Syntheses of Macrocyclic Bis(bibenzyl) Compounds Derived from Perrottetin E

Andreas Speicher,*^[a] Matthias Groh,^[a] Markus Hennrich,^[a] and Anh-Minh Huynh^[a]

Keywords: Total synthesis / Natural products / Macrocycles / Bryophyte constituents

Macrocyclic bis(bibenzyl) compounds are natural products from liverworts and are of growing interest due to recent reports on new isolated compounds and on their remarkable biological activities. We report here on a flexible and general approach to the total set of nine bis(bibenzyl) compounds of the riccardin and plagiochin type derived from perrottetin E. The structures were confirmed through their spectroscopic data, which were compared carefully with those for the isolated products to exclude any errors in arene connection and substitution pattern.

Introduction

Bis(bibenzyl)-type acyclic or cyclic phenolic natural products can be found exclusively in bryophytes.^[1] Biosynthetically, they originate from the bibenzyl lunularin (1, Scheme 1)^[2] or its precursor lunularic acid (2).^[3] Two units of 1 or 2 can be combined by several modes of O–C and/ or C–C attachment through phenol oxidation coupling to different subtypes (Scheme 1). From the acyclic precursors perrottetin E (3), with O–C connection, and isoperrot-

tetin A (4), with C–C connection, are derived cyclic bis(bibenzyl) compounds of the plagiochin/riccardin type such as riccardin C (6), the marchantin-type-like marchantin C (5) or the isoplagiochin type such as isoplagiochin D (7), through a second O–C or C–C connection. Not all possible subtypes with all possible modes of connection have yet been isolated from bryophytes. The distribution of the cyclic bis(bibenzyl) compounds in liverworts, their structure elucidation and their total syntheses have been reviewed.^[1,4] Unfortunately, the nomenclature for these compounds is not

Scheme 1. Different subtypes of bis(bibenzylic) bryophyte constituents.

[a] FR 8.1 Chemistry, Organic Chemistry, Saarland University, 66041 Saarbrücken, Germany Fax: +49-681-3022029 E-mail: anspeich@mx.uni-saarland.de standardized (plant source, historical aspects). Furthermore, derivatives containing additional hydroxy groups or methyl ether functionalities have in some cases been isolated or the parent compound itself has not to date been isolated.

6760 WILEY 6760

We have reported on the syntheses of riccardin C (6) and isoplagiochin D (7) and other demonstration model compounds^[5] and recently on the highly bioactive marchantin C (5).^[6] We have furthermore investigated the effects of axial chirality and ring strain in the macrocycles of the isoplagiochin type.^[7,8]

Consideration of the ortholpara selectivity of the oxidative phenol coupling suggests that nine isomers of the plagiochin or riccardin type with different bis(bibenzyl) skeletons can in principle be deduced from the acyclic precursor perrottetin E (3, Scheme 2). The theoretical conformational strain in these compounds had been computed before^[2] and several representatives were found in bryophytes (Table 1). Earlier reports were given on the isolation of riccardin C (6),^[9] isoriccardin C (9)^[10] and riccardin D (11).^[11] In the case of the bis(bibenzyl)-type derived from 3 through coupling at the 6- and 6'-positions, only compounds with additional methylation and/or hydroxylation have been isolated, in the form of plagiochins A-D (structures not shown in Scheme 2).^[12] The parent compound with only three free phenolic groups – we now call it plagiochin G (15) – has never been found in plant extracts. More recently, a compound named plagiochin E with the postulated structure 13 was isolated by a bioassay-guided separation from Marchantia polymorpha.^[13,14] In the course of our attempts to synthesize 13, however, we revised the structure of this isolated bis(bibenzyl) to that of riccardin D (11), which we synthesized together with the new skeleton of plagiochin F (10) for purposes of clear structure elucidation.^[15] Very recently, isoriccardin D (14) and a compound named "polymorphatin A" (12) were also detected in M. polymorpha as minor bioactive substances.^[16] Compounds 12 and 14 represent the first natural compounds with bis(bibenzyl) skeletons containing 4-4' or 6-4' substitution patterns. To the best of our knowledge, no bis(bibenzyl) compounds of the

parent types 8 (2–2' coupling), 10 (2–6' coupling) and 13 (6–2' coupling) or their derivatives have yet been isolated from natural sources.

Scheme 2. Bis(bibenzyl) compounds of the plagiochin or riccardin type derived from perrottetin E.

	Name	Isolation from liverworts ^[4]	Biological activities ^[17,18]	Total synthesis
6	riccardin C	<i>Reboulia hemisphaerica</i> (1982) ^[9] et al. ^[4] <i>Ptagiochasm intermedlum</i> (2010) ^[19]	COX inhibition ^[4] cytotoxic ^[20,21] inhibitory activities against HIV-1 RT ^[21] inhibition of NOS ^[22,23] LXR α agonist but LXR β antagonist ^[24,25] antifungal ^[19] apoptosis of human prostate cancer ^[26]	1990 ^[27] 1998 ^[5] 2005 ^[28] 2009 ^[25]
8	plagiochin H	_	_	-
9	isoriccardin C	Marchantia polymorpha, M. palmata (1987) ^[10] Plagiochasma rupestre (1999) ^[29] Ptagiochasm in- termedlum (2010) ^[19]	COX inhibition ^[4]	_
10	plagiochin F	_	_	2009 ^[15]
11	riccardin D	Monoclea forsteri (1988) ^[11] Plagiochila cristata (1997) ^[30]	antifungal ^{[31][a]}	2009 ^[15]
12	polymorphatin A	Marchantia polymorpha (2007) ^[16]	_	_
13	plagiochin E	– [compound from <i>Marchantia polymorpha</i> $(2006)^{[13,14]}$ and <i>Asterella angusta</i> $(2007)^{[14]}$ was revised to be $11^{[15]}$]	antifungal, ^{[13,14,32,33][a]} cancer chemotherapy, ^{[34,35][a]} apoptosis of human prostate cancer ^[26]	2009 ^[15]
14	isoriccardin D	Marchantia polymorpha (2007) ^[16]	_	_
15	plagiochin G	–, derivatives only ^[12]	-	_

Table 1. Bis(bibenzyl) compounds of the plagiochin or riccardin type: natural sources, biological activities and syntheses.

[a] Biological activities published for plagiochin E (13) have to be reassigned to riccardin D (11).⁽¹⁵⁾

Macrocyclic bis(bibenzyl) compounds exhibit a broad spectrum of biological activities.^[17,18] Specific effects of the compounds depicted in Scheme 2 are listed in Table 1.

In view of their attractiveness for numerous therapeutic approaches we now report flexible and efficient syntheses for the complete "library" of nine bis(bibenzyl) compounds derived from perrottetin E (3). Furthermore, with all parent compounds "to hand" it should now be possible to confirm or to revise structure elucidations given for the isolated products up to now and in the future.

Results and Discussion

Syntheses

For the syntheses of all subtypes (Scheme 2) we developed a construction unit synthesis based on arene units a to d (Figure 1). Because of the specific C–C coupling options, nine "northern" subunits b–d were prepared through Suzuki reactions. In a convergent manner, they were consecutively coupled, followed by ring closure with a common "southern" a–c subunit by inter- and intramolecular Wittig or McMurry reactions. The bis(bibenzyl) compounds were finally obtained by hydrogenation and deprotection of the phenolic groups. It is noteworthy that the syntheses of the highly *ortho*-substituted biaryls b–d as well the macrocyclization step are crucial in some cases due to steric hindrance as well as ring strain (Figure 1).

Figure 1. Construction unit system for the synthesis of cyclic bis(bibenzyl) compounds.

The common "southern" diaryl ether fragment was provided as the phosphonium salt **20** by an approach similar to that published for the synthesis of cavicularin^[28] (Scheme 3).

The synthesis of the b–d subunit **26** (Scheme 4) for plagiochin H (**8**) started with the triflate **21** derived from *ortho*-vanillin. The aldehyde was reduced to the corresponding alcohol **22** with DIBAL-H, and **22** was protected as the THP ether **23**. The boronic ester **25** was obtained from the aryl iodide **24**^[36] by a halogen/magnesium exchange and subsequent scavenging with trimethyl borate,^[37] followed by treatment with pinacol. The building blocks **23** and **25** were coupled by a standard Suzuki protocol to afford the building block **26**.

Scheme 3. Synthesis of the common building block **20**. Reagents and conditions: i) propane-1,3-diol, CH(OEt)₃, tetrabutylammonium tribromide (TBATB), 65 °C, 6 h (97%); ii) 4-fluorobenzaldehyde, K_2CO_3 , DMF, 160 °C, 20 h (93%); iii) NaBH₄, EtOH, 0 °C to r.t., 2 h (90%); iv) PPh₃·HBr, MeCN, reflux, 6 h, then propane-1,3-diol, CH(OEt)₃, TBATB, CHCl₃, 65 °C, 12 h.

Scheme 4. Synthesis of subunit **26**. Reagents and conditions: i) DI-BAL-H, CH₂Cl₂, -78 °C to r.t., 12 h (87%); ii) 3,4-dihydro-2*H*-py-ran, *p*TosOH CH₂Cl₂, r.t., 16 h (85%); iii) *i*PrMgCl·LiCl, THF, -15 °C, 30 min, then B(OMe)₃ at -15 °C to r.t., then HCl (2 M), then pinacol, MgSO₄, r.t. 16 h (53%); iv) Pd(PPh₃)₄, PhMe/EtOH/ 2 M Na₂CO₃, reflux, 16 h (30%).

A Wittig reaction between the aldehyde **26** and the phosphonium salt **20** afforded the product **27** (Scheme 5) in good yield. After hydrogenation, acidic hydrolysis and oxidation with PCC the dialdehyde **29** was converted into the macrocycle stilbene **30** by means of an intramolecular McMurry reaction. Plagiochin H **(8)** was finally obtained after hydrogenation and subsequent methyl ether cleavage.

The synthesis of isoriccardin C (9) required the b–d subunit 37 (Scheme 6). The boronic ester 36 was synthesized from the iodo benzyl alcohol $32^{[38]}$ and Suzuki-coupled with the triflate 23.

Scheme 5. Synthesis of plagiochin H (8). Reagents and conditions: i) 20 (1.3 equiv.) + 26, K₂CO₃, 18-crown-6, CH₂Cl₂, reflux, 24 h (88%); ii) Pd/C (5%), 3 bar H₂, NEt₃, EtOAc, r.t., 24 h; iii) 2 M HCl/THF (1:1), r.t., 12 h (86% over two steps); iv) PCC/Al₂O₃, CH₂Cl₂ r.t., 16 h (95%); v) TiCl₄, Zn, THF, reflux, 24 h (27%); vi) Pd/C (5%), 3 bar H₂, EtOAc, r.t., 24 h (97%); vii) BBr₃ (10 equiv.), CH₂Cl₂, -78 °C to r.t. over 5 h, then 10 h at r.t. (75%).

Scheme 6. Synthesis of the subunit **37**. Reagents and conditions: i) PCC/Al₂O₃, CH₂Cl₂, r.t., 16 h (92%); ii) CH(OEt)₃, TBATB, propane-1,3-diol, 65 °C, 12 h (99%); iii) *n*BuLi, THF, -78 °C, 30 min, then B(OMe)₃, -78 °C to r.t., then 2 M HCl (55%); iv) pinacol, MgSO₄, CH₂Cl₂, r.t., 12 h (86%); v) + **23**, Pd(PPh₃)₄, PhMe/EtOH/ 2 M Na₂CO₃, reflux, 16 h (32%).

A subsequent Wittig reaction between **37** and **20**, hydrogenation and deprotection resulted in compound **39** with a free aldehyde and alcohol function (Scheme 7). This was converted into the corresponding benzylphosphonium salt as precursor for the following cyclization step. After an intramolecular Wittig reaction followed by catalytic hydrogenation and demethylation the natural product **9** was obtained.

Scheme 7. Synthesis of isoriccardin C (9). Reagents and conditions: i) **20** (1.3 equiv.) + **37**, K₂CO₃, 18-crown-6, CH₂Cl₂, reflux, 24 h (76%); ii) Pd/C (5%), 3 bar H₂, NEt₃, EtOAc, r.t., 24 h; iii) 2 M HCl/THF (1:1), r.t., 12 h (96% over two steps); iv) PPh₃·HBr, MeCN, reflux, 12 h; v) NaOMe, CH₂Cl₂, 24 h, (44% over two steps); vi) Pd/C (5%), 3 bar H₂, EtOAc, r.t., 24 h (99%); vii) BBr₃ (10 equiv.), CH₂Cl₂, -78 °C to r.t. over 5 h, then 10 h at r.t. (86%).

The syntheses of plagiochin F (10) and riccardin D (11) have been reported previously^[15] but should be summarized with full experimental data for completeness. The synthesis of 10 proceeds from the aldehyde 48 as the b–d subunit (Scheme 8); the macrocyclization after coupling with the a–c subunit was accomplished through an intramolecular McMurry reaction (Scheme 9).

Scheme 8. Synthesis of the subunit **48**. Reagents and conditions: i) NBS (2 equiv.), AIBN, CCl₄, hv, reflux, 24 h, then aq. CaCO₃, reflux, 18 h (72%); ii) CH(OEt)₃, TBATB, propane-1,3-diol, 65 °C, 12 h (93%); iii) *n*BuLi, THF, -78 °C, 30 min, then B(OMe)₃, -78 °C to r.t., then 2 M HCl (52%); iv) pinacol, MgSO₄, CH₂Cl₂, r.t., 12 h (80%); v) CH(OEt)₃, TBATB, propane-1,3-diol, 65 °C, 12 h (98%); vi) + **46**, Pd(PPh₃)₄, PhMe/EtOH/2 M Na₂CO₃, reflux, 16 h (67%).

Scheme 9. Synthesis of plagiochin F (10). Reagents and conditions: i) 20 (1.3 equiv.) + 48, K_2CO_3 , 18-crown-6, CH_2Cl_2 , reflux, 24 h (93%); ii) Pd/C (5%), 3 bar H₂, NEt₃, EtOAc, r.t., 24 h; iii) 2 M HCl/THF (1:1), r.t., 12 h (93% over two steps); iv) TiCl₄, Zn, THF, reflux, 24 h (29%); v) Pd/C (5%), 3 bar H₂, EtOAc, r.t., 24 h (99%); vi) BBr₃ (10 equiv.), CH₂Cl₂, -78 °C to r.t. over 5 h, then 10 h at r.t. (66%).

Riccardin D (11) was obtained by employing an intramolecular Wittig reaction as the key step. The aldehyde 54 (b– d unit) was prepared from the boronic acid $53^{[38]}$ and the triflate 21 (Scheme 10).

For the synthesis of polymorphatin A (12) the "northern" building block 60 containing a protected alcohol and an aldehyde group *para* to the biaryl axis was required (Scheme 11). For this, vanillin triflate (59) and the boronic acid 53 were Suzuki-coupled. In the subsequent steps compound 62 was generated to enable cyclization through an intramolecular Wittig reaction. Unfortunately, this cyclization only proceeded in low yield, whereas the alternative ring closure through a McMurry reaction failed (Scheme 12).

Scheme 11. Synthesis of the precursor **62**. Reagents and conditions: i) Pd(PPh₃)₄, PhMe/EtOH/2 M Na₂CO₃, reflux, 16 h (79%); ii) **20** (1.3 equiv.) + **60**, K₂CO₃, 18-crown-6, CH₂Cl₂, reflux, 24 h (79%); iii) Pd/C (5%), 3 bar H₂, NEt₃, EtOAc, r.t., 24 h (94%); iv) 2 M HCl/THF (1:1), r.t., 12 h (87% over two steps).

Scheme 10. Synthesis of riccardin D (11). Reagents and conditions: i) Pd(PPh₃)₄, PhMe/EtOH/2 M Na₂CO₃, reflux, 16 h (69%), ii) **20** (1.3 equiv.) + **54** K₂CO₃, 18-crown-6, CH₂Cl₂, reflux, 24 h (94%); iii) Pd/C (5%), 3 bar H₂, NEt₃, EtOAc, r.t., 24 h; iv) 2 M HCl/THF (1:1), r.t., 12 h (96% over two steps); v) PPh₃·HBr, MeCN, reflux, 12 h; vi) NaOMe, CH₂Cl₂, 24 h (68% over two steps); vii) Pd/C (5%), 3 bar H₂, EtOAc, r.t., 24 h (95%); viii) BBr₃ (10 equiv.), CH₂Cl₂, -78 °C to r.t. over 5 h, then 10 h at r.t. (71%).

Scheme 12. Synthesis of polymorphatin A (12). Reagents and conditions: i) PCC/Al₂O₃, CH₂Cl₂ r.t., 16 h (96%); ii) PPh₃·HBr, MeCN, reflux, 12 h; iii) NaOMe, CH₂Cl₂, 24 h, (12% over two steps); iv) TiCl₄, Zn, THF, reflux, 24 h; v) Pd/C (5%), 3 bar H₂, EtOAc, r.t., 24 h (95%); vi) BBr₃ (10 equiv.), CH₂Cl₂, -78 °C to r.t. over 5 h, then 10 h at r.t. (89%).

