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Abstract
Complex amino acids with an α-acyloxycarbonyl functionality in the side chain are easily available through epoxide opening by

chelated enolates and subsequent oxidation/Passerini reaction. This protocol works with both, aldehyde and ketone intermediates, as

long as the ketones are activated by electron-withdrawing groups. In principle Ugi reactions are also possible, allowing the genera-

tion of diamino acid derivatives.
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Introduction
Multicomponent reactions (MCR) are a very popular and

powerful tool in modern organic synthesis [1-4]. Besides a wide

range of heterocycle syntheses [5] and catalytic cross coupling

reactions [6], the isonitrile-based MCRs (IMCR) especially

have developed exceptionally well during the last few decades

[7,8]. Based on the pioneering work of Passerini, who observed

the first three-component coupling of carbonyls with carboxylic

acids and isonitriles in 1921 [9], the so-called Passerini reac-

tion became a powerful tool for the synthesis of acylated

α-hydroxyacid amides [10]. Later on, in 1961, Ugi and

Steinbrückner reported the extension of this protocol by

incorporating also a primary amine as a fourth component [11].

Therefore, the Ugi reaction is even more flexible than the

Passerini approach, but both reactions together have made the

IMCR highly popular in combinatorial chemistry [7,8].

Our group has been involved in amino acid and peptide syn-

thesis for nearly two decades [12,13], and multicomponent reac-

tions are known to play a dominant role [14,15]. In particular,

the Ugi reaction has so far been used for the construction of

exotic peptides [16-19] and cyclopeptides [20,21]. Herein we

describe a straightforward protocol towards combined α-amino

and α-hydroxy acids through Passerini reactions. Suitable

amino acid precursors with an oxygen functionality in the side
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Table 1: Synthesis of γ-oxo-amino acids.

Entry 1 R Yield (%) 2 Yield (%)
Meth. Aa Meth. Bb

1 1a [26] CH3 92 2a 78 91
2 1b [26] CH2Cl 82 2b 75 90
3 1c [26] CH2OC6H5 86 2c 76 93
4 1d CH2O-(p-Cl-C6H4) 88 2d 72 82
5 1e CH2O-(o-NO2-C6H4) 84 2e 75 87
6 1f CH2O-(p-NO2-C6H4) 83 2f 74 84

aMethod A: Swern oxidation; bMethod B: DMP oxidation.

Table 2: Passerini reactions of γ-oxo-amino acids.

Entry 2 R R’ 3 Yield (%)

1 2a CH3 Me 3a –
2 2b CH2Cl Me 3b 65
3 2c CH2OC6H5 Me 3c 57
4 2d CH2O-(p-Cl-C6H4) Me 3d 69
5 2e CH2O-(o-NO2-C6H4) Me 3e 62
6 2f CH2O-(p-NO2-C6H4) Et 3f 69
7 2d CH2O-(p-Cl-C6H4) Et 3g 68

chain can be obtained by chelated enolate Claisen rearrange-

ment [22,23] or transition metal-catalyzed allylic alkylation of

chelated enolates [24] and subsequent oxidative cleavage of the

γ–δ-unsaturated amino acids obtained.

Results and Discussion
An alternative approach is based on regioselective ring opening

of epoxides, followed by oxidation of the hydroxy amino acid

formed. While aryl-substituted epoxides react preferentially at

the benzylic position giving rise to the terminal primary alco-

hols [25], the corresponding alkyl-substituted epoxides provide

secondary alcohols 1 by nucleophilic attack of the enolate at the

sterically least-hindered position [26]. These alcohols can easily

be oxidized by Swern-oxidation [27] or with Dess–Martin-

periodinane (DMP) [28], giving rise to the required γ-oxo-

amino acids 2 (Table 1). In principle both protocols are suitable

for oxidation, but in general the yields obtained were better with

DMP (82–93%), while under Swern conditions the yields were

in the range of 75 ± 3%.

With these γ-oxo-α-amino acids 2 in hand, we investigated the

Passerini reactions under neat conditions with acetic acid as the

(liquid) acidic component and isocyano acetates as the reactive

component (Table 2). Interestingly, no reaction was observed
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Scheme 1: Passerini reactions of α,β-unsaturated aldehyde 5.

with the methyl-substituted oxo acid 2a (entry 1); only the

starting material was recovered. For this reason, we switched to

activated ketones bearing an electron-withdrawing group at the

α-position. With the chlorinated ketone 2b the yield was 65%

(entry 2), and similar results were obtained with a range of

aryloxy-substituted derivatives 2c–2f (entries 3–7). The new

stereogenic center was formed without significant selectivity.

To increase the synthetic potential of this protocol we also

applied the Pd-catalyzed opening of a vinyl epoxide with our

chelated enolate (Scheme 1) [29]. In this case an amino acid 4

with an allyl alcohol side chain was formed which could be

oxidized to the α,β-unsaturated aldehyde 5. Although these

types of aldehydes are critical candidates in Passerini and Ugi

reactions [30], we were interested to see if we could also obtain

unsaturated Passerini adducts by this procedure. Our first

attempts in CH3OH and CH2Cl2 were unsuccessful. While no

reaction was observed in CH2Cl2, in CH3OH the only product

(besides starting material) was the unsaturated acetal resulting

from a nucleophilic attack of the solvent on the aldehyde group.

Therefore, we decided to run the reaction also under neat condi-

tions as reported for the γ-oxo-amino acids. With acetic acid as

the acidic component the yield of 6a was comparable to the

previous examples. In principle, other acids such as benzoic

acid or Cbz-protected glycine can be used as well. The lower

yield obtained in these cases probably results from stirring

problems under these solvent-free conditions.

To circumvent the problems caused by the α,β-unsaturated alde-

hyde, we hydrogenated 4 before oxidation to obtain the satu-

rated aldehyde 7. And indeed, under our optimized reaction

conditions the addition product 8 could be obtained in 80%
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yield (Scheme 2). In principle, Ugi reactions are also possible,

as illustrated with the formation of 9, although the yield was

significantly lower in this case and the products are formed as a

1:1 diastereomeric mixture.

Scheme 2: Passerini and Ugi reaction of saturated aldehyde 7.

Conclusion
In conclusion, we showed that the ring opening of epoxides,

either directly or Pd-catalyzed, with chelated enolates combined

with Passerini reactions is a suitable tool for the synthesis of

highly functionalized α-hydroxy and α-amino acid derivatives.

These new compounds are interesting building blocks for

peptide-derived drugs. Attempts to improve the yields and to

evaluate the scope and limitations are currently underway.

Supporting Information
Supporting Information features detailed experimental

procedures, NMR as well as analytical data of all

compounds.

Supporting Information File 1
Experimental section.
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supplementary/1860-5397-7-151-S1.pdf]
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