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Abstract We report an efficient synthesis of the novel 1,4,6,7-tetra-
hydropyrazolo[3,4-c]pyridin-5-one scaffold with the potential for incor-
poration of alkyl or aryl substituents at the C-3 and N-6 positions. The
route utilises a Dieckmann condensation to install the lactam ring, fol-
lowed by a hydrazine cyclisation to build the fused pyrazole ring.
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Indazoles and azaindazoles are important heterocyclic
cores for exploration as drug scaffolds.1 In comparison with
indazole (1) and, to a lesser extent, 6-azaindazole (2), the
analogous fused pyrazole-lactam 3 is a significantly less lipo-
philic scaffold for structural elaboration, as demonstrated
by their ClogP values2 (Figure 1).

Figure 1  Generic indazole, 6-azaindazole and 1,4,6,7-tetrahydropyra-
zolo[3,4-c]pyridin-5-one scaffolds

Compounds based on core 3 should also have improved
aqueous solubility compared with analogous compounds
based on cores 1 and 2, as a result of their reduced planari-
ty.3 Compounds with fused pyrazole-lactam cores are
known to be biologically significant, and examples include
Apixaban (4), which is an inhibitor of blood coagulation fac-
tor Xa,4 and 5 (Figure 2), which was recently reported as
having antitumour activity.5 The synthesis of substituted
1,4,6,7-tetrahydropyrazolo[3,4-c]pyridin-5-one (3) was re-
quired for an AstraZeneca medicinal chemistry project and
this paper describes how it was achieved.

Figure 2  Biologically active compounds based on fused pyrazole-lact-
am scaffolds

Duplantier et al. described the synthesis of 4,5,6,7-tetra-
hydropyrazolo[3,4-c]pyridin-7-ones6 (Scheme 1) proceed-
ing via keto ester 6, which underwent a Dieckmann con-
densation with sodium methoxide to give the vinylogous
acid 7, which then underwent cyclisation with an aryl hy-
drazine to give a mixture of the two 4,5,6,7-tetrahydropyra-
zolo[3,4-c]pyridin-7-one regioisomers. It should be noted
that the authors only reported the synthesis of compounds
bearing alkyl substituents at the C-3 position of the core.

We have been successful in developing a similar ap-
proach to the synthesis of 6,7-dihydro-1H-pyrazolo[3,4-c]-
pyridin-5(4H)-ones 8 (Table 1). The success of this new
route required finding reliable conditions for formation of
the γ-keto acid intermediates 10. Initial attempts focussed
on reaction of an aryllithium species (derived from the aryl
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bromide through lithium–bromine exchange with n-BuLi)
with succinic anhydride to go straight to the desired γ-keto
acid.7

This approach did not yield the desired product, so, after
attempting a palladium-catalysed approach,8 our attention
turned to the reaction of an organometallic species with an
acid chloride to form the desired ketone. Organolithium
species were deemed too reactive and incompatible with
the desired functionalities (e.g., ester, nitrile) so we investi-
gated the use of organocuprate species. These were pre-
pared by transmetallation of an organozinc or organomag-
nesium species using commercial copper cyanide–lithium
chloride complex.9

The cuprate derived from (3-ethoxy-3-oxopropyl)zinc
bromide reacted with benzoyl chloride or 4-methylbenzoyl
chloride to give the corresponding γ-keto esters in 71 and
77% yield, respectively (Scheme 2). Reaction of this same al-
kylcuprate with 3-cyanobenzoyl chloride, however, failed
to give any γ-keto ester. An alternative method was used in
this case; the aryl Grignard of 3-bromobenzonitrile was
formed, transmetallated with CuCN·2LiCl and subsequently
reacted with methyl 4-chloro-4-oxobutanoate to give the
desired γ-keto ester in 84% yield. This method is suited to
electron-deficient aryl bromides such as 3-bromobenzoni-
trile. However, more electron-rich aryl bromides (e.g., bro-
mobenzene or 4-bromotoluene) are less suited to this
method because they undergo bromine–magnesium ex-
change only very slowly.10