For riccardin C (6) several synthetic routes have been published.^[5,25,27,28] We now present a new approach through our improved strategy based on coupling of **20** and the aldehyde **67** as the b–d unit (obtained from the THP-protected iodorarene **66**^[38] and the boronic acid **45**) and subsequent Wittig macrocyclization (Scheme 13).

Scheme 13. Synthesis of riccardin C (6). Reagents and conditions: i) Pd(PPh₃)₄, PhMe/EtOH/2 M Na₂CO₃, reflux, 16 h (91%); ii) **20** (1.3 equiv.) + **67**, K₂CO₃, 18-crown-6, CH₂Cl₂, reflux, 24 h (95%); iii) Pd/C (5%), 3 bar H₂, NEt₃, EtOAc, r.t., 24 h; iv) 2 M HCl/THF (1:1), r.t., 12 h (94% over two steps); v) PPh₃·HBr, MeCN, reflux, 12 h; vi) NaOMe, CH₂Cl₂, 24 h (38%); vii) Pd/C (5%), 3 bar H₂, EtOAc, r.t., 24 h (95%); viii) BBr₃ (10 equiv.), CH₂Cl₂, -78 °C to r.t. over 5 h, then 10 h at r.t. (85%).

Our synthesis of plagiochin E (13) was published recently;^[15] the full experimental details are given below. The synthesis is summarized in Scheme 14.

The synthesis of isoriccardin D (14) started with 42 (Scheme 15), which was converted into the benzyl alcohol 78 by NBS bromination followed by hydrolysis under basic conditions. After protection of the hydroxy group as the THP acetal the bromoarene 79 was functionalized to the boronic ester 80. A Suzuki reaction with the triflate 59 yielded the aldehyde 81, which was Wittig-coupled with the phosphonium salt 20 (Scheme 15).

Hydrogenation of 82 followed by hydrolysis afforded the precursor 83 for the Wittig cyclization. The natural product isoriccardin D (14) was obtained by the now improved protocols (Scheme 16).

The synthesis of plagiochin G (15) started with formation of the aldehyde 86 (Scheme 17) as the b-d unit, through a Suzuki coupling between the boronic acid 46 and

Scheme 14. Synthesis of plagiochin E (13). Reagents and conditions: i) *n*BuLi, THF, -78 °C, 30 min, then B(OMe)₃ at -78 °C to r.t., then pinacol, MgSO₄, CH₂Cl₂, r.t., 12 h (70%); ii) + 21, Pd(PPh₃)₄, PhMe/EtOH/2 M Na₂CO₃, reflux, 16 h (91%). iii) 20 (1.3 equiv.) + 73, K₂CO₃, 18-crown-6, CH₂Cl₂, reflux, 24 h (87%); iv) Pd/C (5%), 3 bar H₂, NEt₃, EtOAc, r.t., 24 h; v) 2 M HCl/THF (1:1), r.t., 12 h (89% over two steps), vi) TiCl₄, Zn, THF, reflux, 24 h (35%); vii) Pd/C (5%), 10 bar H₂, EtOAc, r.t., 24 h (98%); viii) BBr₃ (10 equiv.), CH₂Cl₂, -78 °C to r.t. over 5 h, then 10 h at r.t. (68%).

Scheme 15. Synthesis of the precursor **82**. Reagents and conditions: i) NBS (1.0 equiv.), AIBN, CCl₄, hv, reflux, 24 h, then aq. CaCO₃, reflux, 18 h (60%); ii) 3,4-dihydro-2*H*-pyran, *p*TosOH CH₂Cl₂, r.t., 16 h (93%); iii) *n*BuLi, THF, -78 °C, 30 min, then B(OMe)₃ -78 °C to r.t., then satd KH₂PO₄, then pinacol, MgSO₄, CH₂Cl₂, r.t., 12 h (75%); iv) + **59**, Pd(PPh₃)₄, PhMe/EtOH/2 M Na₂CO₃, reflux, 16 h (74%); v) **20** (1.3 equiv.) + **81**, K₂CO₃, 18-crown-6, CH₂Cl₂, reflux, 24 h (95%).

Scheme 16. Synthesis of isoriccardin D (14). Reagents and conditions: i) Pd/C (5%), 3 bar H₂, NEt₃, EtOAc, r.t., 24 h; ii) 2 \times HCl/THF (1:1), r.t., 12 h (88% over two steps); iii) PPh₃·HBr, MeCN, reflux, 12 h; iv) NaOMe, CH₂Cl₂, 24 h (40% over two steps); v) Pd/C (5%), 3 bar H₂, EtOAc, r.t., 24 h (95%); vi) BBr₃ (10 equiv.), CH₂Cl₂, -78 °C to r.t. over 5 h, then 10 h at r.t. (76%).

the aryl bromide **79**. A poor yield for the macrocyclization by the Wittig protocol via the benzyl alcohol **88** prompted us to pursue the McMurry strategy via the dialdehyde **89**.

Structure Verification and Total NMR Assignment

The structures of the synthesized compounds 6 and 8–15 (Scheme 18) were verified by NMR experiments (H,H COSY; C,H COSY; HMBC). The total assignment is listed in Tables 2, 3 and 4. The NMR spectroscopic data for compounds 10, 11 and 13 have been published in full pre-

Scheme 17. Synthesis of plagiochin G (15). Reagents and conditions: i) Pd(PPh₃)₄, PhMe/EtOH/2 M Na₂CO₃, reflux, 16 h (77%); ii) **20** (1.3 equiv.) + **86**, K₂CO₃, 18-crown-6, CH₂Cl₂, reflux, 24 h (97%); iii) Pd/C (5%), 3 bar H₂, NEt₃, EtOAc, r.t., 24 h; iv) 2 M HCl/THF (1:1), r.t., 12 h (97% over two steps); v) PCC/Al₂O₃, CH₂Cl₂ r.t., 16 h (73%); vi) TiCl₄, Zn, THF, reflux, 24 h (39%); vii) Pd/C (5%), 10 bar H₂, EtOAc, r.t., 24 h (99%); viii) BBr₃ (10 equiv.), CH₂Cl₂, -78 °C to r.t. over 5 h, then 10 h at r.t. (85%).

viously.^[15] The spectroscopic data for synthetic **9**, **6** and **14** were coincident with those reported for the isolated compounds.

Scheme 18. Atom numbering for assignment of the NMR signals.

400 MHz, [D ₆]acetone	Plagiochin H (8)	Isoriccardin C (9)	Polymorphatin A (12)
H-C(2)	_	_	6.59 (d, $J = 1.6$)
HO-C(3)	7.26 (br. s)	7.32 (br. s)	8.58 (br. s)
H–C(4)	6.61 (dd, $J = 8.0, 0.8$)	6.72 (dd, $J = 7.8, 1.0$)	_
H–C(5)	6.90 (dd, J = 8.0, 7.8)	7.10 (dd, J = 7.8, 7.8)	7.17 (d, $J = 7.8$)
H–C(6)	$6.45 (\mathrm{dd}, J = 7.8, 0.8)$	$6.86 (\mathrm{dd}, J = 7.8, 1.0)$	6.67 (dd, $J = 7.8, 1.6$)
$CH_2(7)$	2.89-2.81 (m) + 1.80-1.72 (m)	2.52–2.44 (m)	2.92–2.86 (m)
$CH_2(8)$	2.73-2.62 (m) + 2.59-2.52 (m)	2.66–2.59 (m)	2.94–2.89 (m)
H–C(10)	5.17 (d, J = 2.0)	5.73 (d, $J = 2.0$)	6.37 (d, $J = 2.0$)
HO-C(12)	7.60 (br. s)	7.69 (br. s)	7.89 (br. s)
H–C(13)	6.58 (d, $J = 8.0$)	6.75 (d, $J = 8.0$)	7.01 (d, $J = 8.3$)
H–C(14)	$6.50 (\mathrm{dd}, J = 8.0, 2.0)$	$6.67 (\mathrm{dd}, J = 8.0, 2.0)$	7.09 (dd, $J = 8.3, 2.0$)
H–C(2')	_	6.64 (d, J = 1.7)	6.94 (d, J = 1.6)
HO-C(3')	7.36 (br. s)	7.32 (br. s)	8.29 (br. s)
H-C(4')	6.61 (m)	_	_
H–C(5')	$7.42 (\mathrm{dd}, J = 7.8, 7.8)$	6.79 (d, $J = 7.5$)	7.22 (d, $J = 7.9$)
H–C(6')	7.16 (m)	$6.55 (\mathrm{dd}, J = 7.5, 1.7)$	6.90 (dd, J = 7.9, 1.6)
$CH_2(7')$	3.03-2.97 (m) + 2.29-2.21 (m)	3.07-3.01 (m)	2.68 (m)
$CH_2(8')$	3.22-3.15 (m) + 2.89-2.81 (m)	3.16-3.09 (m)	2.68 (m)
$H-C(10')^{[b]}$	7.01 (dd, $J = 8.3, 2.3$)	7.18–7.12 (m)	7.02 (d, $J = 8.8$)
$H-C(11')^{[b]}$	$6.54 (\mathrm{dd}, J = 8.3, 2.5)$	6.82–6.79 (m)	6.56 (d, J = 8.8)
$H-C(13')^{[b]}$	6.70 (dd, J = 8.3, 2.5)	6.82–6.79 (m)	6.56 (d, $J = 8.8$)
$H-C(14')^{[b]}$	$6.93 (\mathrm{dd}, J = 8.3, 2.3)$	7.18–7.12 (m)	7.02 (d, $J = 8.8$)

Table 2. ¹H NMR spectroscopic data for the synthetic compounds 8, 9 and 12 (δ in ppm, J in Hz).^[a]

[a] The NMR spectroscopic data for compounds 10, 11 and 13 have been published in full previously.^[15] [b] Signals for H–C(10')/H–C(14') and H–C(11')/H–C(13') interchangeable.

Table 3. ¹H NMR spectroscopic data for the synthetic compounds 6, 14 and 15 (δ in ppm, J in Hz).

400 MHz, [D ₆]acetone	Riccardin C (6)	Isoriccardin D (14)	Plagiochin G (15)
H–C(2)	6.35 (d, J = 1.8)	6.81 (d, J = 2.6)	6.59 (d, J = 2.3)
HO-C(3)	7.51 (br. s)	8.14 (br. s)	8.05 (br. s)
H-C(4)	_	6.66 (d, $J = 8.4, 2.6$)	$6.62 (\mathrm{dd}, J = 8.0, 2.3)$
H-C(5)	6.78 (d, $J = 7.8$)	6.89 (d, $J = 8.4$)	6.83 (d, J = 8.0)
H–C(6)	6.14 (dd, J = 7.8, 1.8)	_	_
$CH_2(7)$	2.65–2.56 (m)	2.33–2.27 (m)	3.05-2.97 (m) + 2.17-2.11 (m)
$CH_2(8)$	2.69–2.60 (m)	2.73-2.67 (m) + $2.52-2.46$ (m)	2.92-2.87 (m) + 2.85-2.80 (m)
$H-\tilde{C}(10)$	5.36 (d, $J = 2.0$)	5.85 (d, $J = 1.9$)	5.34 (d, J = 2.0)
HO-C(12)	7.64 (br. s)	7.71 (br. s)	7.70 (br. s)
H–C(13)	6.83 (d, $J = 8.0$)	6.75 (d, $J = 8.2$)	6.75 (d, $J = 8.0$)
H-C(14)	6.70 (dd, J = 8.0, 2.0)	$6.89 (\mathrm{dd}, J = 8.2, 1.9)$	6.68 (d, J = 8.0, 2.5)
H-C(2')	6.92 (d, $J = 2.6$)	6.54 (d, J = 1.6)	7.20 (d, $J = 2.5$)
HO-C(3')	8.22 (br. s)	7.32 (br. s)	8.21 (br. s)
H-C(4')	6.73 (dd, J = 8.4, 2.6)	_	$6.64 (\mathrm{dd}, J = 8.5, 2.5)$
H–C(5')	6.95 (d, $J = 8.4$)	6.79 (d, $J = 7.9$)	6.98 (d, J = 8.5)
H–C(6')	_	$6.53 (\mathrm{dd}, J = 7.9, 1.6)$	_
$CH_{2}(7')$	2.92–2.86 (m)	3.09-3.07 (m) + 3.06-2.99 (m)	3.04-2.97 (m) + 2.91-2.85 (m)
$CH_2(8')$	2.93–2.84 (m)	3.12–3.05 (m)	3.10–3.04 (m)
$H-C(10')^{[a]}$	6.95–6.80 (br. m)	7.16 (dd, $J = 8.2, 2.2$)	6.96 (m)
$H-C(11')^{[a]}$	6.75–6.68 (br. m)	6.83 (dd, $J = 8.2, 2.5$)	6.72–6.68 (m)
$H-C(13')^{[a]}$	6.75–6.68 (br. m)	6.76 (dd, J = 8.2, 2.5)	6.72–6.68 (m)
$H-C(14')^{[a]}$	6.95-6.80 (br. m)	7.06 (dd, $J = 8.2, 2.2$)	7.02 (m)

[a] Signals for H-C(10')/H-C(14') and H-C(11')/H-C(13') interchangeable.

It should be mentioned that the NMR spectroscopic data for synthetic polymorphatin A (12) show significant deviations from those published for the isolated bis(bibenzyl) reported by Lou et al.^[16] Furthermore, the spectroscopic data for isolated 12 are not concordant with the data for 6 and 15, two related structures with a similar substitution pattern. With respect to the work of Lou et al. we advise further investigation with regard to the structure of the bis(bibenzyl) isolated from *Marchantia polymorpha* with the proposed structure 12.

Conformations of the Bis(bibenzyl) Compounds

The conformers of the nine bis(bibenzyl) compounds of the plagiochin/riccardin type with the minimum strain energy were calculated by use of HyperChem Professional v. 7.52. The structures thus obtained are depicted in Scheme 19. It is remarkable that the carbon skeletons of plagiochins H (8), E (13), F (10) and G (15) are almost congruent; their structures mainly differ in the position of the hydroxy groups. The same analogy can be found for the

Table 4. ¹³C NMR spectroscopic data for the synthetic compounds **8**, **9**, **12**, **6**, **14** and **15** (δ in ppm).^[a]

100 MHz, [D ₆]acetone	8	9	12	6	14	15
C(1)	142.75	143.31	143.13	141.71	141.85	139.72
C(2)	123.23	125.31	118.69	116.96	115.17	113.49
C(3)	155.77	155.87	154.41	154.37	156.40	155.80
C(4)	113.56	113.67	124.95	126.70	112.48	111.08
C(5)	128.85	129.03	132.84	133.06	131.19	132.37
C(6)	117.90	121.10	122.83	121.44	128.51	130.34
C(7)	31.41	37.54	38.84	38.55	36.45	30.87
C(8)	30.67	38.54	37.42	37.89	37.02	29.42
C(9)	133.62	134.53	134.25	133.32	133.42	131.91
C(10)	117.00	116.24	124.36	117.69	115.31	114.81
C(11)	151.18	149.34	142.76	147.96	144.36	149.73
C(12)	144.41	145.51	148.46	145.25	147.94	143.44
C(13)	116.42	116.36	118.69	116.57	115.17	115.57
C(14)	121.92	122.40	126.41	122.72	121.32	121.24
C(1')	141.30	138.04	144.33	144.28	140.29	139.39
C(2')	124.43	117.49	117.97	117.41	116.04	115.63
C(3')	155.85	155.45	155.09	157.78	153.78	155.74
C(4')	113.79	121.29	125.36	113.99	125.29	112.00
C(5')	128.57	131.84	133.01	133.46	130.14	131.93
C(6')	120.16	121.58	121.89	130.39	119.88	131.53
C(7')	35.84	36.73	38.92	35.95	35.57	34.78
C(8′)	33.29	35.31	37.82	38.77	35.44	34.41
C(9′)	141.50	142.01	136.74	140.80	136.73	139.74
C(10') ^[b]	131.22	131.49	130.50	130.23	130.23	129.93
C(11') ^[b]	124.90	122.07	117.08	122.92	120.70	123.43
C(12')	156.75	154.84	157.60	154.06	153.67	154.97
C(13') ^[b]	123.30	122.07	117.08	122.72	120.63	122.02
$C(14')^{[b]}$	130.79	131.39	130.50	130.23	130.23	129.80

[a] The NMR spectroscopic data for compounds 10, 11 and 13 have been published in full previously.^[15] [b] Signals for H-C(10')/H-C(14') and H-C(11')/H-C(13') interchangeable.

Scheme 19. Minimum-energy conformers of the bis(bibenzyl) compounds of the plagiochin/riccardin type.

