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Abstract: An efficient tandem [3+2] cycloaddition–elimination
cascade sequence has been developed enabling assembly of the
pharmacologically relevant pyrrolo-[3,4-c]pyrrole-1,3-dione che-
motype. The strategy involves simple mixing of readily accessible
oxazolin-2-ones and pyrrole-2,5-diones in the presence of base un-
der mild conditions, rendering the title compounds in typically ex-
cellent yields. Of note, this route allows for installation of three
points of diversity and is ideal for combinatorial applications and
parallel synthesis production campaigns.
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The pyrrolo-[3,4-c]pyrrole-1,3-dione moiety is an inter-
esting multipurpose scaffold that can be found in pharma-
cologically relevant molecules displaying several
different activities encompassing analgesic,2 antidepres-
sant,3 antineoplasic,4 hypocholesterolemic, and
hypolipidemic5 properties. Moreover, such a nucleus is
contained in macromolecules such as porphyrins6 and
porphins,7 which have potential applications in photody-
namic therapy.8

Notwithstanding the enticing scenario mentioned above,
this chemotype has been quite underexplored to date, and
only a small number of scientific works dealing with its
applications in the medicinal chemistry arena are avail-
able in the literature.

In this context, scarce synthetic accessibility is a severe
limitation hampering extensive studies and pharmacolog-
ical screening of pyrrolo-[3,4-c]pyrrole-1,3-diones. Gen-
eral strategies for the preparation of such compounds in
fact rely on lengthy multistep protocols consisting of un-
friendly and time-consuming procedures, resulting in very
low overall yields after multiple synthetic operations and
purifications steps.

For example, methodologies using α,β-diacetylsuccinate
as the starting material usually involve five steps,9 and an-
other approach employing 3,4-dicarboxypyrroles as key
intermediates involves eight synthetic steps with overall
yields below 9%.10 Prompted by our experience11 in de-
signing concise, efficient, and diversity-enabling routes
toward druglike heterocyclic chemotypes, and inspired by
a recent publication describing the use of oxazolin-2-ones
1 as partners in 1,3-dipolar cycloadditions with dipolaro-
philes,12 we envisioned the possibility to engage 1 in a cy-
cloaddition––elimination process with pyrrole-2,5-diones
2. Such a chemical transformation was expected to be trig-
gered by the well-known azomethine ylide character13 of
the resonance form 1′ and to render the title compounds 5
after elimination of hydrobromic acid and carbon dioxide
during the breakdown of intermediate species 3 and 4, re-
spectively (Scheme 1).

Scheme 1  Proposed mechanism for the route toward products 5
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The main advantage of this convergent protocol over ex-
isting procedures is the ready availability of the starting
materials 1 and 2, which can be both prepared from com-
mercially available products by means of extremely
straightforward methodologies. As such, oxazolin-2-ones
bearing a trifluoromethyl substituent in the 4-position
were obtained in nearly quantitative yields by simply mix-
ing (route A) α-amino acids 6 and trifluoroacetic anhy-
dride 7.14,15 Alternatively (route B), building blocks 1,
endowed with a 4-fluorophenyl residue in the 4-position,
could easily be accessed via a two-step procedure involv-
ing a coupling between acyl chlorides 9 and α-amino acids
6 followed by cyclodehydration (Scheme 2).16,17 It is note-
worthy that none of these synthetic operations required
subsequent purifications, as the products were always re-
covered devoid of significant impurities.

In a similarly operationally friendly fashion, a reaction be-
tween bromomaleic anhydride 10 and primary amines in
acetic acid18 smoothly afforded pyrrole-2,5-diones in high
yields (Scheme 3).19

Scheme 3 Preparation of pyrrole-2,5-diones 2

Having prepared in a straightforward manner a satisfacto-
ry diversity-enhancing pool of reactants, we then designed
the key step of our protocol, the one-pot, sequential cyclo-
addition–elimination process that led to the title com-
pounds 5 (Table 1). Since 1,3-dipolar cycloadditions are
known to work best in nonpolar solvents, due to the con-
certed nature of their mechanism,13d toluene was selected
as the reaction medium. For the sake of practical ease and
cost reduction, reactions should ideally be carried out in
the absence of catalyst or additive. In this context, [3+2]
cycloadditions often proceed spontaneously. Consequent-
ly, initial studies focused on simply mixing the two start-

ing materials 1 and 2 in toluene and stirring the resulting
solution overnight. Unfortunately, stirring at room tem-
perature (Table 1, entry 1) and prolonged heating at 80 °C
(Table 1, entry 2) both proved unsuccessful, and no reac-
tion took place. Addition of a base was therefore investi-
gated, as it was thought likely to trigger both the
formation of the azomethine ylide form 1′ and the dehy-
drobromination of intermediate 3. Gratifyingly, one
equivalent of 1,8-diazabicycloundec-7-ene (DBU) proved
to be capable of promoting the process (Table 1, entry 3),
resulting in a moderate 46% yield after 24 hours at room
temperature. Increments of up to two equivalents of DBU
were thus evaluated, and a dramatic improvement in yield
and shortening in reaction time was observed (Table 1, en-
try 4). Finally, when diisopropylethylamine (DIPEA) was
employed (Table 1, entry 5), clean, almost quantitative
formation of 5a was detected within 15 minutes, and the
expected product was recovered in a 91% yield upon col-
umn chromatography.

At this stage, in addition to mass spectrometry and NMR
experiments, the structure of 5a was unambiguously de-
termined by means of X-ray crystallography.21

Scheme 2 Preparation of oxazolin-2-ones 1
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Table 1 Optimization of the Cycloaddition–Elimination Protocol20

Entry Conditions Yield (%)

1 toluene, r.t., 24 h n.r.a

2 toluene, 80 °C, 24 h n.r.a

3 toluene, DBU (1 equiv), r.t., 24 h 46

4 toluene, DBU (2 equiv), r.t.,15 min 84

5 toluene, DIPEA (2 equiv), r.t., 15 min 91

a n.r. = no reaction.
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With optimized conditions for the key transformation in
hand, we thus explored the scope of the cycloaddition–
elimination one-pot process by evaluating several combi-
nations of building blocks 1 and 2 in order to both explore
the reactivity domain and prepare a small library of prod-
ucts 5 endowed with three points of diversity. To our de-
light, the method proved to be very general, and
regardless of their substitution pattern, the title com-
pounds were always formed in a clean manner with com-
plete conversions after 15 minutes and could be isolated in
very good (75–92%) yields upon column chromatography
(Table 2).

In conclusion, we have reported herein a novel, fast, and
straightforward methodology for the preparation of the
otherwise scarcely accessible pyrrolo-[3,4-c]pyrrole-1,3-
dione chemotype. Starting from readily available oxazo-
lin-2-one and pyrrole-2,5-dione building blocks, this
pathway efficiently renders target molecules 5 endowed
with three diversity points in a single step through an ele-

gant 1,3-dipolar cycloaddition–elimination one-pot pro-
cess. Broad scope, high yields, and extreme operational
ease make this strategy ideal for high-throughput applica-
tions and will hopefully encourage the lead generation
community to exploit this tool to undertake extensive in-
vestigations into the properties of this underestimated
scaffold that still possesses vast untapped pharmacologi-
cal potential.
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