computation of the relevant material
constants, requires atomistic modeling.

It is clear, therefore, that atomistic and
continuum theories need and reinforce each
other. This atomistic–continuum connec-
tion or “handshake” is most effectively
achieved within the framework of multi-
scale modeling. Multiscale modeling is a
“divide-and-conquer” modeling paradigm.
First, the entire range of material behav-
iors is divided into a hierarchy of length
scales. Second, the relevant “unit proc-
esses”* are identified (physical processes
that are irreducible and operate independ-
ently at a given length scale). The unit
processes at one scale represent averages
of unit processes operating at the immedi-
ately lower length scale. This relation in-
troduces a partial ordering of processes. In
addition, the unit processes should oper-
ate roughly independently: two processes
that are tightly coupled should be consid-
ered as a single unit process.

In systems for which these relations are
well defined, the modeling effort reduces
to the analysis of each unit mechanism in
turn and the computation of averages,
eventually leading to a full description of
the macroscopic behavior of the material.
This is an inductive process that must be
given appropriate initial conditions. In
many cases, such initial conditions take
the form of unit mechanisms operating at
the atomic scale and therefore are acces-
sible to atomistic modeling. In this man-
ner, atomistics informs material modeling
at higher continuum length scales and
transcends its own size strictures.

Unfortunately, the multiscale paradigm
is more easily stated than carried out in
practice. At present, the analysis of the
unit mechanisms and the characterization
of effective behavior rely either on numeri-
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cal schemes or an unrelated assortment of
analytical tools such as mean-field theories,
statistical mechanics, transition-state the-
ory, direct methods of the calculus of varia-
tions, and homogenization. Because of the
broad scope of the field and its present state
of development, multiscale modeling in
general, and mixed atomistic–continuum
modeling in particular, cannot be readily
reduced to a self-contained and unified
formal theory; it remains an art as well as
a science. In this article, we illustrate the
atomistic–continuum connection by way
of a few selected examples. More exten-
sive discussions and overviews pertaining
to micromechanics and multiscale model-
ing of materials may be found elsewhere
(e.g., see References 8–18).

The Theory of the
Quasi-Continuum

The theory of the quasi-continuum of
Tadmor et al.19,20 furnishes a computa-
tional scheme for seamlessly bridging the
atomistic and continuum realms. The chief
objective of the theory is to systematically
coarsen an atomistic description by—and
only by—the judicious introduction of
kinematic constraints. These kinematic con-
straints are selected and designed so as
to preserve full atomistic resolution where
required—for example, in the vicinity of
lattice defects—and to treat collectively
large numbers of atoms in regions where
the deformation field varies slowly on the
scale of the lattice. Thus, in its purest form,
all input into the theory concerning mate-
rial behavior is atomistic, and all approxi-
mations are strictly kinematic in nature.

Variants of the theory have been devel-
oped and documented over a series of pub-
lications,19–29 where numerous examples of
applications have also been presented. De-
tails of implementation notwithstanding,
the essential building blocks of the static
theory are: (1) the constrained minimiza-
tion of the atomistic energy of the solid,
(2) the use of summation rules to compute
the effective equilibrium equations, and
(3) the use of adaption criteria in order to
tailor the computational mesh to the struc-
ture of the deformation field. An extension
of the method to finite temperatures has
been proposed by Shenoy et al.30

The theory starts from an underlying
conventional atomistic model, which de-
livers the energy of the crystal as a function
of the atomic positions. The configuration
space of the crystal is then reduced by
identifying a subset of “representative
atoms,” which henceforth become the sole
independent degrees of freedom of the
crystal. The positions of the remaining
atoms are obtained by piecewise linear
interpolation of the representative atom

coordinates, much in the same manner as
displacement fields are constructed in the
finite element method. The effective equi-
librium equations are then obtained by
minimizing the potential energy of the
crystal over the reduced configuration
space. The number of equilibrium equa-
tions thus obtained is commensurate with
the number of representative atoms. How-
ever, a direct calculation of the effective
force field in principle requires the evalua-
tion of sums that are extended over the
full collection of atoms. Full sums may be
avoided by the introduction of approxi-
mate summation rules,19,20,25,29 whereupon
the complexity of the calculation of the
effective force field becomes of the order
of the reduced model.