Conclusions

Cyclic bis(bibenzyl) compounds of the plagiochin and riccardin type derived from the open-chain precursor perrottettin E (3) are structurally interesting compounds.^[15] Some of them have been isolated since 1982 as natural products from liverworts (bryophytes); others might be in the future. Structure elucidation has proved wrong in at least one case up to now, which is crucially important with respect to a growing interest in these compounds' considerable biological activities. We have synthesized the "library" of the nine bis(bibenzyl) compounds through the use of a construction unit system, followed by detailed and comparative spectroscopic characterization. With all bis(bibenzyl) types on hand, further and systematic investigations on structural aspects of axial chirality and biological activities will be performed.

Experimental Section

General: ¹H and ¹³C NMR spectra were recorded with a Bruker Avance 2 spectrometer (400 or 100 MHz) at ambient temperature with reference to TMS or solvent standard with the chemical shifts recorded as δ values in ppm units. Coupling constants (*J*) are given in Hz and signal patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublets; t, triplet; m, multiplet, br, broad signal. High-resolution mass spectrometry (HRMS) analyses were conducted with a Finnigan MAT 95 instrument. The melting points (m.p.) were determined with a Büchi melting point apparatus (Dr. Tottoli). Column chromatography was performed on silica gel 60 (63–260 µm) and flash chromatography on silica gel 60 (35– 70 µm).

5-(1,3-Dioxan-2-yl)-2-methoxyphenol (17): Tetrabutylammonium tribromide (289 mg, 0.60 mmol) was added to a mixture of isovanillin (16, 15.2 g, 0.10 mol), triethyl orthoformate (11.1 g, 75.0 mmol) and propane-1,3-diol (18.2 g, 0.20 mol) and the solution was stirred for 6 h at 65 °C. The mixture was cooled to r.t. and diluted with EtOAc (100 mL). The organic layer was washed with saturated aqueous NaHCO₃ $(3 \times 50 \text{ mL})$ and saturated aqueous NaCl (1×50 mL), dried (MgSO₄) and concentrated. The dioxane 17 (20.4 g, 97%) was obtained as colourless crystals; m.p. 89 °C. ¹H NMR (CDCl₃): δ = 7.05 (d, J = 2.0 Hz, 1 H), 6.97 (dd, J = 8.3, 2.0 Hz, 1 H), 6.82 (d, J = 8.3 Hz, 1 H), 5.66 (s, 1 H, Ar-OH), 5.41 (s, 1 H, OCHO), 4.28-4.18 (m, 2 H, OCH₂), 4.00-3.90 (m, 2 H, OCH₂), 3.86 (s, 3 H, OCH₃), 2.27–2.11 (m, 1 H), 1.45–1.36 (m, 1 H) ppm. ¹³C NMR (CDCl₃): δ = 146.98, 145.52, 132.21, 117.77, 112.62, 110.34, 101.45 (OCHO), 67.34 (OCH₂), 56.01 (OCH₃), 25.75 ppm. HRMS: calcd. for C₁₁H₁₄O₄ 210.0892; found 210.0877.

4-[5-(1,3-Dioxan-2-yl)-2-methoxyphenoxy]benzaldehyde (18): A mixture of the phenol **17** (19.5 g, 92.8 mmol), 4-fluorobenzaldehyde (11.6 g, 93.6 mmol) and K₂CO₃ (11.7 g, 84.9 mmol) in anhydrous DMF (130 mL) was stirred for 20 h at 165 °C. After cooling to r.t. the reaction mixture was poured into ice/water and extracted with Et_2O (3 × 200 mL). The combined organic layers were washed with

saturated aqueous NaCl (5 × 50 mL) and dried (MgSO₄), and the solvent was evaporated under reduced pressure. The biaryl ether **18** (27.2 g, 93%) was obtained as a yellow resin. ¹H NMR (CDCl₃): *δ* = 9.89 (s, 1 H, CHO), 7.80 (d, *J* = 8.8 Hz, 2 H), 7.35 (dd, *J* = 8.1, 2.1 Hz, 1 H), 7.26 (d, *J* = 2.1 Hz, 1 H), 7.01 (d, *J* = 8.1 Hz, 1 H), 6.98 (d, *J* = 8.8 Hz, 2 H), 5.46 (s, 1 H, OCHO), 4.27–4.19 (m, 2 H, OCH₂), 4.00–3.91 (m, 2 H, OCH₂), 3.78 (s, 3 H, OCH₃), 2.25–2.13 (m, 1 H), 1.46–1.39 (m, 1 H) ppm. ¹³C NMR (CDCl₃): *δ* = 190.80 (CHO), 163.45, 151.93, 142.63, 132.42, 131.83, 130.92, 124.09, 120.49, 116.31, 112.58, 100.71 (OCHO), 67.34 (OCH₂), 56.00 (OCH₃), 2.5.66 ppm. HRMS: calcd. for C₁₈H₁₈O₅ 314.1154; found 314.1143.

{4-[5-(1,3-Dioxan-2-yl)-2-methoxyphenoxy]phenyl}methanol (19):^[39] The aldehyde 18 (27.2 g, 86.5 mmol) was dissolved in THF (50 mL) and EtOH (250 mL). NaBH₄ (3.28 g, 86.7 mmol) was added at 0 °C and the mixture was stirred for 30 min. The mixture was allowed to warm to r.t. and stirring was continued for 2 h. Ice/water (230 mL) was added and the mixture was extracted with Et₂O $(3 \times 100 \text{ mL})$. After drying (MgSO₄) and removal of the solvents the crude material was purified by column chromatography (SiO₂, CH₂Cl₂/EtOAc 4:1). The alcohol 19 (24.5 g, 90%) was obtained as colourless crystals; m.p. 72 °C. ¹H NMR (CDCl₃): δ = 7.24 (dd, J = 8.5, 2.0 Hz, 1 H), 7.22 (d, J = 8.6 Hz, 2 H), 7.11 (d, J = 2.0 Hz, 1 H), 6.96 (d, J = 8.5 Hz, 1 H), 6.90 (d, J = 8.6 Hz, 2 H), 5.38 (s, 1 H, OCHO), 4.54 (s, 2 H, CH₂OH), 4.20–4.16 (m, 2 H, OCH₂), 3.93-3.87 (m, 2 H, OCH₂), 3.79 (s, 3 H, OCH₃), 2.33 (br. s, 1 H, CH₂OH), 2.20–2.08 (m, 1 H), 1.40–1.36 (m, 1 H) ppm. ¹³C NMR $(CDCl_3): \delta = 157.30, 151.67, 144.67, 135.06, 132.03, 128.49, 122.52,$ 118.97, 117.23, 112.41, 100.96 (OCHO), 67.28 (OCH₂), 64.67 (CH₂OH), 56.05 (OCH₃), 25.61 ppm. HRMS: calcd. for C₁₈H₂₀O₅ 316.1311; found 316.1272.

{4-[5-([1,3]Dioxan-2-yl)-2-methoxyphenoxy]benzyl}triphenylphosphonium Bromide (20): The alcohol **19** (17.6 g, 55.3 mmol) and PPh₃·HBr (20.0 g, 58.4 mmol) were dissolved in MeCN (300 mL) and the system was heated at reflux for 6 h. The solvent was removed in vacuo and the residue was dissolved in CHCl₃ (150 mL). Propane-1,3-diol (40.0 g, 0.53 mol), triethyl orthoformate (23.0 g, 0.16 mol) and tetrabutylammonium tribromide (400 mg, 0.83 mmol) were added. The reaction mixture was heated under reflux for 12 h. After evaporation of the solvent the phosphonium salt, contaminated with propane-1,3-diol (81.6 g of crude product ca. 0.68 mmolg⁻¹) was obtained as a yellow oil. The crude phosphonium salt **20** was used in the following Wittig reactions without further purification.

2-Formyl-6-methoxyphenyl Trifluoromethanesulfonate (Orthovanillin Triflate, 21):^[40] Orthovanillin (8.05 g, 52.9 mmol) and pyridine (8.38 g, 106 mmol) were dissolved in anhydrous CH₂Cl₂ (200 mL). Tf₂O (19.9 g, 70.5 mmol) was added dropwise over 1 h at 0 °C. The reaction mixture was allowed to warm to r.t. and filtered through a short pad of SiO₂ with elution with CH₂Cl₂. After removal of the solvent the triflate **21** (14.3 g, 95%) was obtained as a colourless oil. ¹H NMR (CDCl₃): δ = 10.23 (s, 1 H, CHO), 7.51 (dd, *J* = 7.9, 1.9 Hz, 1 H), 7.47 (dd, *J* = 7.9, 7.9 Hz, 1 H), 7.33 (dd, *J* = 7.9, 1.9 Hz, 1 H), 3.96 (s, 3 H, OCH₃) ppm. ¹³C NMR (CDCl₃): δ = 186.89 (CHO), 151.81, 139.26, 129.66, 129.27, 121.41, 118.81, 118.80 (q, *J*_{C,F} = 320.6 Hz, CF₃), 56.64 (OCH₃) ppm. HRMS: calcd. for C₉H₇F₃O₅S 283.9966; found 283.9884.

2-(Hydroxymethyl)-6-methoxyphenyl Trifluoromethanesulfonate (22): A solution of DIBAL-H (1.5 M in toluene, 43.0 mL, 64.5 mmol) was added dropwise at $-78 \text{ }^{\circ}\text{C}$ to a solution of 21 (14.2 g, 50.0 mmol) in anhydrous CH₂Cl₂ (120 mL). The mixture was allowed to warm to r.t. and stirred for 12 h, and HCl (2 M,

80 mL) was added at 0 °C. After separation of the layers the aqueous layer was extracted with CH₂Cl₂ (2×50 mL). The combined organic layers were washed with saturated aqueous NaCl (2×50 mL) and dried (MgSO₄). The solvents were removed in vacuo and the crude product was purified by column chromatography (SiO₂, CH₂Cl₂). The alcohol **22** (12.4 g, 87%) was obtained as a colourless oil. ¹H NMR (CDCl₃): δ = 7.30 (dd, *J* = 8.3, 8.0 Hz, 1 H), 7.13 (dd, *J* = 8.0, 1.5 Hz, 1 H), 6.95 (dd, *J* = 8.3, 1.5 Hz, 1 H), 4.73 (d, *J* = 5.5 Hz, 2 H, CH₂OH), 3.88 (s, 3 H, OCH₃), 2.38 (br. t, *J* = 5.5 Hz, 1 H, CH₂OH) ppm. ¹³C NMR (CDCl₃): δ = 151.12, 136.10, 135.11, 128.99, 120.64, 118.78 (q, *J*_{C,F} = 320.6 Hz, CF₃), 112.28, 59.42 (CH₂OH), 56.15 (OCH₃) ppm. HRMS: calcd. for C₉H₉F₃O₅S 286.0123; found 286.0104.

2-Methoxy-6-[(tetrahydro-2H-pyran-2-yloxy)methyl]phenyl Trifluoromethanesulfonate (23): The alcohol 22 (11.8 g, 41.2 mmol) was dissolved in anhydrous CH2Cl2. After addition of 3,4-dihydro-2*H*-pyran (10.2 g, 121 mmol) and pTosOH·H₂O (300 mg, 1.60 mmol) the mixture was stirred for 16 h at r.t., filtered through a short pad of SiO₂ with elution with CH₂Cl₂ and concentrated. The crude material was purified by column chromatography (SiO₂, *n*-hexane/CH₂Cl₂ 1:1). Compound **23** (13.0 g, 85%) was obtained as a colourless oil. ¹H NMR (CDCl₃): δ = 7.30 (dd, J = 8.3, 7.9 Hz, 1 H), 7.14 (dd, J = 7.9, 0.9 Hz, 1 H), 6.96 (dd, J = 8.3, 0.9 Hz, 1 H), 4.83 (d, J = 12.8 Hz, 1 H, Ar–CH₂O), 4.72 (t, J = 3.5 Hz, 1 H, OCHO), 4.62 (d, J = 12.8 Hz, 1 H, Ar–CH₂O), 3.89 (s, 3 H, OCH₃), 3.89 (m, 1 H, CH₂O), 3.56 (m, 1 H, CH₂O), 1.90-1.52 (m, 6 H) ppm. ¹³C NMR (CDCl₃): δ = 151.15, 136.77, 132.95, 128.64, 121.37, 118.79 (q, $J_{C,F}$ = 320.6 Hz, CF₃), 112.22, 98.29 (OCHO), 63.26, 62.18, 56.12 (OCH₃), 30.39, 25.43, 19.26 ppm. HRMS: calcd. for C₁₄H₁₇F₃O₆S 370.0698; found 370.0600.

3-Methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (25): A solution of *i*PrMgCl (1.2 M in THF 10.9 mL, 13.1 mmol) was added over 15 min at -15 °C to a solution of the iodide 24^[36] (3.00 g, 8.74 mmol) in anhydrous THF (70 mL) and the mixture was stirred for an additional 2 h. Trimethyl borate (1.86 g, 17.9 mmol) was added in one portion at -15 °C and the mixture was allowed to warm to r.t. over 2 h. A solution of HCl (2 M, 20 mL) was added dropwise and the mixture was stirred for 30 min. After addition of saturated aqueous NaCl (20 mL) the reaction mixture was extracted with CH_2Cl_2 (3×50 mL). Pinacol (2.60 g, 22.0 mmol) and MgSO₄ (13.0 g, 0.11 mol) were added to the combined organic layers and the mixture was stirred for 12 h. The reaction mixture was filtered through a short pad of SiO₂ with elution with CH₂Cl₂ and the filtrate was concentrated under reduced pressure. The crude material was purified by column chromatography (SiO₂, n-hexane/EtOAc 4:1). The boronic ester 25 (1.20 g, 53%) was obtained as a yellow solid. ¹H NMR (CDCl₃): δ = 9.94 (s, 1 H, CHO), 7.48 (dd, J = 8.3, 7.5 Hz, 1 H), 7.10 (dd, J = 8.3, 0.8 Hz, 1 H), 7.41 (dd, J = 7.5, 0.8 Hz, 1 H), 3.88 (s, 3 H, OCH₃), 1.45 (s, 12 H, CH₃) ppm. ¹³C NMR (CDCl₃): δ = 193.09 (CHO), 163.14, 141.02, 130.93, 124.37, 115.98, 84.24 [OC(CH₃)₂], 55.95 (OCH₃), 24.81 (CH₃) ppm. HRMS: calcd. for C₁₄H₁₉BO₄ 262.1376; found 262.1358.

2',6-Dimethoxy-6'-[(tetrahydro-2*H***-pyran-2-yloxy)methyl]biphenyl-2-carbaldehyde (26):** The boronic ester **25** (0.86 g, 3.27 mmol) and the triflate **23** (1.57 g, 4.24 mmol) were dissolved in toluene (30 mL). EtOH (15 mL) and Na₂CO₃ (2 M, 15 mL) were added and the mixture was degassed with a stream of argon. Pd(PPh₃)₄ (485 mg, 0.42 mmol) was added and the mixture was heated for 16 h at 105 °C. After cooling to r.t. the mixture was filtered through a short pad of SiO₂ with elution with EtOAc. After evaporation of the solvents the residue was purified by flash

chromatography (SiO₂, *n*-hexane/EtOAc $3:1 \rightarrow 2:1$). The biaryl **26** was obtained as an inseparable mixture of diastereomers (0.34 g, 30%) and as a colourless oil. ¹H NMR (CDCl₃): $\delta = 9.58 + 9.57$ $(d, J = 0.8 \text{ Hz}, 2 \times 0.5 \text{ H}, \text{ CHO}), 7.63 + 7.62 (dd, J = 7.8, 1.3 \text{ Hz})$ 2×0.5 H), 7.46 (dd, J = 7.8, 7.8 Hz, 2×0.5 H), 7.42 (dd, J = 7.5, 7.5 Hz, 2×0.5 H), 7.20-7.18 (m, 1 H), 7.18 (m, 1 H), 6.95-6.93 (m, 1 H), 4.54 (t, J = 2.5, 0.5 Hz, OCHO) + 4.17 (t, J = 2.0 Hz, 0.5 H, OCHO), 4.51 + 3.99 (d, J = 11.8 Hz, 2×0.5 H, Ar–OCH₂), 4.35 + 4.16 (d, J = 12.0 Hz, 2×0.5 H, Ar–OCH₂), 3.76 (s, 1.5 H, OCH₃), 3.75 (s, 1.5 H, OCH₃), 3.69 (s, 1.5 H, OCH₃), 3.68 (s, 1.5 H, OCH₃), 3.74–3.70 (m, 0.5 H, OCH₂), 3.40–3.35 (m, 0.5 H, OCH₂), 3.28–3.25 (m, 1 H, OCH₂), 1.57–1.34 (m, 6 H) ppm. ¹³C NMR (CDCl₃): δ = 192.87 (CHO), 192.84 (CHO), 157.22, 157.19, 157.04, 157.00, 138.98, 138.91, 135.72, 135.52, 129.43, 128.88, 121.77, 121.52, 121.20, 121.01, 118.70, 118.57, 116.04, 115.93, 110.00, 109.94, 98.43 (OCHO), 97.74 (OCHO), 67.50 (Ar-OCH₂), 67.25 (Ar-OCH₂), 61.86 (OCH₂), 61.09 (OCH₂), 56.04 (OCH₃), 56.01 (OCH₃), 55.79 (OCH₃), 30.19, 30.12, 25.37, 25.30, 19.13, 18.64 ppm. HRMS: calcd. for C₂₁H₂₄O₅ 356.1624; found 356.1622.

