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Abstract: We report here a new efficient regioselective synthetic
route to 4-bromomethylacridine and to 4,5-bis-(bromomethyl)acri-
dine, two interesting starting materials for various 4-methyleneacri-
dine and 4,5-bis-(methylene)acridine derivatives, in one step by
direct bromomethylation of acridine with bromomethylmethylether
(BMME). We also describe some biologically interesting diesters
derivatives from the corresponding 4,5-bis(hydroxymethyl)acridine
precursor.
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Regioselective functionalization of position 4 of the acri-
dine ring has been poorly described in the literature. The
first example reported by Hess in 1971 is about the syn-
thesis of 4-phthalimidoacridines from acridine, involving
a Tscherniac–Einhorn reaction.1 This regioselective reac-
tivity seems to be possible because of the protonation of
the acridine ring nitrogen. We did recently optimize this
method to synthesize various 4-amino- and 4-hydroxy-
methylacridine derivatives.2 Halomethylacridines are also
synthetic precursors of choice that were widely described
in the literature and extensively used in our laboratory, but
their synthesis generally involves many steps.3 In search
for an efficient method to get halomethylacridines, we de-
cided to exploit the particular reactivity of the lateral phe-
nylenes of protonated acridine. Many assays were carried
out in order to functionalize directly the acridine ring, but
classical chloromethylation methods,4,5 involving formal-
dehyde, paraformaldehyde or trioxane with HCl/ZnCl2 or
H2SO4, under heating, microwave irradiation or sonica-
tion, were completely inefficient. Neither chloromethyl-
acridines nor hydroxymethylacridines were obtained and
the starting acridine was totally recovered every time.

Use of chloromethylethylether (CMEE, 2) under strong
acidic conditions gave some traces (less than 5% conver-
sion) of product 3 and 4 that were isolated by column
chromatography (Scheme 1). Because of these encourag-
ing results, we decided to follow the halomethylether way.

Bromomethylmethylether (BMME, 5) was the reagent of
choice for this reaction. It has already been described by
Taylor as an efficient bromomethylating agent of aro-
matic compounds.5 As shown in Scheme 2, under strong

acidic conditions, 5 reacts with acridine by electrophilic
substitution regioselectively at position 4. Compound 6
was obtained in one step and under mild conditions6 with
a yield of 31%. In the previously reported synthetic
route,3b 6 was obtained in 4 steps and with only 27% over-
all yield. However, unlike the results described in the
Hess article, in which mono- or di-alkylation was depend-
ing only on the quantity of electrophile,7 in the case of
BMME reaction, monoalkylation was difficult to carry
out in higher yield. It seems that the intermediate 4-bro-
momethylacridinium has a higher reactivity towards N-
protonated 6 than acridinium, leading to 4,5-bis(bromom-
ethyl)acridine as by-product. We decided to exploit this
particular reactivity to get 4,5-bis(bromomethyl)acridine.
Increasing BMME/acridine ratio at a controlled tempera-
ture was critical to get the bisfunctional product in good
yield. This method afforded 4,5-bis(bromomethyl)acri-
dine 7 with a suitable yield of 64%.8

4,5-Bis(bromomethyl)acridine was easily converted into
the corresponding 4,5-bis(hydroxymethyl)acridine (8) us-
ing the classical CaCO3 hydrolyzing method.9 Yield after
column chromatography (CH2Cl2/EtOAc, 5/5 v:v) was
92%.

Several diester derivatives 9a–h (Scheme 3) were pre-
pared using classical esterification methods with various
acyl chlorides and DMAP as activator.10 These com-
pounds were synthesized because of their structural simi-
larities with various anticancer and antileishmanian
drugs.11

In conclusion, we have described for the first time the
one-pot regioselective synthesis of 4-bromomethyl-
acridine and 4,5-bis(bromomethyl)acridine by taking

Scheme 1 Chloromethylation of acridine.
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advantage of the particular reactivity of position 4, respec-
tively 5, of acridine enhanced by protonation of the central
ring nitrogen. We also reported for the first time the 4,5-
bis(hydroxymethyl)acridine, which undergoes esterifica-
tion to give new 4,5-bisfunctional acridinic esters 9a–h
that are potential anticancer and antileishmanian drugs
(Table 1).
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Scheme 2 Bromomethylation of acridine.

Scheme 3 a) CaCO3, H2O/Dioxane, reflux; b) RCOCl, DMAP,
Et3N, CH2Cl2.

Table 1 Yields and Melting Points of Diester Derivatives

Moiety R Yield (%) Mp (°C)

a Ph 79 160

b 4-Cl-C6H4 79 170

c 4-F-C6H4 82 186

d 4-MeO-C6H4 81 199

e 4-Me2N-C6H4 67 263

f CH2=CH 32 104

g 4-Cl-Prop 65 –a

h 4-(Ph-N=N)-C6H4 42 218

a Compound 9g is an oil.
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