The selection of the representative atoms
may be based on the local variation of the
deformation field.19,20,29 For instance, the
mesh may be adapted so that the variation
of the displacement field over each element
of the triangulation does not exceed a frac-
tion of the Burgers vector.29 This ensures
that full atomistic resolution is attained,
for example, near dislocation cores and on
planes undergoing crystallographic slip.
By contrast, far away from defects or other
highly stressed regions, the density of rep-
resentative atoms rapidly decreases, and
the collective motion of very large numbers
of atoms is dictated, without appreciable
loss of accuracy, by a small number of de-
grees of freedom. In these coarse regions,
the behavior of the model is ostensibly in-
distinguishable from that of a continuum.

The quasi-continuum method permits
direct simulation of systems demanding
the application of remote boundary condi-
tions, similar to traditional continuum
mechanics modeling. It provides atomistic
resolution at defect cores without the
stringent size limitations of straight atom-
istics. The method has been applied to a
wide array of problems in the mechanics
of materials to date. By way of example,
Miller et al.23 applied the quasi-continuum
method to the study of the interaction be-
tween an atomistically sharp crack and
grain boundaries in aluminum. The geome-
try was chosen so that the bicrystal under-
goes a generalized plane deformation. In
this manner, the analysis can be restricted
to a slab of material, with periodic bound-
ary conditions imposed in the direction
of the crack front. The computational
mesh used in calculations contained of the
order of 15,000 representative atoms, far
smaller than the total number of atoms
(�8,000,000). The mesh was designed so
as to provide full atomistic resolution in
the vicinity of the crack tip. As a concrete
example of the degree-of-freedom reduc-
tion implied by the use of the quasi-

continuum method, it is interesting to
note that a straight atomistic calculation
would have demanded of the order of
8,000,000 atoms.

Two different tilt boundaries, �21(421)
and �5( 20), were considered. The
embedded-atom method (EAM) poten-
tial, as fitted by Ercolessi and Adams31 to
the results of their first-principles calcula-
tions, was used in the analysis. The �5( 20)
boundary is distinguished by the absence
of any available slip planes that could sup-
port the nucleation of dislocations. A se-
ries of “snapshots” from each deformation
history is contrasted in Figure 1. As the
crack opens under loading, a number of
dislocations are emitted by the �21(421)
grain boundary for t � 4 (Figure 1c), where
t represents relative units of time. In addi-
tion, the crack eventually advances toward
the grain boundary and blunts. This has
the effect of partially relieving stresses near
the crack tip and diminishing the driving
force on the dislocations, which recede and
are reabsorbed by the grain boundary. The
bowing out of the grain boundary was
analyzed by Miller et al.23 from the per-
spective of both the continuum theory of
energetic forces on interfaces and disloca-
tion theory; they found that the bowed-out
geometry can be rationalized as a natural
outcome of the large crack-tip stresses. By
way of contrast, the �5( 20) boundary
geometry is relatively inactive, except for
the motion of the crack tip itself, which
advances by cleavage, impinges on the
awaiting grain boundary, and ultimately
branches along it.

Another natural area for applying the
quasi-continuum method is nanoinden-
tation.19,20,25,26,29 The calculations to date
have been motivated by a host of recent
experiments in which load-displacement
curves and subsurface dislocations have
been measured.32–35 One of the critical
questions that arises in this setting con-
cerns the conditions attendant to disloca-
tion nucleation. Upon indentation, and
after a preliminary elastic stage, the onset
of permanent deformation is mediated by
the nucleation and propagation of disloca-
tions. The dislocation nucleation event and
the early stages of growth of the nascent
dislocation loops are amenable to effective
atomistic simulation.36,37 However, in this
type of analysis, the indenter sizes that
may be considered are often considerably
smaller than experimentally employed
values, which may in turn cause premature
dislocation nucleation relative to observa-
tion. Likewise, the size of the computa-
tional domain is necessarily limited and
the dislocations soon run up against artifi-
cial boundaries. In addition, within a strict
atomistic simulation, it is difficult to ac-
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count for the effect of long-range elastic
stresses such as might be present, for ex-
ample, in a thin-film/substrate system.