Stilbene 27: A mixture of the aldehyde 26 (0.87 g, 2.45 mmol), the phosphonium salt 20 (4.60 g, 3.13 mmol), K_2CO_3 (3.50 g, 25.3 mmol) and a catalytic amount of 18-crown-6 in anhydrous CH₂Cl₂ (120 mL) was heated under reflux for 24 h. After cooling to r.t. the mixture was filtered through a pad of SiO₂ with elution with EtOAc and concentrated. The crude material was purified by flash chromatography (SiO₂, *n*-hexane/EtOAc 3:1 \rightarrow 2:1). The stilbene 27 (*E*/*Z* mixture, 1.41 g, 88%) was obtained as a colourless resin. Complex NMR spectroscopic data. HRMS: calcd. for C₃₉H₄₂O₈ 638.2880; found 638.2874.

Bibenzyl 28: The stilbene 27 (1.02 g, 1.60 mmol) was dissolved in EtOAc (200 mL) and NEt₃ (5 mL). After addition of Pd/C (5%, 1.00 g) the mixture was hydrogenated in a Parr apparatus at 3 bar H₂ for 24 h. The catalyst was filtered off and the solution was concentrated in vacuo. The residue was dissolved in THF (50 mL) and HCl (2 M, 50 mL). After stirring for 16 h at r.t. the mixture was diluted with EtOAc (150 mL) and saturated aqueous NaCl (50 mL). After separation the organic layer was washed with saturated aqueous NaHCO₃ (3×50 mL) followed by saturated aqueous NaCl $(3 \times 50 \text{ mL})$ and dried (MgSO₄). The solvents were evaporated under reduced pressure and the crude product was purified by flash chromatography (SiO₂, *n*-hexane/EtOAc 2:1). The bibenzyl 28 (0.69 g, 86%) was obtained as a colourless resin. ¹H NMR $(CDCl_3)$: $\delta = 9.79$ (s, 1 H, CHO), 7.63 (dd, J = 8.3, 1.9 Hz, 1 H), 7.43 (dd, J = 8.3, 7.9 Hz, 1 H), 7.36 (d, J = 1.9 Hz, 1 H), 7.33 (dd, J = 8.0, 7.8 Hz, 1 H), 7.21 (dd, J = 7.8, 1.0 Hz, 1 H), 7.09 (d, J =8.3 Hz, 1 H), 6.98 (dd, J = 8.3, 1.0 Hz, 1 H), 6.95 (dd, J = 7.8, 1.0 Hz, 1 H), 6.89 (dd, J = 8.0, 1.0 Hz, 1 H), 6.85 (d, J = 8.8 Hz, 2 H), 6.81 (d, J = 8.8 Hz, 2 H), 4.24 (d, J = 12.1 Hz, 1 H, CH₂OH), 4.20 (d, J = 12.1 Hz, 1 H, CH₂OH), 3.94 (s, 3 H, OCH₃), 3.72 (s, 3 H, OCH₃), 3.71 (s, 3 H, OCH₃), 2.68–2.48 (m, 4 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 190.42 (CHO), 156.97, 156.84, 156.13, 154.59, 146.92, 142.00, 140.90, 137.44, 130.19, 129.66, 129.03, 128.64, 127.73, 124.70, 124.56, 122.12, 120.98, 118.86, 118.22, 111.94, 110.31, 109.27, 63.83 (CH₂OH), 56.28 (OCH₃), 56.01 (OCH₃), 55.71 (OCH₃), 35.90 (CH₂CH₂), 35.83 (CH_2CH_2) ppm. HRMS: calcd. for $C_{31}H_{30}O_6$ 498.2042; found 498.2039.

Bibenzyl Dialdehyde 29: The benzyl alcohol **28** (0.65 g, 1.31 mmol) was dissolved in anhydrous CH_2Cl_2 (80 mL). PCC on Al_2O_3 (1 mmol g⁻¹) was added (2.80 g, 2.80 mmol) and the suspension was stirred for 16 h at r.t. The mixture was filtered through a short pad of SiO₂ with elution with EtOAc. The solvent was removed under

reduced pressure and the crude product was purified by flash chromatography (SiO₂, *n*-hexane/EtOAc 1:1). The dialdehyde **29** (0.61 g, 95%) was obtained as a colourless resin. ¹H NMR $(CDCl_3): \delta = 9.80 (s, 1 H, CHO), 9.56 (d, J = 0.8 Hz, 1 H, CHO),$ 7.66 (dd, J = 7.8, 1.0 Hz, 1 H), 7.64 (dd, J = 8.5, 2.0 Hz, 1 H), 7.49 (ddd, J = 8.3, 7.8, 0.8 Hz, 1 H), 7.38 (d, J = 2.0 Hz, 1 H), 7.32 (dd, J = 8.3, 7.8 Hz, 1 H), 7.23 (dd, J = 8.3, 1.0 Hz, 1 H), 7.08 (d, J =8.5 Hz, 1 H), 6.92 (dd, J = 7.8, 0.8 Hz, 1 H), 6.86 (dd, J = 8.3, 0.8 Hz, 1 H), 6.81 (d, J = 9.0 Hz, 2 H), 6.81 (d, J = 9.0 Hz, 2 H), 3.94 (s, 3 H, OCH₃), 3.78 (s, 3 H, OCH₃), 3.68 (s, 3 H, OCH₃), 2.65–2.52 (m, 4 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 192.73 (CHO), 190.42 (CHO), 157.32, 157.28, 156.17, 154.73, 146.79, 142.32, 136.96, 135.46, 130.23, 130.20, 129.58, 129.28, 128.89, 127.66, 121.61, 121.52, 119.15, 118.92, 118.15, 116.18, 111.97, 108.36, 56.28 (OCH₃), 56.00 (OCH₃), 55.73 (OCH₃), 35.93 (CH₂CH₂), 35.78 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₃₀O₆ 496.1886; found 496.1850.

Dehydroplagiochin H Trimethyl Ether 30: TiCl₄ (4.30 mL, 7.40 g, 39.0 mmol) was added dropwise with cooling in an ice/NaCl bath to a suspension of zinc dust (6.00 g, 91.8 mmol) in anhydrous THF (50 mL). The mixture was heated to reflux for 1 h. A solution of the dialdehyde **29** (690 mg, 1.38 mmol) in anhydrous THF (200 mL) was added dropwise over 4 h. The black mixture was heated to reflux for 24 h. After cooling to r.t. the reaction mixture was filtered through a short pad of SiO₂ with elution with EtOAc. The colourless filtrate was then concentrated and purified by flash chromatography (SiO₂, *n*-hexane/EtOAc 4:1). The stilbene **30** (NMR: *E/Z* 1.1:1, 170 mg, 27%) was obtained as a colourless solid; m.p. 148 °C. Complex NMR spectroscopic data. HRMS: calcd. for $C_{31}H_{28}O_4$ 464.1988; found 464.1970.

Plagiochin H Trimethyl Ether (31): The macrocyclic stilbene 30 (160 mg, 0.34 mmol) was dissolved in CH₂Cl₂ (150 mL). After addition of Pd/C (5%, 80 mg) the mixture was hydrogenated in a Parr apparatus at 3 bar H₂ for 24 h. The catalyst was filtered off and the solution was concentrated in vacuo. The residue was filtered through a short pad of SiO₂ with elution with CH₂Cl₂. After removal of the solvent the trimethyl ether 31 (155 mg, 97%) was obtained as a colourless solid; m.p. 186 °C. ¹H NMR (CDCl₃): δ = 7.35–7.31 (m, 2 H), 7.18 (dd, J = 8.0, 8.0 Hz, 1 H), 7.07 (dd, J =8.3, 2.3 Hz, 1 H), 6.95 (dd, J = 8.3, 2.3 Hz, 1 H), 6.83 (dd, J = 8.3, 2.3 Hz, 1 H), 6.78–6.73 (m, 3 H), 6.71–6.68 (m, 3 H), 5.23 (d, J =2.0 Hz, 1 H), 3.89 (s, 3 H, OCH₃), 3.65 (s, 3 H, OCH₃), 3.59 (s, 3 H, OCH₃), 3.25 (m, 1 H, CH₂CH₂), 3.03 (m, 1 H, CH₂CH₂), 2.96-2.73 (m, 4 H, CH₂CH₂), 2.28 (m, 1 H, CH₂CH₂), 1.94–1.85 (m, 1 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 156.97, 156.95, 155.35, 151.63, 146.14, 141.99, 140.38, 140.22, 133.96, 130.40, 129.81, 128.05, 127.56, 125.68, 124.69, 124.17, 122.74, 120.55, 120.22, 118.25, 116.02, 111.48, 108.32, 108.07, 56.14 (OCH₃), 55.53 (OCH₃), 55.39 (OCH₃), 34.95 (CH₂CH₂), 32.91 (CH₂CH₂), 30.23 (CH_2CH_2) , 30.04 (CH_2CH_2) ppm. HRMS: calcd. for $C_{31}H_{30}O_4$ 466.2144; found 466.2134.

Plagiochin H (8): The trimethyl ether **31** (150 mg, 0.32 mmol) was dissolved in anhydrous CH₂Cl₂. A solution of BBr₃ (1 M in CH₂Cl₂, 3.20 mL, 3.20 mmol) was added at -78 °C. The mixture was allowed to warm to r.t. over 6 h. Ice-cold water (20 mL) was added dropwise and the mixture was stirred for 10 min. The reaction mixture was diluted with EtOAc (40 mL), washed with saturated aqueous NaCl (3 × 20 mL) and dried (MgSO₄). The solvents were removed under reduced pressure and the crude product was purified by flash chromatography (SiO₂, *n*-hexane/EtOAc 3:1). Plagiochin H (**8**, 102 mg, 75%) was obtained as a colourless powder; m.p. 241 °C. NMR spectroscopic data; see Tables 2 and 4. HRMS: calcd. for C₂₈H₂₄O₄ 424.1675; found 424.1660.

4-Iodo-3-methoxybenzaldehyde (33): The benzyl alcohol **32**^[36] (17.2 g, 65.1 mmol) was dissolved in anhydrous CH₂Cl₂ (200 mL). PCC on Al₂O₃ (1 mmol g⁻¹) was added (108 g, 108 mmol) and the suspension was stirred for 16 h at r.t. The mixture was filtered through a short pad of SiO₂ with elution with EtOAc. The solvents were removed under reduced pressure and the crude product was purified by flash chromatography (SiO₂, CH₂Cl₂). The aldehyde **33** (15.7 g, 92%) was obtained as a colourless solid; m.p. 83 °C. ¹H NMR (CDCl₃): δ = 9.95 (s, 1 H, CHO), 7.99 (d, *J* = 7.8 Hz, 1 H), 7.29 (d, *J* = 1.8 Hz, 1 H), 7.19 (dd, *J* = 7.8, 1.8 Hz, 1 H), 3.96 (s, 3 H, OCH₃) ppm. ¹³C NMR (CDCl₃): δ = 191.32 (CHO), 158.87, 140.27, 137.82, 124.95, 108.62, 95.22 (C-I), 56.56 (OCH₃) ppm. HRMS: calcd. for C₈H₇IO₂ 261.9491; found 261.9463.

2-(4-Iodo-3-methoxyphenyl)-1,3-dioxane (34): The dioxane **34** was prepared from **33** (9.56 g, 36.5 mmol) in a procedure analogous to that used for the synthesis of **17** and was obtained as colourless crystals (11.6 g, 99%); m.p. 43 °C. ¹H NMR (CDCl₃): δ = 7.53 (d, J = 8.0 Hz, 1 H), 6.98 (d, J = 1.8 Hz, 1 H), 6.82 (dd, J = 8.0, 1.8 Hz, 1 H), 5.44 (s, 1 H, OCHO), 4.25 (m, 2 H, OCH₂), 3.96 (m, 2 H, OCH₂), 3.89 (s, 3 H, OCH₃), 2.20 (m, 1 H), 1.44 (m, 1 H) ppm. ¹³C NMR (CDCl₃): δ = 158.01, 140.66, 139.09, 120.24, 108.55, 100.75 (OCHO), 86.21 (C-I), 67.32 (OCH₂), 56.30 (OCH₃), 25.64 ppm. HRMS: calcd. for C₁₁H₁₃IO₃ 319.9909; found 320.9985 ([M + H] 320.9988).

4-Formyl-2-(methoxyphenyl)boronic Acid (35):^[41] A solution of nBuLi (2.5 м in n-hexane, 42.0 mL, 105 mmol) was added slowly at -78 °C to a solution of the iodide 34 (25.8 g, 80.6 mmol) in anhydrous THF (150 mL) and the mixture was stirred for an additional 60 min. Trimethyl borate (12.6 g, 121 mmol) was added in one portion at -78 °C and the mixture was allowed to warm to r.t. over 2 h. A solution of HCl (2 M, 100 mL) was added dropwise and the mixture was stirred for 30 min. The reaction mixture was extracted with Et₂O (3×75 mL). The combined organic layers were washed with saturated aqueous NaCl (100 mL) and extracted with NaOH $(1 \text{ M}, 1 \times 50 \text{ mL}, 2 \times 25 \text{ mL})$. The aqueous phase was neutralized with concentrated HCl (cooling in an ice bath). The precipitated solid was collected by filtration, washed with $H_2O(2 \times 40 \text{ mL})$ and dried under reduced pressure over CaCl₂. The boronic acid 35 (7.93 g, 55%) was obtained as a colourless powder; m.p. 136 °C. ¹H NMR ([D₆]DMSO): δ = 9.99 (s, 1 H, CHO), 8.01 [brs, 2 H, B(OH)₂], 7.67 (d, *J* = 7.3 Hz, 1 H), 7.49 (dd, *J* = 7.3, 1.0 Hz, 1 H), 7.40 (d, J = 1.0 Hz, 1 H), 3.85 (s, 3 H, OCH₃) ppm. ¹³C NMR $([D_6]DMSO): \delta = 193.10$ (CHO), 163.16, 138.48, 135.10, 122.50, 109.10, 55.43 (OCH₃) ppm. HRMS: calcd. for C₈H₉BO₄ 180.0594; found 180.0606.

3-Methoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (36): The boronic acid **35** (4.00 g, 22.2 mmol) and pinacol (5.00 g, 42.3 mmol) were dissolved in CH₂Cl₂ (150 mL) and MgSO₄ (25.0 g, 0.21 mol) was added. The suspension was stirred for 16 h at r.t. The solid was filtered off, the filtrate was concentrated in vacuo, and the residue was purified by column chromatography (SiO₂, *n*-hexane/EtOAc 4:1). The boronic ester **36** (4.98 g, 86%) was obtained as a colourless oil. ¹H NMR (CDCl₃): $\delta = 10.00$ (s, 1 H, CHO), 7.81 (d, J = 7.3 Hz, 1 H), 7.43 (dd, J =7.3, 1.2 Hz, 1 H), 7.35 (d, J = 1.2 Hz, 1 H), 3.90 (s, 3 H, OCH₃), 1.37 (s, 12 H, CH₃) ppm. ¹³C NMR (CDCl₃): $\delta = 192.42$ (CHO), 164.39, 139.60, 136.94, 123.28, 108.57, 84.05 [OC(CH₃)₂], 55.93 (OCH₃), 24.82 (CH₃) ppm. HRMS: calcd. for C₁₄H₁₉BO₄ 262.1376; found 262.1373.

2,2'-Dimethoxy-6'-[(tetrahydro-2*H***-pyran-2-yloxy)methyl]biphenyl-4-carbaldehyde (37):** The biaryl **37** was prepared from **23** (3.67 g, 9.91 mmol) and **36** (2.00 g, 7.63 mmol) in a procedure analogous to that used for the synthesis of 26 and was obtained as a yellow oil (865 mg, 32%). ¹H NMR (CDCl₃): $\delta = 10.0$ (d, J = 0.8 Hz, 1 H, CHO), 7.51 (ddd, J = 7.5, 1.3, 0.8 Hz, 1 H), 7.48 + 7.48 (d, J = 1.3 Hz, 1 H), 7.38 (dd, J = 8.0, 7.8 Hz, 1 H), 7.33 + 7.32 (d, J = 7.5 Hz, 1 H), 7.20 [dd (not resolved), 1 H], 6.93 [dd (not resolved), 1 H], 4.54 + 4.43 (d, J = 12.3 Hz, 1 H, Ar–OCH₂), 4.49 + 4.40 (t, J = 3.5 Hz, 1 H, OCHO), 4.18 + 4.07 (d, J = 12.3 Hz, 1 H, Ar-OCH₂) 3.80 (s, 3 H, OCH₃), 3.71 (s, 3 H, OCH₃), 3.68-3.53 (m, 1 H, CH₂O), 3.40–3.32 (m, 1 H, CH₂O), 1.82–1.40 (m, 6 H) ppm. ¹³C NMR (CDCl₃): δ = 192.04 (CHO), 157.96, 157.82, 156.81, 138.14, 138.04, 137.14, 132.85, 132.36, 132.25, 129.03, 128.94, 125.69, 125.52, 124.02, 123.92, 120.74, 120.70, 120.59, 112.25, 110.31, 110.23, 109.20, 109.17, 98.05 (OCHO), 66.95 (Ar-OCH₂), 61.74 (OCH₂), 61.59 (OCH₂), 55.95 (OCH₃), 55.82 (OCH₃), 55.79 (OCH₃), 30.46, 30.45, 25.41, 19.16, 19.07 ppm. HRMS: calcd. for C₂₁H₂₄O₅ 356.1624; found 356.1608.

