

Journal of Alloys and Compounds 417 (2006) 69-71

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Mechanochemical synthesis of ultrafine TiAl₃ powder and its catalytic effect on dehydrogenation of Li₃AlH₆

Jae-Hyeok Shim, Gil-Jae Lee, Young Whan Cho*

Nano-Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea

Received 20 August 2005; accepted 1 September 2005 Available online 27 October 2005

Abstract

Ultrafine TiAl₃ powder has been mechanochemically synthesized using a reaction between TiCl₃, AlCl₃ and Mg. MgCl₂ byproduct was removed from the product mixture by dissolving it selectively in distilled water. This ultrafine TiAl₃ whose primary particle size is about 100 nm shows a quite good catalytic effect on reducing the dehydrogenation temperature of Li₃AlH₆. Although its catalytic ability does not exceed well-known titanium chlorides, the inevitable loss in hydrogen storage capacity by introducing catalyst is less with TiAl₃ than with TiCl₃. © 2005 Elsevier B.V. All rights reserved.

Keywords: Hydorgen storage materials; Alanates; Mechanochemical synthesis; Catalyst

1. Introduction

Akali and alkali-earth metal alanates (aluminum hydrides) have attracted much interest as lightweight hydrogen storage materials for on-board applications since Bogdanovic and Schwickardi [1] discovered that reversible hydrogen storage and accelerated kinetics in sodium alanate (NaAlH₄) could be achieved by doping with Ti-containing catalysts. The catalytic role of Ti in alanates is, however, still poorly understood, although various attempts to understand what form of Ti resides in alanates have been made so far [2–9]. The results of recent investigations [2,4,6,8] seem to support a conjecture that Ti in situ forms TiAl₃ when introduced into alanates, although there is another conjecture that Ti substitutes for metal sites in alanates [3,7,9].

If Ti does form TiAl₃ in alanates and act as an effective catalyst, it is worthwhile to confirm its efficacy by adding TiAl₃ instead of TiCl₃ into alanates because TiCl₃ reduces hydrogen storage capacity of alanates by reacting with part of alanates to form impotent salts such as NaCl and LiCl even before dehydrogenation. In fact, Balema et al. [2] and Resan et al. [10] have recently attempted to confirm the catalytic ability of TiAl₃ by dispersing TiAl₃ powder prepared by ball milling arc

0925-8388/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2005.09.039

melted sample and commercial powder (<150 μ m), respectively, into LiAlH₄. They showed that the addition of TiAl₃ indeed decreased the dehydrogenation starting temperature of LiAlH₄ by about 10 °C, although it may not be significant. It is desirable to produce as fine TiAl₃ powder as possible because it should play an active catalytic role with minimum amount [11,12]. Mechanical milling is one of the simple and cost-effective methods for producing TiAl₃ powders [13,14]. However, it might be difficult to obtain fine TiAl₃ particles using conventional milling techniques because TiAl₃ is relatively ductile and thus they easily agglomerate during milling [14].

In this paper, we report the synthesis of ultrafine TiAl₃ particles using a mechanochemical reaction. Their catalytic effect on the dehydrogenation of $L_{i_3}AlH_6$ has also been confirmed and compared with that of TiCl₃. The main reason to adopt $L_{i_3}AlH_6$ instead of $LiAlH_4$ in the present study is that the hydrogen pressure needed for reverse hydrogenation reaction is estimated to be an order of 10^4 bar [15].

2. Experimental procedures

Ninety-nine percent pure TiCl₃ and 99.9% pure AlCl₃ were purchased from Sigma–Aldrich and 99.8% pure Mg was from Alfa-Aesar. A mixture of TiCl₃, AlCl₃ and Mg with a molar ratio of 1:3:6 was prepared and then a 1 g mixture was charged together with seventeen 7.9 mm diameter Cr-steel balls into a tool-steel vial under an Ar atmosphere in a glove box. The ball-to-powder weight ratio (BPR) was approximately 35:1. The mixture was milled in a SPEX 8000 mill for 4 h. The milled powder was rinsed in distilled water and filtered in order

^{*} Corresponding author. Tel.: +82 2 958 5465; fax: +82 2 958 5379. *E-mail address:* oze@kist.re.kr (Y.W. Cho).

to remove chloride formed during milling. The powder was characterized by X-ray diffraction (XRD) using Bruker D8 Advance with Cu K α radiation and scanning electron microscopy (SEM) using FEI XL-30 FEG.

 Li_3AlH_6 was mechanochemically synthesized by milling 95% pure LiAlH₄ and 95% pure LiH purchased from Sigma–Aldrich as follows. A mixture of LiAlH₄ and LiH with a molar ratio of 1:2 was prepared and then a 5 g mixture was charged together with ten 14.0 mm and thirty 9.5 mm diameter zirconia balls into a silicon nitride vial under an Ar atmosphere in a glove box. The BPR was approximately 37:1. The mixture was milled in a Fritsch P4 planetary mill at 350 rpm for 4 h 30 min.