A full three-dimensional quasi-
continuum analysis of the early stages of
nanoindentation in gold thin films has
been carried out by Knap and Ortiz. The
surface of the film is a (001) plane, and
the material obeys Johnson’s EAM poten-
tial.38,39 The calculations are based on a
model of a spherical indenter proposed by
Kelchner et al.37 In this model, the inden-
ter is regarded as an additional external
potential interacting with atoms in the
film. The computational domain is 2 �m �
2 �m � 1 �m in size and encompasses the
full thickness of the film. The number of

representative atoms in the initial mesh is
1853, or a reduction of 8 orders of mag-
nitude from the total number of atoms
(2.4 � 1011) in the sample. We may note in
passing that hundred-billion-atom samples
are well outside the scope of straight
atomistic methods at present.

The computational mesh for an indenter
radius of 70 nm at an indentation depth of
4.5 Å is shown in Figure 2. As may be seen
in the figure, the displacement-variation
adaption criterion causes the mesh to be
refined under the indenter, with the result
that the zone of full atomistic resolution
grows steadily, as required. The mesh con-
tains 90,272 representative atoms. This prob-
lem size is still modest compared with

that demanded by straight atomistics.
However, the adaptive character of the
method ensures that a sufficiently large,
fully resolved atomistic region lies beneath
the indenter at all times for dislocations to
nucleate and grow into. The dislocation
pattern predicted by the analysis, shown
in Figure 2, is initially symmetric and in-
volves slip on four {111} planes. The sym-
metry of this pattern is eventually broken,
and elongated dislocation loops propagate
on selected {111} planes. Away from the
indenter, the behavior of the crystal is
ostensibly linear-elastic and captures the
long-range elastic field of the indenter.
It should be carefully noted that even in
this region, all material behavior—for ex-

Figure 1. Detail of fully resolved atomistic region in the quasi-continuum analysis of crack-grain boundary interaction in aluminum. Different
“snapshots” correspond to different, increasing load levels.22 (a)–(d) Ductile case, crack �21(421): A number of dislocations are emitted by the
grain boundary ( t � 4).The crack eventually advances to meet the grain boundary and blunts.This blunting partially relieves stresses near the
crack tip and diminishes the driving force on the dislocations, which recede and are reabsorbed by the grain boundary. (e)–(h) Brittle case, crack
�5( 20): The crack advances by cleavage and impinges upon (and branches along) the grain boundary without intervening dislocation activity.1
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ample, the effective anisotropic elasticities
of the crystal—emanates directly from the
interatomic potential, and the transition
from fully resolved atomistics to contin-
uum behavior is entirely seamless.

Atomistically Informed
Continuum Models

Another important way in which atom-
istics and continua communicate at the
nanoscale is through first-principles calcu-
lations of material parameters pertaining
to continuum theories. In this scenario,
the mesoscopic model sets the functional
form of the response functions, (e.g.,
an Arrhenius transition probability), and
the atomistic models dictate the relevant
material-specific parameters of the meso-
scopic theory, such as energy barriers and
attempt frequencies.

A case in point is polycrystalline plastic-
ity. The main length scales that may be
identified in this case are the nanoscale, in
which unit processes represent the pos-
sible behaviors of single-crystal defects
such as individual dislocations or vacancies;
the mesoscale, characterized by the collec-
tive behavior of large numbers of defects,
as in dislocation dynamics; the subgrain
scale, characterized by the formation and
evolution of subgrain dislocation struc-
tures; and the polycrystalline scale, charac-
terized by the collective behavior of large
numbers of grains. Some of the unit proc-
esses that characterize the nanoscale in bcc
crystals are double-kink formation and
the thermally activated motion of kinks;
the close-range interactions between pri-

mary and “forest” (secondary) disloca-
tions, and the subsequent formation of
jogs and junctions; cross-slip; and disloca-
tion pair annihilation. Mechanisms that
play an important role at the mesoscale
include the motion of large dislocation en-
sembles through forest dislocations and
the elastic interactions between disloca-
tions, the formation of lamellar dislocation
structures at the subgrain scale, and tex-
ture evolution at the polycrystalline scale.