Stilbene 38: The stilbene 38 was prepared from 37 (0.95 g, 2.67 mmol) and 20 in a procedure analogous to that used for the synthesis of 27 and was obtained as a colourless resin (E/Z mixture, 1.30 g, 76%). Complex NMR spectroscopic data. HRMS: calcd. for C₃₉H₄₂O₈ 638.2880; found 638.2853.

Bibenzyl 39: The bibenzyl **39**, as a benzyl alcohol, was prepared from 38 (1.07 g, 1.68 mmol) in a procedure analogous to that used for the synthesis of 28 and was obtained as a colourless solid (0.80 g, 96%); m.p. 43 °C. ¹H NMR (CDCl₃): δ = 9.80 (s, 1 H, CHO), 7.63 (dd, J = 8.3, 2.0 Hz, 1 H), 7.35 (dd, J = 7.9, 7.9 Hz, 1 H), 7.17 (d, J = 8.7 Hz, 2 H), 7.15 (dd, J = 7.9, 1.0 Hz, 1 H), 7.10 (d, J = 8.3 Hz, 1 H), 7.02 (d, J = 7.8 Hz, 1 H), 6.93 (d, J = 8.7 Hz, 2 H), 6.92 (dd, J = 7.9, 1.0 Hz, 1 H), 6.87 (dd, J = 7.8, 1.5 Hz, 1 H), 6.80 (d, J = 7.8 Hz, 1 H), 4.33 (d, J = 12.3 Hz, 1 H, CH₂OH), 4.30 (d, J = 12.3 Hz, 1 H, CH₂OH), 3.96 (s, 3 H, OCH₃), 3.71 (s, 3 H, OCH₃), 3.70 (s, 3 H, OCH₃), 2.97 (s, 4 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 190.40 (CHO), 157.23, 156.65, 156.10, 154.74, 147.00, 142.69, 141.06, 137.16, 131.61, 130.20, 129.85, 128.71, 127.82, 126.24, 122.77, 120.93, 120.66, 118.64, 118.43, 111.96, 111.91, 110.51, 63.70 (CH₂OH), 56.28 (OCH₃), 55.95 (OCH₃), 55.80 (OCH₃), 38.14 (CH₂CH₂), 36.99 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₃₀O₆ 498.2042; found 498.2020.

Dehydroisoriccardin C Trimethyl Ether (40): A solution of the benzyl alcohol 39 (1.73 g, 3.46 mmol) and PPh₃·HBr (1.31 g, 3.81 mmol) in MeCN (50 mL) was heated at reflux for 12 h. The solvent was removed in vacuo and the crude phosphonium salt was dissolved in anhydrous CH₂Cl₂ (300 mL). This solution was added dropwise over 6 h to a mixture of NaOMe (0.75 g, 13.9 mmol) in anhydrous CH₂Cl₂ (200 mL) and stirring was continued for 12 h. After filtration and evaporation of the solvent the residue was purified by column chromatography (SiO₂, *n*-hexane/EtOAc 3:1) and 40 (NMR: E isomer only, 710 mg, 44%) was obtained as a colourless solid; m.p. 218 °C. ¹H NMR (CDCl₃): δ = 7.35 (dd, J = 8.0, 0.8 Hz, 1 H), 7.26 (dd, J = 8.0, 8.0 Hz, 1 H), 7.18 (m, 1 H), 7.12 (m, 1 H), 6.94 (m, 1 H), 6.92 (m, 1 H), 6.86 (d, J = 7.5 Hz, 1 H), 6.84 (d, J = 16.3 Hz, 1 H), 6.83 (d, J = 8.30 Hz, 1 H), 6.82 (dd, J = 8.0, 0.8 Hz, 1 H), 6.78 (dd, J = 8.3, 2.0 Hz, 1 H), 6.71 (dd, J = 7.5, 1.4 Hz, 1 H), 6.64 (d, J = 1.4 Hz, 1 H), 6.20 (d, J = 2.0 Hz, 1 H), 6.12 (d, J = 16.3 Hz, 1 H) 3.94 (s, 3 H, OCH₃), 3.71 (s, 3 H, OCH₃), 3.57 (s, 3 H, OCH₃), 3.20-3.11 (m, 4 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 157.50, 156.87, 152.73, 150.26, 148.40, 140.98, 137.20, 136.97, 131.66, 130.63, 130.46, 128.04, 126.75, 126.46, 125.79, 122.61, 122.26, 122.10, 121.94, 121.26, 116.17, 112.40, 111.44, 109.54, 109.48, 56.06 (OCH₃), 55.82 (OCH₃), 55.77 (OCH₃), 35.70 (CH₂CH₂), 34.81 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₂₈O₄ 464.1988; found 464.1945.

Isoriccardin C Trimethyl Ether (41): The stilbene 40 (630 mg, 1.36 mmol) was hydrogenated in a procedure analogous to that used for 31. The trimethyl ether 41 (626 mg, 99%) was obtained as a colourless solid; m.p. 198 °C. ¹H NMR (CDCl₃): δ = 7.28 (dd, J = 8.0, 7.8 Hz, 1 H), 7.13 (dd, J = 8.3, 2.3 Hz, 1 H), 7.03 (dd, J = 8.3, 2.3 Hz, 1 H), 6.97 (dd, J = 7.8, 1.0 Hz, 1 H), 6.92 (dd, J = 8.3, 2.4 Hz, 1 H), 6.87 (d, J = 7.6 Hz, 1 H), 6.86 (dd, J = 8.3, 2.4 Hz, 1 H), 6.81 (d, J = 8.2 Hz, 1 H), 6.80 (dd, J = 8.0, 1.0 Hz, 1 H), 6.76 (dd, J = 8.2, 2.0 Hz, 1 H), 6.66 (dd, J = 7.6, 1.5 Hz, 1 H), 6.56 (d, J = 1.5 Hz, 1 H), 5.73 (d, J = 2.0 Hz, 1 H), 3.91 (s, 3 H, OCH₃),3.66 (s, 3 H, OCH₃), 3.59 (s, 3 H, OCH₃), 3.16-3.05 (m, 6 H, CH₂CH₂), 2.64–2.49 (m, 2 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): $\delta = 157.39, 156.61, 153.57, 149.87, 147.02, 142.01, 140.79, 137.03,$ 134.82, 130.81, 130.53, 130.25, 128.14, 126.76, 123.14, 121.78, 121.59, 121.19, 121.16, 121.04, 115.21, 112.03, 111.38, 108.33, 56.08 (OCH₃), 55.83 (OCH₃), 55.46 (OCH₃), 37.67 (CH₂CH₂), 36.73 (CH₂CH₂), 36.11 (CH₂CH₂), 35.15 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₃₀O₄ 466.2144; found 466.2158.

Isoriccardin C (9): Isoriccardin C (9) was prepared from the trimethyl ether **41** (600 mg, 1.29 mmol) in a procedure analogous to that used for the synthesis of **8**. The crude product was purified by flash chromatography (SiO₂, *n*-hexane/EtOAc 2:1) and **9** was obtained as colourless crystals (472 mg, 86%); m.p. 208 °C. NMR spectroscopic data; see Tables 2 and 4. HRMS: calcd. for $C_{28}H_{24}O_4$ 424.1675; found 424.1677.

2-Bromo-5-methoxybenzaldehyde (43):^[42] NBS (35.6 g, 0.20 mol) and a small amount of AIBN were added to a solution of 1-bromo-4-methoxy-2-methylbenzene (42,^[43] 20.1 g, 0.10 mol) in CCl₄ (150 mL). The reaction mixture was heated to reflux for 6 h with additional irradiation (daylight, 300 W). The mixture was cooled to r.t. and the solid was filtered off and washed with CCl₄ (50 mL). The solvent was removed in vacuo and CaCO₃ (43.0 g, 0.43 mol) and H₂O (200 mL) were added to the obtained benzyl dibromide. The suspension was heated to reflux for 16 h. The mixture was diluted with EtOAc (200 mL) and HCl (6 M) was added dropwise (cooling in an ice bath) until the solid was dissolved completely. After separation the aqueous layer was extracted with EtOAc $(2 \times 100 \text{ mL})$. The combined organic layers were washed with saturated aqueous NaCl (3×100 mL), dried (MgSO₄) and concentrated. The crude material was purified by column chromatography (SiO₂, CH₂Cl₂/n-hexane 1:1). The aldehyde 43 (15.5 g, 72%) was obtained as a colourless solid; m.p. 76 °C. ¹H NMR (CDCl₃): δ = 10.29 (s, 1 H, CHO), 7.50 (d, J = 8.8 Hz, 1 H), 7.40 (d, J = 3.3 Hz, 1 H), 7.02 (dd, J = 8.8, 3.3 Hz, 1 H), 3.83 (s, 3 H, OCH₃) ppm. ¹³C NMR (CDCl₃): δ = 191.69 (CHO), 159.25, 134.54, 133.96, 123.04, 117.92, 112.71, 55.71 (OCH₃) ppm.

2-(2-Bromo-5-methoxyphenyl)-1,3-dioxane (44): The dioxane **44 was** prepared from **43** (15.5 g, 72.1 mmol) in a procedure analogous to that used for the synthesis of **17** and was obtained as a yellow oil (18.3 g, 93%). ¹H NMR (CDCl₃): $\delta = 7.40$ (d, J = 8.8 Hz, 1 H), 7.25 (d, J = 3.0 Hz, 1 H), 6.76 (dd, J = 8.8, 3.0 Hz, 1 H), 5.71 (s, 1 H, OCHO), 4.26 (m, 2 H, OCH₂), 4.02 (m, 2 H, OCH₂), 3.80 (s, 3 H, OCH₃), 2.25 (m, 1 H), 1.45 (m, 1 H) ppm. ¹³C NMR (CDCl₃): $\delta = 159.14$, 138.26, 133.22, 117.14, 112.72, 112.60 100.83 (OCHO), 67.57 (OCH₂), 55.53 (OCH₃), 25.68 ppm. HRMS: calcd. for C₁₁H₁₃BrO₃ 272.0048; found 272.0070.

2-Formyl-4-methoxyphenylboronic Acid (45):^[44] A solution of *n*BuLi (2.5 M in *n*-hexane, 41.0 mL, 103 mmol) was added slowly at -78 °C to a solution of the bromoarene **44** (23.5 g, 86.0 mmol) in anhydrous THF (250 mL) and the mixture was stirred for an additional 60 min. Trimethyl borate (11.2 g, 108 mmol) was added in one portion at -78 °C and the mixture was allowed to warm to r.t.

over 2 h. A solution of HCl (2 M, 100 mL) was added dropwise and the mixture was stirred for 30 min and then extracted with Et₂O (1 × 150 mL, 2 × 75 mL). The combined organic layers were washed with saturated aqueous NaCl (100 mL) and extracted with NaOH (1 M, 3 × 50 mL). The aqueous phase was neutralized with concentrated HCl (cooling in an ice bath). The precipitated solid was collected by filtration, washed with H₂O (2 × 40 mL) and dried under reduced pressure over CaCl₂. The boronic acid **45** (8.00 g, 52%) was obtained as a colourless powder; m.p. 151 °C. ¹H NMR ([D₆]DMSO): δ = 10.23 (s, 1 H, CHO), 7.63 (d, *J* = 8.1 Hz, 1 H), 7.39 (d, *J* = 2.7 Hz, 1 H), 7.21 (dd, *J* = 8.1, 2.7 Hz, 1 H), 3.83 (s, 3 H, OCH₃) ppm. ¹³C NMR ([D₆]DMSO): δ = 194.21 (CHO), 159.98, 141.39, 135.57, 119.17, 112.39, 55.25 (OCH₃) ppm.

5-Methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (46): The boronic ester **46 w**as prepared from **45** (2.00 g, 11.1 mmol) in a procedure analogous to that used for the synthesis of **36** and was obtained as a colourless oil (2.32 g, 80%). ¹H NMR (CDCl₃): $\delta = 10.68$ (s, 1 H, CHO), 7.86 (d, J = 8.3 Hz, 1 H), 7.51 (d, J = 2.8 Hz, 1 H), 7.13 (dd, J = 8.3, 2.8 Hz, 1 H), 3.88 (s, 3 H, OCH₃), 1.37 (s, 12 H, CH₃) ppm. ¹³C NMR (CDCl₃): $\delta = 194.76$ (CHO), 161.96, 143.63, 137.96, 119.91, 110.32, 84.15 [OC(CH₃)₂], 55.37 (OCH₃), 24.86 (CH₃) ppm. HRMS: calcd. for C₁₄H₁₉BO₄ 262.1376; found 262.1383.

2-(1,3-Dioxan-2-yl)-6-methoxyphenyl Trifluoromethanesulfonate (47): The dioxane 47 was prepared from 21 (13.5 g, 47.5 mmol) in a procedure analogous to that used for the synthesis of 17 and was obtained as a yellow oil (16.0 g, 98%). ¹H NMR (CDCl₃): δ = 7.33 (dd, *J* = 8.0, 7.0 Hz, 1 H), 7.31 (dd, *J* = 8.0, 2.8 Hz, 1 H), 7.02 (dd, *J* = 7.0, 2.8 Hz, 1 H), 5.72 (s, 1 H, OCHO), 4.25 (m, 2 H, OCH₂), 3.99 (m, 2 H, OCH₂), 3.88 (s, 3 H, OCH₃), 2.26 (m, 1 H), 1.45 (m, 1 H) ppm. ¹³C NMR (CDCl₃): δ = 150.95, 136.15, 133.02, 128.78, 119.16, 118.88 (q, *J*_{C,F} = 320.6 Hz), 113.51, 96.85 (OCHO), 67.52 (OCH₂), 56.17 (OCH₃), 25.58 ppm. HRMS: calcd. for C₁₂H₁₃F₃O₆S 342.0385; found 342.0351.

2'-(1,3-Dioxan-2-yl)-4,6'-dimethoxybiphenyl-2-carbaldehyde (48): The biaryl 48 was prepared from 46 (2.20 g, 8.39 mmol) and 47 (3.73 g, 9.91 mmol) in a procedure analogous to that used for the synthesis of 26 and was obtained as a colourless solid (1.85 g, 67%); m.p. 144 °C. ¹H NMR (CDCl₃): δ = 9.55 (s, 1 H, CHO), 7.54 (d, J = 2.5 Hz, 1 H), 7.45 (dd, J = 7.8, 7.5 Hz, 1 H), 7.41 (dd, J = 7.8, 1.8 Hz, 1 H), 7.23 (d, J = 8.5 Hz, 1 H), 7.19 (dd, J = 8.5, 2.5 Hz, 1 H), 6.96 (dd, J = 7.5, 1.8 Hz, 1 H), 4.97 (s, 1 H, OCHO), 4.13 (m, 1 H, OCH₂), 4.00 (m, 1 H, OCH₂), 3.92 (s, 3 H, OCH₃), 3.69 (s, 3 H, OCH₃), 3.65 (m, 1 H, OCH₂), 3.50 (m, 1 H, OCH₂), 2.12 (m, 1 H), 1.28 (m, 1 H) ppm. ¹³C NMR (CDCl₃): δ = 192.21 (CHO), 159.26, 156.78, 139.01, 135.65, 132.86, 132.05, 129.71, 124.85, 120.78, 118.41, 110.86, 109.09, 99.62 (OCHO), 67.20 (OCH₂), 67.10 (OCH₂), 55.77 (OCH₃), 55.51 (OCH₃), 25.49 ppm. HRMS: calcd. for C₁₉H₂₀O₅ 328.1311; found 328.1262.

Stilbene 49: The stilbene **49** was prepared from **48** (1.75 g, 5.33 mmol) and **20** in a procedure analogous to that used for the synthesis of **27** and was obtained as a colourless resin (E/Z mixture, 3.04 g, 93%). Complex NMR spectroscopic data. HRMS: calcd. for C₃₇H₃₈O₈ 610.2567; found 610.2536.