With the γ-keto esters 9 in hand, the corresponding
γ-keto acids 10 were formed by base hydrolysis and were
then coupled using propanephosphonic cycloanhydride
(T3P) with amino esters 11 to give amide products 12. Due
to its reduced nucleophilicity, methyl 2-(phenylamino)ace-
tate required two equivalents of acid and overnight stirring
for the reaction to proceed, but even then the yield of 12f
was moderate (63%; Table 1). Intermediates 12 were then
subjected to a Dieckmann condensation with LHMDS at re-
flux. The resulting vinylogous acid intermediates 13 were
then heated to reflux with hydrazine in ethanol to give 6,7-
dihydro-1H-pyrazolo[3,4-c]pyridin-5(4H)-ones 8. The com-
bined yields for these two final steps varied from 66% (8e)
to 21% (8f). The Dieckmann condensations generally gave
just one major product; however, the cyclisation with
methyl 2-(4-oxo-N,4-diphenylbutanamido)acetate gave an
equal amount of an unknown regioisomer, which could not
be separated from desired 13f. Upon reaction with hydra-
zine, 8f precipitated out of the reaction mixture. The hydra-
zine reactions were generally complete within 24 h; how-
ever, cyclisation of the intermediate hydrazones proceeded
more slowly when electron-withdrawing substituents were
present (Table 1, 8c and 8f). The final cyclisation was also
attempted with vinylogous acid 13a and methyl- and aryl-
hydrazines (Table 2). The reaction with methylhydrazine
gave an inseparable mixture of regioisomers, but it is as-
sumed that 14a is the major regioisomer by analogy to the
reactions of phenylhydrazine and 2-pyridylhydrazine,

Scheme 1  Synthetic route to 4,5,6,7-tetrahydropyrazolo[3,4-c]pyridin-7-ones6
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Scheme 2  Synthesis of γ-keto acid intermediates 10
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Table 1  Synthetic Route to 6,7-Dihydro-1H-pyrazolo[3,4-c]pyridin-5(4H)-ones 8

Entry R1 R2 Isolated yield (%)

12 13 8

a DMBa Ph 88 74 71

b DMBa 4-MeC6H4 83 54 82

c DMBa 3-NCC6H4 82 70 58

d DMBa Meb 98 57 88

e Prc Ph 85 79 83

f Ph Ph 63 50 43
a DMB = 2,4-dimethoxybenzyl.
b Commercial levulinic acid was used.
c Commercial methyl 2-(propylamino)acetate was used.
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where it was possible to isolate the major regioisomer and
this was confirmed in both cases as the 2-substituted pyra-
zole (Table 2, 14b and 14c). It is postulated that when the R2

group is phenyl, as in 13a, the vinylogous acid exists pre-
dominantly as the tautomer shown in Table 2, which may
explain the regioselectivity observed on reaction with sub-
stituted hydrazines.

To allow the potential for further derivatisation11 of the
1,4,6,7-tetrahydropyrazolo[3,4-c]pyridin-5-one core, it was
demonstrated that the DMB protecting group could be
removed by heating 8b with trifluoroacetic acid to give the
N-H lactam 16 in 58% yield (Scheme 3).

Scheme 3  Deprotection of 2,4-dimethoxybenzyl protecting group

We have developed an efficient route12–14 to a novel tet-
rahydropyrazolo[3,4-c]pyridin-5-one scaffold. This ap-
proach allows for alkyl or aryl substituents to be incorpo-
rated at the C-3 and N-6 positions. Further structural diver-
sity can be achieved by the use of suitable protection on
the lactam nitrogen, such as the DMB group. This allows the
N-1/N-2 and N-6 positions on this scaffold to be further
elaborated, once the core has been constructed.
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Scheme 4 γ-Keto ester formation by palladium catalysis8
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