Atomistic calculations yield a wealth of
data that can be used to inform models of
the mechanisms just described.16 For in-
stance, it is well known that at sufficiently
high temperatures a double kink may be
nucleated in bcc screws with the assistance
of thermal activation. The subsequent mo-
tion of the kinks causes the screw segment
to effectively move forward and controls
dislocation mobility in bcc crystals.40,41 For
Mo at zero stress, Xu and Moriarty42 have
found formation energies of the order of
1 eV for kinks separated by a distance
greater than 15b, where b is the magnitude
of the Burgers vector. The core structure,
gamma surfaces, Peierls stress, and kink-
pair formation energies associated with
the motion of a/2�111� screw dislocations
in Ta and Mo have also been calculated by
Moriarty et al.16 Calculations by Wang
et al.43,44 for Ta have yielded kink forma-
tion energies and lengths in good agree-
ment with those calculated by Moriarty
et al.16,42

In the forest-dislocation theory of harden-
ing, the motion of dislocations, which are
the agents of plastic deformation in crys-

tals, is impeded by forest dislocations
crossing the slip plane. As the moving and
forest dislocations intersect, a variety of
reaction products may result, including
jogs and junctions.15,24,41,45–50 Cuitiño et al.51

have noted that the complex dislocation
patterns that develop during this process,
the intricate interactions between dis-
locations and obstacles, and the resulting
kinetics, are amenable to an efficient
phase-field representation. In essence, the
value of the phase field at a point on a slip
plane is the number of dislocations that
have passed over the point. In this repre-
sentation, the individual dislocation lines
are identified with the level contours of
the phase field at integral values.

An example of the dislocation-pattern
evolution predicted by the theory under
cyclic single slip and the resulting stress–
strain and dislocation-density curves are
shown in Figure 3. The phase-field repre-
sentation enables the tracking of complex
geometrical and topological transitions
in the dislocation ensemble, including
dislocation-loop nucleation, bow-out,
pinching, and the formation of Orowan
loops. The theory also predicts a range of
behaviors that are in qualitative agreement
with observation, including hardening and
dislocation multiplication in single slip
under monotonic loading; Taylor scaling,
both under monotonic loading and, in an
appropriate rate form, under cyclic load-
ing; the Bauschinger effect under reverse
loading; the fading-memory effect, whereby
reverse yielding gradually eliminates the
influence of previous loading; the evolution

Figure 2. Quasi-continuum calculation of a 2 �m � 2 �m � 1 �m Au(001) thin film under a 70-nm spherical indenter.The total number of atoms
in the sample is 2.4 � 1011. (a) Detail of computational mesh at 4.5 Å containing 90,272 representative atoms (initial mesh contains only 1853
representative atoms). (b) View of the dislocation pattern.The color coding shown in the figure identifies partial-dislocation core atoms (red),
stacking-fault atoms (yellow), and surface atoms (blue).
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of the dislocation density under cycling
loading, leading to characteristic “butter-
fly” curves; and others.

By way of specific example, Figure 3e
shows the effective cyclic response pre-
dicted by the theory in single slip. The
overall trends are in good agreement with
the experimental cyclic stress–strain data
for structural steels reported in Refer-
ence 52, which were obtained from tests
specially designed to exhibit the fading-
memory effect caused by reversed loading.
The evolution of the dislocation density
during a loading cycle is of considerable
interest (Figure 3f). Upon unloading, the
dislocation density decreases as a result of
the elastic relaxation of the dislocation lines.
The dislocation density bottoms out—but
does not vanish entirely—upon the re-
moval of the applied stress, (point b), as
some dislocations remained locked within
the system in the residual state. The dis-
location density increases again during re-
verse loading (segment b–c), and the cycle
is repeated during reloading (segment c–a),
giving rise to a dislocation density versus
slip strain curve in the form of a “butter-
fly.” This type of behavior is indeed
observed experimentally (Morrow, un-
published test results); it also arises in
models of the stored energy of cold work53