Bibenzyl Dialdehyde 50: The dialdehyde **50** was prepared from **49** (3.04 g, 4.83 mmol) in a procedure analogous to that used for the synthesis of **39** and was obtained as a colourless solid (2.30 g, 93%); m.p. 67 °C. ¹H NMR (CDCl₃): δ = 9.80 (s, 1 H, CHO), 9.61 (d, J = 0.8 Hz, 1 H, CHO), 7.62 (dd, J = 7.8, 1.0 Hz, 1 H), 7.62 (dd, J = 8.3, 2.0 Hz, 1 H), 7.47 (ddd, J = 8.0, 7.8, 0.8 Hz, 1 H), 7.39 (d, J = 2.0 Hz, 1 H), 7.21 (dd, J = 8.0, 1.0 Hz, 1 H), 7.08 (d, J = 8.3 Hz, 1 H), 7.05 (d, J = 8.0 Hz, 1 H), 6.86 (d, J = 2.6 Hz, 1

H), 6.85 (d, J = 8.8 Hz, 2 H), 6.83 (dd, J = 8.0, 2.6 Hz, 1 H), 6.80 (d, J = 8.8 Hz, 2 H), 3.93 (s, 3 H, OCH₃), 3.83 (s, 3 H, OCH₃), 3.79 (s, 3 H, OCH₃), 2.73–2.57 (m, 4 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): $\delta = 192.51$ (CHO), 190.47 (CHO), 159.49, 157.36, 156.15, 154.77, 146.65, 142.17, 136.74, 135.77, 133.98, 132.22, 130.13, 129.58, 128.84, 127.75, 124.84, 119.14, 118.95, 118.12, 115.75, 114.84, 111.95, 111.20, 56.25 (OCH₃), 55.93 (OCH₃), 55.20 (OCH₃), 35.93 (CH₂CH₂), 35.90 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₂₈O₆ 496.1886; found 496.1870.

Dehydroplagiochin F Trimethyl Ether (51): The stilbene **51** was prepared from **50** (1.10 g, 2.22 mmol) in a procedure analogous to that used for the synthesis of **30** and was obtained as a colourless solid (NMR: E/Z, 1.3:1, 296 mg, 29%); m.p. 121 °C. Complex NMR spectroscopic data. HRMS: calcd. for C₃₁H₂₈O₄ 464.1988; found 464.1960.

Plagiochin F Trimethyl Ether (52): The stilbene 51 (167 mg, 0.36 mmol) was hydrogenated in a procedure analogous to that used for 31. The trimethyl ether 52 (166 mg, 99%) was obtained as a colourless powder; m.p. 120 °C. ¹H NMR (CDCl₃): δ = 7.22 (d, J = 2.5 Hz, 1 H), 7.16 (dd, J = 8.0, 8.0 Hz, 1 H), 7.03 (dd, J = 8.3, 2.3 Hz, 1 H), 6.98 (d, J = 8.3 Hz, 1 H), 6.96 (dd, J = 8.3, 2.3 Hz, 1 H), 6.80 (dd, J = 8.3, 2.3 Hz, 1 H), 6.78 (d, J = 8.0 Hz, 1 H), 6.77 [dd (not resolved), 1 H], 6.74–6.69 (m, 4 H), 5.26 (d, J =2.0 Hz, 1 H), 3.91 (s, 3 H, OCH₃), 3.88 (s, 3 H, OCH₃), 3.70 (s, 3 H, OCH₃), 3.21-3.14 (m, 1 H, CH₂CH₂), 3.11-2.78 (m, 5 H, CH₂CH₂), 2.41–2.34 (m, 1 H, CH₂CH₂), 2.01–1.93 (m, 1 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 158.36, 156.92, 155.05, 151.45, 146.17, 140.96, 140.54, 139.86, 133.45, 131.84, 130.35, 129.80, 128.86, 128.37, 127.85, 123.98, 122.67, 120.66, 118.94, 115.60, 114.34, 111.57, 110.13, 108.02, 56.18 (OCH₃), 55.47 (OCH₃), 55.15 (OCH₃), 35.25 (CH₂CH₂), 33.78 (CH₂CH₂), 31.61 (CH_2CH_2) , 30.27 (CH_2CH_2) ppm. HRMS: calcd. for $C_{31}H_{30}O_4$ 466.2144; found 466.2147.

Plagiochin F (10): The free phenolic groups were liberated from **52** (150 mg, 0.32 mmol) in a procedure analogous to that used for the synthesis of **8**. Plagiochin F (**10**, 90 mg, 66%) was obtained as colourless crystals; m.p. 252 °C. NMR spectroscopic data; see ref.^[15] HRMS: calcd. for $C_{28}H_{24}O_4$ 424.1675; found 424.1690.

2',6-Dimethoxy-4'-[(tetrahydro-2H-pyran-2-yloxy)methyl]biphenyl-2-carbaldehyde (54): The biaryl 54 was prepared from 21 (6.00 g, 21.1 mmol) and 53^[36] (5.30 g, 19.9 mmol) in a procedure analogous to that used for the synthesis of 26 and was obtained as a yellow oil (4.86 g, 69%). ¹H NMR (CDCl₃): δ = 9.68 (s, 1 H, CHO), 7.62 (dd, J = 7.8, 1.3 Hz, 1 H), 7.44 (dd, J = 8.1, 7.8 Hz, 1 H), 7.20 (dd, J = 8.1, 7.8 Hz, 1 Hz), 7.20 (dd, J = 8.1, 7.8 Hz), 7.20 (dd, J = 8.1, 7.8 Hz), 7.20 (dd, JJ = 8.1, 1.3 Hz, 1 H), 7.19 (d, J = 7.5 Hz, 1 H), 7.04 (dd, J = 7.5, 2.8 Hz, 1 H), 7.02 (d, J = 2.8 Hz, 1 H), 4.86 (d, J = 12.1 Hz, 1 H, Ar–OCH₂), 4.79 (m, 1 H, OCHO) 4.57 (d, J = 12.1 Hz, 1 H, Ar– OCH₂), 3.99–3.93 (m, 1 H, OCH₂), 3.77 (s, 3 H, OCH₃), 3.73 (s, 3 H, OCH₃), 3.61–3.56 (m, 1 H, OCH₂), 1.94–1.56 (m, 6 H) ppm. ¹³C NMR (CDCl₃): δ = 192.84 (CHO), 157.36, 157.26, 157.22, 140.31, 135.40, 132.40, 131.09, 128.68, 121.09, 121.06, 119.65, 119.60, 118.72, 116.24, 110.17, 110.12, 98.01 (OCHO), 68.82 (Ar-OCH₂), 62.30 (OCH₂), 62.27 (OCH₂), 56.12 (OCH₃), 55.56 (OCH₃), 30.64, 25.50, 19.46, 19.45 ppm. HRMS: calcd. for C₂₁H₂₄O₅ 356.1624; found 356.1614.

Stilbene 55: The stilbene 55 was prepared from 54 (4.76 g, 13.4 mmol) and 20 in a procedure analogous to that used for the synthesis of 27 and was obtained as a colourless resin (*E*/*Z* mixture, 8.01 g, 94%). Complex NMR spectroscopic data. HRMS: calcd. for $C_{39}H_{42}O_8$ 638.2880; found 638.2890.

Bibenzyl 56: The bibenzyl **56**, as a benzyl alcohol, was prepared from **55** (8.90 g, 13.9 mmol) in a procedure analogous to that used

for the synthesis of 29 and was obtained as a colourless resin (6.65 g, 96%). ¹H NMR (CDCl₃): δ = 9.77 (s, 1 H, CHO), 7.60 (dd, J = 8.4, 2.0 Hz, 1 H), 7.35 (d, J = 2.0 Hz, 1 H), 7.26 (dd, J =8.0, 8.0 Hz, 1 H), 7.07 (d, J = 8.4 Hz, 1 H), 7.05 (d, J = 7.5 Hz, 1 H), 7.04 (d, J = 1.5 Hz, 1 H), 6.99 (dd, J = 7.5, 1.5 Hz, 1 H), 6.88 (dd, J = 8.0, 1.0 Hz, 1 H), 6.87 (d, J = 8.7 Hz, 2 H), 6.83 (dd, J =8.0, 1.0 Hz, 1 H), 6.81 (d, J = 8.7 Hz, 2 H), 4.73 (br. s, 2 H, CH₂OH), 3.92 (s, 3 H, OCH₃), 3.74 (s, 3 H, OCH₃), 3.69 (s, 3 H, OCH₃), 2.72–2.53 (m, 4 H, CH₂CH₂), 2.14 (br. s, 1 H, CH₂OH) ppm. ¹³C NMR (CDCl₃): δ = 190.49 (CHO), 157.39, 157.37, 156.07, 154.47, 146.99, 141.76, 141.69, 137.60, 131.64, 130.12, 129.68, 128.23, 127.75, 126.99, 125.43, 121.48, 118.80, 118.62, 118.25, 111.92, 109.59, 108.75, 65.39 (CH₂OH), 56.24 (OCH₃), 55.87 (OCH₃), 55.58 (OCH₃), 36.34 (CH₂CH₂), 35.79 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₃₀O₆ 498.2042; found 498.2029.

Dehydroriccardin D Trimethyl Ether (57): The stilbene **57** was prepared from **56** (2.50 g, 5.03 mmol) in a procedure analogous to that used for the synthesis of **40**. The crude material was purified by column chromatography (SiO₂, CH₂Cl₂) and compound **57** (NMR: E/Z 1.1:1, 1.60 g, 68%) was obtained as a colourless solid; m.p. 101 °C. Complex NMR spectroscopic data. HRMS: calcd. for C₃₁H₂₈O₄ 464.1988; found 464.1992.

Riccardin D Trimethyl Ether (58): The stilbene 57 (1.30 g, 2.80 mmol) was hydrogenated in a procedure analogous to that used for the synthesis of 31. The riccardin D trimethyl ether (58, 1.24 g, 95%) was obtained as a colourless solid; m.p. 79 °C. ¹H NMR (CDCl₃): δ = 7.33 (dd, J = 8.0, 7.8 Hz, 1 H), 7.06 (dd, J = 7.8, 1.0 Hz, 1 H), 6.91–6.84 (br. m, 2 H), 6.88 (d, J = 8.0 Hz, 1 H), 6.85 (d, J = 7.5 Hz, 1 H), 6.81 (dd, J = 8.0, 1.0 Hz, 1 H), 6.80–6.72 (br. m, 2 H), 6.78 (dd, J = 8.0, 2.0 Hz, 1 H), 6.40 (dd, J = 7.5, 1.5 Hz, 1 H), 6.38 (d, J = 1.5 Hz, 1 H), 5.48 (d, J = 2.0 Hz, 1 H), 3.94 (s, 3 H, OCH₃), 3.66 (s, 3 H, OCH₃), 3.64 (s, 3 H, OCH₃), 2.97–2.62 (m, 8 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 157.34, 156.71, 152.91, 149.09, 146.89, 143.72, 141.56, 140.26, 134.28, 132.65, 129.39, 129.26, 128.40, 127.14, 122.67, 122.46, 122.30, 122.18, 121.42, 120.81, 116.63, 111.88, 111.79, 108.24, 56.12 (OCH₃), 55.80 (OCH₃), 55.31 (OCH₃), 38.10 (CH₂CH₂), 37.67 (CH₂CH₂), 36.91 (CH₂CH₂), 34.84 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₃₀O₄ 466.2144; found 466.2138.

Riccardin D (11): Riccardin D (11) was prepared from the trimethyl ether **58** (600 mg, 1.29 mmol) in a procedure analogous to that used for the synthesis of **8** and was obtained as a colourless solid (388 mg, 71%); m.p. 173 °C. NMR spectroscopic data; see ref.^[15] HRMS: calcd. for $C_{28}H_{24}O_4$ 424.1675; found 424.1659.

4-Formyl-2-methoxyphenyl Trifluoromethanesulfonate (Vanillin **Triflate, 59):**^[45] The triflate **59** was prepared from vanillin (6.85 g, 45.0 mmol) in a procedure analogous to that used for the synthesis of **21** and was obtained as a pale yellow oil (11.7 g, 91%). ¹H NMR (CDCl₃): δ = 9.99 (s, 1 H, CHO), 7.57 (d, *J* = 1.8 Hz, 1 H), 7.52 (dd, *J* = 8.1, 1.8 Hz, 1 H), 7.42 (d, *J* = 8.1 Hz, 1 H), 4.00 (s, 3 H, OCH₃) ppm. ¹³C NMR (CDCl₃): δ = 190.39 (CHO), 152.30, 142.79, 136.85, 124.13, 123.26, 118.74 (q, *J*_{C,F} = 320.6 Hz, CF₃), 111.85, 56.55 (OCH₃) ppm.

2,2'-Dimethoxy-4'-[(tetrahydro-2*H***-pyran-2-yloxy)methyl]biphenyl-4-carbaldehyde (60):** The biaryl **60** was prepared from **53** (4.75 g, 17.9 mmol) and **59** (5.83 g, 20.5 mmol) in a procedure analogous to that used for the synthesis of **26** and was obtained as a colourless oil (5.02 g, 79%). ¹H NMR (CDCl₃): δ = 10.01 (s, 1 H, CHO), 7.51 (dd, J = 7.7, 1.3 Hz, 1 H), 7.49 (d, J = 1.5 Hz, 1 H), 7.41 (d, J = 7.7 Hz, 1 H), 7.21 (d, J = 8.0 Hz, 1 H), 7.04 (dd, J = 8.0, 1.5 Hz, 1 H), 7.02 (d, J = 1.5 Hz, 1 H), 4.84 (d, J = 12.0 Hz, 1 H, ArOCH₂), 4.77 (t, J = 3.6 Hz, 1 H, OCHO), 4.55 (d, J = 12.0 Hz, 1 H, Ar–CH₂), 4.00–3.92 (m, 1 H, OCH₂), 3.84 (s, 3 H, OCH₃), 3.79 (s, 3 H, OCH₃), 3.62–3.55 (m, 1 H, OCH₂), 1.79–1.50 (m, 6 H) ppm. ¹³C NMR (CDCl₃): $\delta = 191.98$ (CHO), 156.90, 155.77, 139.91, 136.87, 134.69, 132.09, 130.97, 125.74, 123.98, 119.77, 110.62, 109.38, 97.96 (OCHO), 68.85 (Ar–OCH₂), 62.28 (OCH₂), 55.84 (OCH₃), 55.72 (OCH₃), 30.63, 25.50, 19.45 ppm. HRMS: calcd. for C₂₁H₂₄O₅ 356.1624; found 356.1638.

Stilbene 61: The stilbene 61 was prepared from 60 (4.70 g, 13.2 mmol) and 20 in a procedure analogous to that used for the synthesis of 27 and was obtained as a colourless resin (E/Z mixture, 6.10 g, 79%). Complex NMR spectroscopic data. HRMS: calcd. for C₃₉H₄₂O₈ 638.2880; found 638.2867.

Bibenzyl 62: The bibenzyl 62, as a benzyl alcohol, was prepared from 61 (4.00 g, 6.79 mmol) in a procedure analogous to that used for the synthesis of 28 and was obtained as a colourless resin (2.96 g, 87%). ¹H NMR (CDCl₃): $\delta = 9.81$ (s, 1 H, CHO), 7.63 (dd, J = 8.3, 2.0 Hz, 1 H), 7.41 (d, J = 2.0 Hz, 1 H), 7.23 (d, J =7.5 Hz, 1 H), 7.20 (d, J = 8.7 Hz, 2 H), 7.16 (d, J = 7.6 Hz, 1 H), 7.10 (d, J = 8.3, 2.0 Hz, 1 H), 7.02 (d, J = 1.4 Hz, 1 H), 6.98 (dd, *J* = 7.5, 1.4 Hz, 1 H), 6.94 (d, *J* = 8.7 Hz, 2 H), 6.86 (dd, *J* = 7.6, 1.5 Hz, 1 H), 6.79 (d, J = 1.5 Hz, 1 H), 4.73 (d, J = 5.8 Hz, 2 H, CH₂OH), 3.97 (s, 3 H, OCH₃), 3.79 (s, 3 H, OCH₃), 3.75 (s, 3 H, OCH_3), 2.97 (s, 4 H, CH_2CH_2), 1.74 (t, J = 5.8 Hz, 1 H, CH₂OH) ppm. ¹³C NMR (CDCl₃): δ = 190.42 (CHO), 157.33, 156.94, 156.11, 154.73, 147.02, 142.47, 141.46, 137.32, 131.68, 131.68, 130.32, 129.83, 127.74, 127.18, 125.13, 120.35, 118.77, 118.72, 118.46, 111.96, 111.51, 109.78, 65.54 (CH₂OH), 56.30 (OCH₃), 55.77 (OCH₃), 55.71 (OCH₃), 38.14 (CH₂CH₂), 37.05 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₃₀O₆ 498.2042; found 498.2027.