In order to confirm the catalytic effect of TiAl₃ synthesized in the present work on dehydrogenation of Li₃AlH₆, 5 mol% TiAl₃ was dispersed into Li₃AlH₆ by milling them with a SPEX 8000 mill for 30 min at the same milling condition as the TiAl₃ synthesis. TiCl₃ was also dispersed for comparison. The dehydrogenation behavior of Li₃AlH₆ with and without catalysts was analyzed by differential scanning calorimetry (DSC) using NETSCH DSC204 and thermogravimetry (TG) using NETSCH TG209 coupled with NETSCH QMS403C. The heating rate was 2 °C/min and the flow rate of 99.9999% Ar gas was 50 ml/min for both DSC and TG measurements.

3. Results and discussion

XRD patterns of the mixture of TiCl₃, AlCl₃ and Mg milled for 4 h and rinsed in water after the milling are presented in Fig. 1. TiAl₃ and MgCl₂ are identified as reaction products after milling (Fig. 1a). It is found that TiAl₃ has the L1₂ structure, although D0₂₂ is the most energetically stable [16]. L1₂-TiAl₃ rather than D0₂₂ has been observed usually observed during milling, because the L1₂ structure is kinetically advantageous [13]. Starting materials such as TiCl₃, AlCl₃ and Mg are not observed, which indicates that the following reaction is completed during milling.

$$TiCl_3 + 3AlCl_3 + 6Mg \rightarrow TiAl_3 + 6MgCl_2$$
(1)

As shown in Fig. 1b, relatively pure L_{12} -TiAl₃ is easily obtained, as MgCl₂ formed during milling is dissolved in water and insoluble TiAl₃ is filtered.

Fig. 2 shows SEM micrograph of the TiAl₃ powder obtained in the present work. The primary particle size is around 100 nm and it exhibits an irregular shape, although most particles are agglomerated. It is ultrafine, compared to coarse particle size (>10 μ m) of TiAl₃ obtained from milling of a mixture of Ti and

Fig. 1. XRD patterns of (a) $TiAl_3/MgCl_2$ synthesized by mechanical milling and (b) $TiAl_3$ obtained by rinsing in water after the milling.

Fig. 2. SEM micrograph of the synthesized TiAl₃ powder.

Al powders [14]. It can be concluded that this chloride-mediated mechanochemcal reaction is very effective in reducing product particle size, as Tsuzuki and McCormick [17] already showed for various mechanochemical reaction systems.

XRD patterns of Li₃AlH₆ catalyzed with TiAl₃ and TiCl₃ are presented in Fig. 3. It seems that TiAl₃ is stable in Li₃AlH₆ without any reaction or transformation (Fig. 3a), although most of TiAl₃ peaks except for (2 2 0) overlap with those of Li₃AlH₆. It is believed that TiCl₃ dispersed into Li₃AlH₆ reacts with part of Li₃AlH₆ and forms LiCl and TiAl₃ as reaction products. While the formation of LiCl is clear as shown in the XRD pattern (Fig. 3b), the formation of TiAl₃ is not evident with a small amount of TiCl₃. This is presumably because the crystallite size of TiAl₃ in situ formed in Li₃AlH₆ is too small to identify with XRD. However, Graetz et al. [6] reported that the formation of nanocrystalline TiAl₃ in NaAlH₄ catalyzed with 2 and 4 mol% TiCl₃ was observed by high-energy X-ray absorption and we also observed the obvious formation of TiAl₃ in Li₃AlH₆ catalyzed with 17 mol% TiCl₃ using XRD [18].

Fig. 4 shows DSC curves of Li_3AlH_6 with and without catalysts. All specimens exhibit big endothermic peaks according to the following dehydrogenation reaction:

$$Li_3AlH_6 \rightarrow 3LiH + Al + 3/2H_2 \tag{2}$$

Fig. 3. XRD patterns of Li₃AlH₆ catalyzed with (a) TiAl₃ and (b) TiCl₃.

Fig. 4. DSC curves of Li₃AlH₆ with and without catalysts.

Without catalysts, Li₃AlH₆ start to decompose releasing H₂ gas (dehydrogenation) at about 190 °C and the peak temperature is about 210 °C. On the other hand, the dehydrogenation of Li₃AlH₆ containing TiAl₃ start at about 160 °C and exhibit the peak at about 180 °C. This decrease in dehydrogenation temperature is quite large compared to those of Balema et al. [2] and Resan et al. [10]. This might be attributed to the ultrafine particle size of TiAl₃ prepared in the present work. However, the catalytic effect of ultrafine TiAl₃ is not comparable to that of TiCl₃ showing the dehydrogenation starting temperature of about 130 °C. It is not fully understood yet why there exists a difference in catalytic ability between TiAl₃ and TiCl₃. This is presumably because the in situ formation and dispersion of TiAl₃ by the reaction between TiCl₃ and Li₃AlH₆ is more advantageous than the direct dispersion of TiAl₃ in aspects of the uniform dispersion and fine particle size of the catalyst and oxide layers on the surface of the TiAl₃ particles formed during the preparation decrease the catalytic ability.