and is analogous to the hysteretic loops
exhibited by magnetic systems.54,55

Key inputs into this and similar theories
that may be gleaned from atomistics are dis-
location energies as a function of segment
orientation, Peierls stresses, and the strength
of dislocation–dislocation reaction prod-
ucts. The core structure and energetics of
screw dislocation segments in bcc crystals
have been extensively investigated;16,43,56,57

bcc edges have been investigated by Wang
et al.43,44 For instance, for Ta they have cal-
culated a ratio of edge to screw energies of
1.77. Olmsted and Phillips58 have used the
EAM potential, as fitted by Ercolessi and
Adams31 to the results of their first-
principles calculations, to map out the
entire range of energies of dissociated dis-
location cores in aluminum. Their results
demonstrate that the energies computed
from atomistics can be reproduced almost
exactly using linear-elasticity theory, pro-
vided that dissociation into partials is
accounted for and an appropriate stacking-
fault energy is used, which again attests to
the predictive ability of informed contin-
uum models. Duesbery and Xu59 have cal-
culated the Peierls stress for a rigid screw
dislocation in Mo to be 0.022 �, where � is
the �111� shear modulus, whereas the cor-
responding Peierls stress for a rigid edge
dislocation is 0.006 �, or about one-fourth
of the screw value. Wang et al.43,44 have
calculated a value of 0.03 � for the Peierls

Figure 3. Phase-field simulation of a dislocation ensemble moving through a random array
of point obstacles under the action of cyclic loads.51 The value of the phase field, which
counts the number of dislocations with Burgers vectors b that have passed over a given
point, is shown in color. Negative values indicate dislocations with opposite Burgers
vectors.The dislocation lines are identified with the level contours of the phase field.
(a)–(d) Dislocation patterns at different loading stages. Subsequent images show the
evolution of the dislocation patterns, after monotonic loading of a virgin material (a),
during unloading (a)–(b), reverse loading (b)–(c), unloading from the reverse maximum
load (c)–(d), and reloading (d)–(a). (e) Applied resolved shear stress (�/�0) versus average
slip. (f) Evolution of dislocation density (�/�0) average slip.
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stress of screws in Ta, which is in the ex-
pected range.

The strength of dislocation jogs and
junctions has recently been computed
using atomistic and continuum mod-
els.15,24,43–45,49 Thus, for instance, Rodney
and Phillips24 used the quasi-continuum
method to simulate three-dimensional
Lomer–Cottrell junctions and determined
that this type of junction may be unzipped
under stress. Interestingly, Shenoy et al.49

subsequently showed that essentially
identical results may be obtained with an
anisotropic elastic model, provided that
dislocation dissociation into partials is ac-
counted for, which attests to the predictive
power of informed continuum models.
Shenoy et al.49 went on to map out the
complete stress–strength diagram for junc-
tions, that is, the locus of points in stress
space corresponding to the dissolution of
the junction. Likewise, Wang et al.43,44

have exhaustively cataloged the jogs and
kinks of bcc crystals and computed their
structures and energies.

Other similar studies, too numerous to
cite here, are available in the literature.
The substantial body of data that these
studies yield may be used to inform con-
tinuum models—for example, as material
constants or interaction rules in disloca-
tion dynamics codes (see References 12,
40, 41, 50, and 51).

Concluding Remarks
The emerging synergism between the

atomistic and continuum views of mate-
rial behavior demonstrates how the link-
ing of these perspectives often results in
more theoretical power than either offers
alone. In closing, it is worth noting how
the present emphasis on multiscale mod-
eling of materials has brought together
disciplinary groups which have tradi-
tionally operated largely in isolation of
each other, including chemists, applied
physicists, materials scientists, applied
mathematicians, computer scientists, and
continuum mechanicians. 
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