Bibenzyl Dialdehyde 63: The dialdehyde 63 was prepared from 62 (1.85 g, 3.71 mmol) in a procedure analogous to that used for the synthesis of 29 and was obtained as a colourless resin (1.76 g, 96%). ¹H NMR (CDCl₃): δ = 10.00 (s, 1 H, CHO), 9.81 (s, 1 H, CHO), 7.63 (dd, J = 8.5, 2.0 Hz, 1 H), 7.50 (dd, J = 7.5, 1.5 Hz, 1 H), 7.48 (d, J = 1.5 Hz, 1 H), 7.43 (d, J = 7.5 Hz, 1 H), 7.41 (d, J = 2.0 Hz, 1 H), 7.20 (d, J = 8.5 Hz, 2 H), 7.17 (d, J = 7.6 Hz, 1 H), 7.11 (d, J = 8.5 Hz, 1 H), 6.94 (d, J = 8.5 Hz, 2 H), 6.88 (dd, J = 7.6, 1.5 Hz, 1 H), 6.80 (d, J = 1.5 Hz, 1 H), 3.97 (s, 3 H, OCH₃), 3.85 (s, 3 H, OCH₃), 3.75 (s, 3 H, OCH₃), 2.98 (s, 4 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 192.01 (CHO), 190.40 (CHO), 157.77, 156.74, 156.10, 154.75, 147.03, 143.34, 137.15, 136.77, 134.83, 132.16, 130.94, 130.22, 129.84, 127.87, 124.20, 123.98, 120.46, 118.56, 118.51, 111.95, 111.57, 109.40, 56.30 (OCH₃), 55.86 (OCH₃), 55.70 (OCH₃), 38.14 (CH₂CH₂), 36.99 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₂₈O₆ 496.1886; found 496.1869.

Polymorphatin A Trimethyl Ether (65): A solution of **62** (4.00 g, 8.03 mmol) and PPh₃·HBr (3.02 g, 8.80 mmol) in MeCN (130 mL) was heated at reflux for 12 h. The solvent was removed in vacuo and the crude phosphonium salt was dissolved in anhydrous CH₂Cl₂ (400 mL). This solution was added dropwise over 6 h to a mixture of NaOMe (0.75 g, 13.9 mmol) in anhydrous CH₂Cl₂ (300 mL) and stirring was continued for 24 h. After filtration and evaporation of the solvent the residue (460 mg, 12%) was dissolved in CH₂Cl₂ (150 mL) and EtOAc (100 mL) and after addition of Pd/C (5%, 200 mg) the mixture was hydrogenated in a Parr apparatus at 3 bar H₂ for 24 h. The catalyst was filtered off and the solution was concentrated in vacuo. The residue was purified by flash chromatography (SiO₂, *n*-hexane/CH₂Cl₂/EtOAc 12:6:1) and **65** (440 mg, 12%) was obtained as a colourless solid; m.p. 213 °C. ¹H

NMR (CDCl₃): δ = 7.11 (dd, J = 8.4, 2.0 Hz, 1 H), 7.07 (d, J = 7.7 Hz, 1 H), 7.04 (d, J = 7.5 Hz, 1 H), 7.02 (d, J = 8.5 Hz, 2 H), 7.01 (d, J = 8.4 Hz, 1 H), 6.84 (dd, J = 7.7, 1.5 Hz, 1 H), 6.80 (d, J = 1.5 Hz, 1 H), 6.61 (d, J = 8.5 Hz, 2 H), 6.55 (dd, J = 7.5, 1.5 Hz, 1 H), 6.52 (d, J = 1.5 Hz, 1 H), 6.48 (d, J = 2.0 Hz, 1 H), 3.82 (s, 3 H, OCH₃), 3.71 (s, 3 H, OCH₃), 3.62 (s, 3 H, OCH₃), 2.98–2.81 (m, 8 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 157.00, 156.43, 156.43, 149.79, 143.47, 142.52, 141.23, 135.31, 134.39, 131.67, 131.22, 129.27, 125.43, 125.20, 124.78, 123.78, 120.94, 119.97, 115.95, 113.36, 111.79, 111.26, 56.29 (OCH₃), 55.60 (OCH₃), 55.46 (OCH₃), 38.41 (CH₂CH₂), 38.24 (CH₂CH₂), 36.90 (CH₂CH₂), 36.53 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₃₀O₄ 466.2144; found 466.2111.

Polymorphatin A (12): Polymorphatin A (12) was prepared from the trimethyl ether **65** (420 mg, 0.90 mmol) in a procedure analogous to that used for the synthesis of **8** and was obtained as a colourless solid (340 mg, 89%); m.p. >300 °C. NMR spectroscopic data; see Tables 2 and 4. HRMS: calcd. for $C_{28}H_{24}O_4$ 424.1675; found 424.1683.

2',4-Dimethoxy-4'-[(tetrahydro-2H-pyran-2-yloxy)methyl]biphenyl-2-carbaldehyde (67): The biaryl 67 was prepared from 45 (2.70 g, 15.0 mmol) and 66^[38] (6.80 g, 19.5 mmol) in a procedure analogous to that used for the synthesis of 26 and was obtained as a colourless oil (4.67 g, 91%). ¹H NMR (CDCl₃): δ = 9.74 (s, 1 H, CHO), 7.49 (d, J = 2.8 Hz, 1 H), 7.27 (d, J = 8.5 Hz, 1 H), 7.23 (d, J = 7.5 Hz, 1 H)1 H), 7.19 (dd, J = 8.5, 2.8 Hz, 1 H), 7.07 (dd, J = 7.5, 1.3 Hz, 1 H), 7.00 (d, *J* = 1.3 Hz, 1 H), 4.85 (d, *J* = 12.1 Hz, 1 H, Ar–OCH₂), 4.76 (t, J = 3.5 Hz, 1 H, OCHO), 4.56 (d, J = 12.1 Hz, 1 H, Ar-OCH₂), 3.98-3.93 (m, 1 H, OCH₂), 3.89 (s, 3 H, OCH₃), 3.75 (s, 3 H, OCH₃), 3.61–3.56 (m, 1 H, OCH₂), 1.93–1.55 (m, 6 H) ppm. ¹³C NMR (CDCl₃): *δ* = 192.46 (CHO), 159.16, 156.70, 140.34, 134.91, 134.49, 132.51, 131.53, 125.75, 121.20, 120.24, 110.05, 109.43, 98.05 (OCHO), 68.73 (Ar-OCH₂), 62.33 (OCH₂), 55.54 (OCH₃), 55.43 (OCH₃), 30.63, 25.48, 19.47 ppm. HRMS: calcd. for C₂₁H₂₄O₅ 356.1624; found 356.1674.

Stilbene 68: The stilbene **68** was prepared from **67** (1.90 g, 5.33 mmol) and **20** in a procedure analogous to that used for the synthesis of **27** and was obtained as a colourless resin (*E*/*Z* mixture, 3.24 g, 95%). Complex NMR spectroscopic data. HRMS: calcd. for $C_{39}H_{42}O_8$ 638.2880; found 638.2845.

Bibenzyl 69: The bibenzylic benzyl alcohol 69 was prepared from 68 (3.20 g, 5.01 mmol) in a procedure analogous to that used for the synthesis of 28 and was obtained as a colourless resin (2.35 g, 94%). ¹H NMR (CDCl₃): δ = 9.78 (s, 1 H, CHO), 7.61 (dd, J = 8.3, 2.0 Hz, 1 H), 7.36 (d, J = 2.0 Hz, 1 H), 7.08 (d, J = 8.2 Hz, 1 H), 7.07 (d, J = 8.3 Hz, 1 H), 7.07 (d, J = 7.5 Hz, 1 H), 7.0 (d, J= 1.5 Hz, 1 H), 6.97 (dd, J = 7.5, 1.5 Hz, 1 H), 6.90 (d, J = 8.5 Hz, 2 H), 6.82 (d, J = 8.5 Hz, 2 H), 6.81 (d, J = 2.8 Hz, 1 H), 6.79 (dd, J = 8.2, 2.8 Hz, 1 H), 4.73 (br. s, 2 H, CH₂OH), 3.93 (s, 3 H, OCH₃), 3.81 (s, 3 H, OCH₃), 3.76 (s, 3 H, OCH₃), 2.80-2.63 (m, 4 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 190.48 (CHO), 158.87, 157.06, 156.11, 154.54, 146.96, 141.63, 137.48, 131.63, 131.37, 130.57, 130.14, 129.67, 129.56, 127.78, 118.78, 118.68, 118.25, 114.48, 111.95, 111.11, 109.28, 65.31 (CH₂OH), 56.26 (OCH₃), 55.48 (OCH₃), 55.17 (OCH₃), 36.28 (CH₂CH₂), 35.79 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₃₀O₆ 498.2042; found 498.2028.

Dehydroriccardin C Trimethyl Ether (70): The stilbene **70** was prepared from **69** (2.12 g, 4.25 mmol) in a procedure analogous to that used for the synthesis of **40** and was obtained as a colourless powder (NMR: E/Z 1:1, 750 mg, 38%); m.p. 108 °C. HRMS: calcd. for C₃₁H₂₈O₄ 464.1988; found 464.1956.

Riccardin C Trimethyl Ether (71): The stilbene 70 (500 mg, 1.07 mmol) was hydrogenated in a procedure analogous to that used for the synthesis of 31 and was obtained as a colourless solid (487 mg, 97%); m.p. 84 °C. ¹H NMR (CDCl₃): δ = 7.06 (d, J = 8.5 Hz, 1 H), 6.96 (d, J = 2.8 Hz, 1 H), 6.90–6.85 (br. m, 1 H), 6.89 (d, J = 8.3 Hz, 1 H), 6.82 (d, J = 7.6 Hz, 1 H), 6.81 (dd, J = 8.5,2.8 Hz, 1 H), 6.79–6.70 (br. m, 2 H), 6.78 (dd, J = 8.3, 2.0 Hz, 1 H), 6.75–6.67 (br. m, 1 H), 6.44 (d, J = 1.5 Hz, 1 H), 6.24 (dd, J = 7.6, 1.5 Hz, 1 H), 5.37 (d, J = 2.0 Hz, 1 H), 3.94 (s, 3 H, OCH₃), 3.88 (s, 3 H, OCH₃), 3.67 (s, 3 H, OCH₃), 3.14–2.58 (m, 8 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 159.12, 155.98, 152.73, 148.65, 146.90, 143.26, 141.22, 139.71, 133.78, 132.44, 132.41, 130.92, 129.53, 129.20, 127.58, 122.31, 121.70, 121.40, 116.66, 115.38, 111.79, 111.43, 111.14, 56.11 (OCH₃), 55.23 (OCH₃), 55.20 (OCH₃), 38.24 (CH₂CH₂), 38.09 (CH₂CH₂), 37.25 (CH₂CH₂), 35.59 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₃₀O₄ 466.2144; found 466.2117.

Riccardin C (6): Riccardin C (6) was prepared from its trimethyl ether **71** (225 mg, 0.48 mmol) in a procedure analogous to that used for the synthesis of **8** and was obtained as a colourless solid (174 mg, 85%); m.p. 164 °C. NMR spectroscopic data; see Tables 3 and 4. HRMS: calcd. for $C_{28}H_{24}O_4$ 424.1675; found 424.1693.

2-[2-(1,3-Dioxan-2-yl)-4-methoxyphenyl]-4,4,5,5-tetramethyl-1,3,2dioxaborolane (72): A solution of nBuLi (2.5 M in n-hexane, 16.2 mL, 40.4 mmol) was added slowly at -78 °C to a solution of the bromide 44 (8.50 g, 31.1 mmol) in anhydrous THF (80 mL) and the mixture was stirred for an additional 60 min. Trimethyl borate (7.41 g, 71.3 mmol) was added in one portion at -78 °C and the mixture was allowed to warm to r.t. over 2 h. A solution of saturated aqueous KH₂PO₄ (100 mL) was added dropwise and the mixture was extracted with CH_2Cl_2 (1×80 mL, 2×40 mL). Pinacol (7.35 g, 62.2 mmol) and MgSO₄ (37.6 g, 0.31 mol) were added to the combined organic layers and the mixture was stirred for 12 h. The solid was filtered off and washed with CH₂Cl₂ (50 mL), and the filtrate was concentrated under reduced pressure. The crude material was purified by flash chromatography (SiO₂, n-hexane/ EtOAc 4:1). The boronic ester 72 (6.94 g, 70%) was obtained as colourless crystals; m.p. 62 °C. ¹H NMR (CDCl₃): δ = 7.69 (d, J = 8.3 Hz, 1 H), 7.27 (d, J = 2.8 Hz, 1 H), 6.83 (dd, J = 8.3, 2.8 Hz, 1 H), 6.07 (s, 1 H, OCHO), 4.23 (m, 2 H, OCH₂), 4.02 (s, 2 H, OCH₂), 3.83 (s, 3 H, OCH₃), 2.22 (m, 1 H), 1.41 (m, 1 H), 1.34 (s, 12 H, CH₃) ppm. ¹³C NMR (CDCl₃): δ = 161.85, 146.21, 137.09, 114.10, 110.00, 100.18 (OCHO), 83.33 [OC(CH₃)₂], 67.42 (OCH₂), 55.18 (OCH₃), 25.93, 24.92 (CH₃) ppm. HRMS: calcd. for C₁₇H₂₅BO₅ 320.1795; found 320.1722.

2'-(1,3-Dioxan-2-yl)-4',6-dimethoxybiphenyl-2-carbaldehyde (73): The biaryl 73 was prepared from 21 (4.62 g, 16.3 mmol) and 72 (4.00 g, 12.5 mmol) in a procedure analogous to that used for the synthesis of 26 and was obtained as a colourless solid (3.75 g, 91%); m.p. 102 °C. ¹H NMR (CDCl₃): δ = 9.54 (d, J = 0.8 Hz, 1 H, CHO), 7.62 (dd, J = 7.8, 1.3 Hz, 1 H), 7.46 (ddd, J = 8.1, 7.8, 0.8 Hz, 1 H), 7.33 (d, J = 2.8 Hz, 1 H), 7.17 (dd, J = 8.1, 1.3 Hz, 1 H), 7.08 (d, J = 8.4 Hz, 1 H), 6.95 (dd, J = 8.4, 2.8 Hz, 1 H), 4.98 (s, 1 H, OCHO), 4.18-4.13 (m, 1 H, OCH₂), 3.93-3.88 (m, 1 H, OCH₂), 3.88 (s, 3 H, OCH₃), 3.75 (s, 3 H, OCH₃), 3.71-3.64 (m, 1 H, OCH₂), 3.42-3.36 (m, 1 H, OCH₂), 2.13-2.01 (m, 1 H), 1.26–1.22 (m, 1 H) ppm. ¹³C NMR (CDCl₃): δ = 192.41 (CHO), 159.72, 157.34, 138.91, 136.19, 132.63, 131.87, 128.82, 124.10, 118.41, 115.50, 115.05, 110.50, 99.86 (OCHO), 67.26 (OCH₂), 66.95 (OCH₂), 56.08 (OCH₃), 55.38 (OCH₃), 25.45 ppm. HRMS: calcd. for C₁₉H₂₀O₅ 328.1311; found 328.1298.

Stilbene 74: The stilbene 71 was prepared from 73 (2.50 g, 7.61 mmol) and 20 in a procedure analogous to that used for the

synthesis of **27** and was obtained as a colourless resin (E/Z mixture, 4.05 g, 87%). Complex NMR spectroscopic data. HRMS: calcd. for C₃₇H₃₈O₈ 610.2567; found 610.2532.

Bibenzyl Dialdehyde 75: The dialdehyde 75 was prepared from 74 (3.90 g, 6.39 mmol) in a procedure analogous to that used for the synthesis of 28 and was obtained as a colourless solid (2.83 g, 89%); m.p. 71 °C. ¹H NMR (CDCl₃): δ = 9.80 (s, 1 H, CHO), 9.58 (s, 1 H, CHO), 7.63 (dd, J = 8.4, 2.0 Hz, 1 H), 7.53 (d, J = 2.8 Hz, 1 H), 7.39 (d, J = 2.0 Hz, 1 H), 7.34 (dd, J = 8.0, 8.0 Hz, 1 H), 7.22 (dd, 8.5, 2.8 Hz, 1 H), 7.10 (d, J = 8.5 Hz, 1 H), 7.08 (d, J = 8.4 Hz, 1 H), 6.97 (dd, J = 8.0, 0.8 Hz, 1 H), 6.85 (d, J = 8.8 Hz, 2 H), 6.82 (dd, J = 8.0, 0.8 Hz, 1 H), 6.81 (d, J = 8.8 Hz, 2 H), 3.94 (s, 3 H, OCH₃), 3.90 (s, 3 H, OCH₃), 3.67 (s, 3 H, OCH₃), 2.77–2.56 (m, 4 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 192.42 (CHO), 190.43 (CHO), 159.06, 157.26, 156.13, 154.78, 146.69, 141.90, 136.59, 135.24, 133.72, 132.65, 130.15, 129.63, 129.17, 127.72, 125.60, 121.84, 121.51, 119.11, 118.14, 111.94, 109.40, 108.13, 56.25 (OCH₃), 55.62 (OCH₃), 55.52 (OCH₃), 36.38 (CH₂CH₂), 35.44 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₂₈O₆ 496.1886; found 496.1839.