TG curves show the amount of released hydrogen as well as the dehydrogenation temperature region (Fig. 5). Li₃AlH₆ without catalysts releases about 4.8 wt.% during dehydrogenation, which is lower than the theoretical hydrogen storage capacity 5.6 wt.% due to the low purity of raw materials and the partial decomposition of Li₃AlH₆ during mechanochemical prepara-

Fig. 5. TG curves of Li₃AlH₆ with and without catalysts.

tion. It is noted that Li_3AlH_6 catalyzed with TiAl₃ releases larger amount of hydrogen (4.5 wt.%) than TiCl₃ (4.0 wt.%) as expected. This is because TiCl₃ decomposes part of Li_3AlH_6 during milling for dispersion before dehydrogenation and thus decreases the hydrogen storage capacity of Li_3AlH_6 . Therefore, it will be favorable to add TiAl₃ instead of TiCl₃ into alanates in order to minimize the loss in hydrogen storage capacity.

4. Conclusions

Ultrafine TiAl₃ powder has been synthesized using a mechanochemical reaction between TiCl₃, AlCl₃ and Mg. The primary particle size of TiAl₃ is around 100 nm and its particle shape is irregular. The addition of ultrafine TiAl₃ decreases the dehydrogenation temperature of Li₃AlH₆ by about 30 °C compared to Li₃AlH₆ without any catalyst. Although TiCl₃ is more effective in reducing the hydrogenation temperature, it is demonstrated that the use of ultrafine TiAl₃ catalyst is more favorable than TiCl₃ in terms of hydrogen storage capacity.

Acknowledgements

This work has been financially supported by the Hydrogen Energy R&D Center under the 21st Century Frontier R&D Program of the Ministry of Science and Technology, Republic of Korea.

References

- [1] B. Bogdanović, M. Schwickardi, J. Alloys Compd. 253-254 (1997) 1.
- [2] V.P. Balema, J.W. Wiench, K.W. Dennis, M. Pruski, V.K. Pecharsky, J. Alloys Compd. 329 (2001) 108.
- [3] D. Sun, T. Kiyobayashi, H.T. Takeshita, N. Kuriyama, C.M. Jensen, J. Alloys Compd. 337 (2002) L8.
- [4] E.H. Majzoub, K.J. Gross, J. Alloys Compd. 356-357 (2003) 363.
- [5] M. Felderhoff, K. Klementiev, W. Grünert, B. Spliethoff, B. Tesche, J.M.B. von Colbe, B. Bogdanović, M. Härtel, A. Pommerin, F. Schüth, C. Weidenthaler, Phys. Chem. Chem. Phys. 6 (2004) 4369.
- [6] J. Graetz, J.J. Reilly, J. Johnson, A.Yu. Ignatov, T.A. Tyson, Appl. Phys. Lett. 85 (2004) 500.
- [7] J. Íñiguez, T. Yildirim, T.J. Udovic, M. Sulic, C.M. Jensen, Phys. Rev. B 70 (2004) 060101(R).
- [8] A.G. Haiduc, H.A. Stil, M.A. Schwarz, P. Paulus, J.J.C. Greelings, J. Alloys Compd. 393 (2005) 252.
- [9] O.M. Løvvik, S.M. Opalka, Phys. Rev. B 71 (2005) 054103.
- [10] M. Resan, M.D. Hampton, J.K. Lomness, D.K. Slattery, Int. J. Hydrogen Energy 30 (2005) 1417.
- [11] B. Bogdanović, M. Felderhoff, S. Kaskel, A. Pommerin, K. Schlichte, F. Schüth, Adv. Mater. 15 (2003) 1012.
- [12] M. Fichtner, O. Fuhr, O. Kircher, J. Rothe, Nanotechnology 14 (2003) 778.
- [13] T. Klassen, M. Oehring, R. Bormann, J. Mater. Res. 9 (1994) 47.
- [14] K.I. Moon, K.S. Lee, J. Alloys Compd. 264 (1998) 258.
- [15] J.-W. Jang, J.-H. Shim, Y.W. Cho, B.-J. Lee, Thermodynamic calculation of LiH ↔ Li₃AlH₆ ↔ LiAlH₄ reactions, J. Alloys Compd., submitted for publication.
- [16] T. Hong, T.J. Watson-Yang, A.J. Freeman, T. Oguchi, J. Xu, Phys. Rev. B. 41 (1990) 12462.
- [17] T. Tsuzuki, P.G. McCormick, J. Mater. Sci. 39 (2004) 5143.
- [18] J.-H. Shim, G.-J. Lee, Y.W. Cho, Reaction Products between TiCl₃ Catalyst and Li₃AlH₆ during mechanical mixing, J. Alloys Compd., doi:10.1016/j.jallcom.2005.07.079.