Dehydroplagiochin E Trimethyl Ether (76): The stilbene **76** was prepared from **75** (720 mg, 1.45 mmol) in a procedure analogous to that used for the synthesis of **30** and was obtained as a colourless powder (NMR: E/Z 3.5:1, 235 mg, 35%); m.p. 197 °C. HRMS: calcd. for C₃₁H₂₈O₄ 464.1988; found 464.1971.

Plagiochin E Trimethyl Ether (77): The stilbene **76** (105 mg, 0.23 mmol) was hydrogenated in a procedure analogous to that used for the synthesis of **31** and was obtained as a colourless solid (103 mg, 98%); m.p. 213 °C. ¹H NMR (CDCl₃): δ = 7.35–7.30 (m, 2 H), 7.02–6.98 (m, 2 H), 6.88 (dd, *J* = 9.0, 1.9 Hz, 1 H), 6.86 (d, *J* = 8.3 Hz, 1 H), 6.74 (d, *J* = 8.0 Hz, 1 H), 6.73–6.68 (m, 4 H), 6.67 (dd, *J* = 9.0, 2.0 Hz, 1 H), 5.23 (d, *J* = 1.8 Hz, 1 H), 3.90 (s, 3 H, OCH₃), 3.76 (s, 3 H, OCH₃), 3.61 (s, 3 H, OCH₃), 3.30–3.23 (m, 1 H, CH₂CH₂), 1.96–1.88 (m, 1 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 158.68, 157.37, 155.48, 151.66, 146.28, 142.67, 139.82, 139.27, 134.13, 131.73, 130.52, 130.03, 129.76, 128.44, 127.43, 124.28, 122.65, 120.84, 120.50, 116.43, 112.65, 111.38, 108.91, 107.92, 56.17, 55.31, 54.99, 35.44, 33.31, 31.06, 30.62 ppm. HRMS: calcd. for C₃₁H₃₀O₄ 466.2144; found 466.2141.

Plagiochin E (13): Plagiochin E (13) was prepared from the trimethyl ether 77 (150 mg, 0.32 mmol) in a procedure analogous to that used for the synthesis of **8** and was obtained as a colourless solid (93 mg, 68%); m.p. 181 °C. NMR spectroscopic data; see ref.^[15] HRMS: calcd. for $C_{28}H_{24}O_4$ 424.1675; found 424.1687.

(2-Bromo-5-methoxyphenyl)methanol **(78):**^[46] NBS (17.8 g. 0.10 mol) and a small amount of AIBN were added to a solution of the bromoarene $42^{[43]}$ (20.3 g, 0.10 mol) in CCl₄ (150 mL). The reaction mixture was heated to reflux for 6 h with additional irradiation (daylight, 300 W). The mixture was cooled to r.t. and the solid was filtered off and washed with CCl₄ (50 mL). The solvent was removed in vacuo and CaCO₃ (43.0 g, 0.43 mol) and H₂O (200 mL) were added to the obtained benzyl bromide. The suspension was heated to reflux for 16 h. The mixture was diluted with EtOAc (200 mL) and HCl (6 M) was added dropwise (cooling in an ice bath) until the solid was dissolved completely. After separation the aqueous layer was extracted with EtOAc ($2 \times 100 \text{ mL}$). The combined organic layers were washed with saturated aqueous NaCl $(3 \times 100 \text{ mL})$, dried (MgSO₄) and concentrated. The crude material was purified by column chromatography (SiO₂, CH₂Cl₂). The benzyl alcohol 78 was obtained as a colourless crystalline solid (13.1 g, 60%); m.p. 41 °C. ¹H NMR (CDCl₃): δ = 7.42 (d, J = 8.7 Hz, 1 H), 7.06 (d, J = 3.0 Hz, 1 H), 6.71 (dd, J = 8.7, 3.0 Hz, 1 H), 4.69 (s, 2 H, CH₂OH), 3.80 (s, 3 H, OCH₃), 2.20 (br. s, 1 H, CH₂OH) ppm. ¹³C NMR (CDCl₃): $\delta = 159.24$, 140.76, 133.11, 114.74, 114.18, 112.47, 64.92 (CH₂OH), 55.50 (OCH₃) ppm. HRMS: calcd. for C₈H₉BrO₂ 215.9786; found 215.9814.

2-(2-Bromo-5-methoxybenzyloxy)tetrahydro-2*H***-pyran (79): The THP ether 79** was prepared from the benzyl alcohol **78** (4.50 g, 20.7 mmol) in a procedure analogous to that used for the synthesis of **23** and was obtained as a colourless oil (5.80 g, 93%). ¹H NMR (CDCl₃): δ = 7.41 (d, *J* = 8.8 Hz, 1 H), 7.10 (d, *J* = 3.2 Hz, 1 H), 6.70 (dd, *J* = 8.8, 3.2 Hz, 1 H), 4.78 (d, *J* = 13.6 Hz, 1 H, Ar-OCH₂), 4.77 (t, *J* = 3.5 Hz, 1 H, OCHO), 4.54 (d, *J* = 13.6 Hz, 1 H, Ar-OCH₂), 1.93–1.53 (m, 6 H) ppm. ¹³C NMR (CDCl₃): δ = 159.07, 138.92, 133.00, 114.66, 114.24, 112.81, 98.44 (OCHO), 68.47 (Ar–OCH₂), 62.22 (OCH₂), 55.47 (OCH₃), 30.55, 25.46, 19.37 ppm. HRMS: calcd. for C₁₃H₁₇BrO₃ 300.0361; found 300.0351.

2-{4-Methoxy-2-[(tetrahydro-2H-pyran-2-yloxy)methyl]phenyl}-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (80): A solution of nBuLi (2.5 M in n-hexane, 8.10 mL, 20.3 mmol) was added slowly at -78 °C to a solution of the bromoarene 79 (4.70 g, 15.6 mmol) in anhydrous THF (80 mL) and the mixture was stirred for an additional 60 min. Trimethyl borate (3.25 g, 31.3 mmol) was added in one portion at -78 °C and the mixture was allowed to warm to r.t. over 2 h. A solution of saturated aqueous KH₂PO₄ (100 mL) was added dropwise and the mixture was extracted with CH₂Cl₂ $(1 \times 80 \text{ mL}, 2 \times 40 \text{ mL})$. Pinacol (3.79 g, 31.2 mmol) and MgSO₄ (37.6 g, 0.31 mol) were added to the combined organic layers and the mixture was stirred for 12 h. The solid was filtered off and washed with CH₂Cl₂ (50 mL), and the filtrate was concentrated under reduced pressure. The crude material was purified by flash chromatography (SiO₂, *n*-hexane/EtOAc 4:1 \rightarrow 3:1). The boronic ester 80 (4.08 g, 75%) was obtained as a colourless oil. ¹H NMR $(CDCl_3): \delta = 7.76 (d, J = 8.3 Hz, 1 H), 7.09 (d, J = 2.5 Hz, 1 H),$ 6.79 (dd, J = 8.3, 2.5 Hz, 1 H), 4.94 (d, J = 12.8 Hz, 1 H, Ar- OCH_3), 4.85 (d, J = 12.8 Hz, 1 H, Ar- OCH_2), 4.77 (m, 1 H, OCHO), 3.95 (m, 1 H, OCH₂), 3.83 (s, 3 H, OCH₃), 3.54 (m, 1 H, OCH₂), 1.91–1.51 (m, 6 H), 1.32 (s, 12 H, CH₃) ppm. ¹³C NMR $(CDCl_3): \delta = 161.99, 147.30, 137.85, 113.43, 111.68, 98.32$ (OCHO), 83.31 [OC(CH₃)₂], 68.48 (Ar-OCH₂), 62.08 (OCH₂), 55.09 (OCH₃), 30.73, 25.59, 24.90 (CH₃), 24.85 (CH₃), 19.51 ppm. HRMS: calcd. for C₁₉H₂₉BO₅ 348.2108; found 348.2148.

2,4'-Dimethoxy-2'-[(tetrahydro-2H-pyran-2-yloxy)methyl]biphenyl-4-carbaldehyde (81): The biaryl 81 was prepared from 59 (3.10 g, 10.9 mmol) and 80 (2.93 g, 8.41 mmol) in a procedure analogous to that used for the synthesis of 26 and was obtained as a yellow oil (2.23 g, 74%). ¹H NMR (CDCl₃): δ = 10.01 (s, 1 H, CHO), 7.49 (dd, J = 7.5, 1.5 Hz, 1 H), 7.45 (d, J = 1.5 Hz, 1 H), 7.35 (d, J = 7.5 Hz, 1 H), 7.15 (d, J = 2.8 Hz, 1 H), 7.12 (d, J = 8.4 Hz, 1 H), 6.89 (dd, J = 8.4, 2.8 Hz, 1 H), 4.73–4.49 (br. m, 1 H, Ar–OCH₂), 4.65-4.39 (br. m, 1 H, OCHO), 4.35-4.14 (br. m, 1 H, Ar-OCH₂), 3.86 (s, 3 H, OCH₃), 3.83 (s, 3 H, OCH₃), 3.80–3.59 (br. m, 1 H, OCH₂), 3.45–3.31 (br. m,1 H, OCH₂), 1.83–1.41 (m, 6 H) ppm. ¹³C NMR (CDCl₃): δ = 191.90 (CHO), 159.48, 157.52, 138.32, 136.98, 136.59, 132.02, 130.94, 128.79, 124.10, 113.54, 112.68, 108.99, 98.15 (OCHO), 66.99 (Ar-OCH₂), 61.88 (OCH₂), 55.71 (OCH₃), 55.29 (OCH₃), 30.51, 25.42, 19.22 ppm. HRMS: calcd. for C₂₁H₂₄O₅ 356.1624; found 356.1578.

Stilbene 82: The stilbene 82 was prepared from 81 (2.10 g, 2.67 mmol) and 20 in a procedure analogous to that used for the synthesis of 27 and was obtained as a colourless resin (E/Z mixture,

3.57 g, 95%). HRMS: calcd. for $C_{39}H_{42}O_8$ 638.2880; found 638.2878.

Bibenzyl 83: The bibenzyl 83, as a benzyl alcohol, was prepared from 82 (3.80 g, 5.95 mmol) in a procedure analogous to that used for the synthesis of 28 and was obtained as a colourless resin (2.63 g, 88%). ¹H NMR (CDCl₃): δ = 9.81 (s, 1 H, CHO), 7.63 (dd, J = 8.3, 2.0 Hz, 1 H), 7.41 (d, J = 2.0 Hz, 1 H), 7.18 (d, J = 8.8 Hz, 2 H), 7.12 (d, J = 8.5 Hz, 1 H), 7.11 (d, J = 2.8 Hz, 1 H), 7.10 (d, J = 8.3 Hz, 1 H), 7.06 (d, J = 7.8 Hz, 1 H), 6.94 (d, J =8.8 Hz, 2 H), 6.89 (dd, J = 8.5, 2.8 Hz, 1 H), 6.86 (dd, J = 7.8, 1.5 Hz, 1 H), 6.75 (d, J = 1.5 Hz, 1 H), 4.40 (br. s, 2 H, CH₂OH), 3.97 (s, 3 H, OCH₃), 3.86 (s, 3 H, OCH₃), 3.72 (s, 3 H, OCH₃), 2.97 (s, 4 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 190.42 (CHO), 159.26, 156.46, 156.10, 154.77, 147.02, 142.70, 140.78, 137.05, 131.48, 131.43, 130.21, 129.86, 129.68, 127.90, 127.21, 121.05, 118.56, 118.49, 113.44, 113.35, 111.96, 111.49, 63.87 (CH₂OH), 56.30 (OCH₃), 55.76 (OCH₃), 55.31 (OCH₃), 38.02 (CH₂CH₂), 37.08 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₃₀O₆ 498.2042; found 498.2057.

Dehydroisoriccardin D Trimethyl Ether (84): The stilbene 84 was prepared from 83 (2.00 g, 4.01 mmol) in a procedure analogous to that used for the synthesis of 40 and was obtained as a colourless solid (NMR: *E* isomer only, 750 mg, 40%); m.p. 186 °C. ¹H NMR $(CDCl_3)$: $\delta = 7.22$ (d, J = 2.6 Hz, 1 H), 7.21 (dd, J = 8.0, 2.4 Hz, 1 H), 7.16 (d, J = 8.4 Hz, 1 H), 7.01 (dd, J = 8.0, 2.4 Hz, 1 H), 6.99 (dd, J = 8.0, 2.4 Hz, 1 H), 6.91 (d, J = 7.8 Hz, 1 H), 6.90 (dd, J = 7.8 Hz, 1J = 8.0, 2.4 Hz, 1 H), 6.86–6.90 (m, 4 H), 6.70 (dd, J = 7.8, 1.4 Hz, 1 H), 6.52 (d, J = 1.4 Hz, 1 H), 6.32 (d, J = 1.8 Hz, 1 H), 6.21 (d, J = 16.3 Hz, 1 H), 3.95 (s, 3 H, OCH₃), 3.86 (s, 3 H, OCH₃), 3.55 (s, 3 H, OCH₃), 3.23–3.03 (m, 4 H, CH₂CH₂) ppm. ¹³C NMR $(CDCl_3)$: $\delta = 158.83$, 156.44, 152.79, 150.07, 148.44, 141.08, 137.04, 136.42, 131.33, 131.18, 130.79, 130.74, 130.68, 130.29, 126.49, 126.43, 125.68, 122.19, 122.04, 121.78, 120.90, 113.08, 112.19, 111.52, 109.54, 108.50, 56.05 (OCH₃), 55.44 (OCH₃), 55.25 (OCH₃), 35.88 (CH₂CH₂), 35.43 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₂₈O₄ 464.1988; found 464.1992.

Isoriccardin D Trimethyl Ether (85): The stilbene 84 (470 mg, 1.01 mmol) was hydrogenated in a procedure analogous to that used for the synthesis of 31 and was obtained as a colourless solid (448 mg, 95%); m.p. 149 °C. ¹H NMR (CDCl₃): δ = 7.16 (dd, J = 8.2, 2.3 Hz, 1 H), 7.03 (d, J = 8.5 Hz, 1 H), 6.97 (dd, J = 8.2, 2.3 Hz, 1 H), 6.92 (d, J = 7.6 Hz, 1 H), 6.89 (dd, J = 8.2, 2.3 Hz, 1 H), 6.87 (d, J = 2.6 Hz, 1 H), 6.81 (d, J = 8.3 Hz, 1 H), 6.80 (dd, J = 8.2, 2.3 Hz, 1 H), 6.77 (dd, J = 8.3, 2.0 Hz, 1 H), 6.76 (dd, J= 8.5, 2.6 Hz, 1 H), 6.66 (dd, J = 7.6, 1.4 Hz, 1 H), 6.41 (d, J = 1.4 Hz, 1 H), 5.85 (d, J = 2.0 Hz, 1 H), 3.91 (s, 3 H, OCH₃), 3.83 (s, 3 H, OCH₃), 3.56 (s, 3 H, OCH₃), 3.16 (m, 2 H, CH₂CH₂), 3.02 (m, 2 H, CH₂CH₂), 2.71 (m, 1 H, CH₂CH₂), 2.57 (m, 1 H, CH₂CH₂), 2.32 (m, 2 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 158.86, 156.27, 153.77, 149.75, 147.23, 141.77, 140.86, 136.78, 134.91, 131.31, 130.83, 130.67, 130.47, 130.16, 127.43, 121.61, 121.41, 121.22, 120.84, 115.37, 114.20, 111.83, 111.62, 111.06, 56.14 (OCH₃), 55.22 (OCH₃), 55.17 (OCH₃), 37.29 (CH₂CH₂), 36.66 (CH₂CH₂), 36.43 (CH₂CH₂), 35.46 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₃₀O₄ 466.2144; found 466.2159.

Isoriccardin D (14): Isoriccardin D (14) was prepared from its trimethyl ether **85** (480 mg, 1.03 mmol) in a procedure analogous to that used for the synthesis of **8** and was obtained as a colourless solid (332 mg, 76%); m.p. 285 °C. NMR spectroscopic data; see Tables 3 and 4. HRMS: calcd. for $C_{28}H_{24}O_4$ 424.1675; found 424.1684.

4,4'-Dimethoxy-2'-[(tetrahydro-2*H*-pyran-2-yloxy)methyl]biphenyl-2,6-dicarbaldehyde (86): The biaryl 86 was prepared from 45 (2.32 g, 12.9 mmol) and **79** (5.03 g, 16.7 mmol) in a procedure analogous to that used for the synthesis of 26 and was obtained as a yellow oil (3.53 g, 77%). ¹H NMR (CDCl₃): $\delta = 9.70 + 9.69$ (s, 1 H, CHO), 7.49 + 7.48 (d, J = 2.8 Hz, 1 H), 7.24 + 7.22 (d, J =8.3 Hz, 1 H), 7.16 + 7.16 (dd, J = 8.3, 2.8 Hz, 1 H), 7.13–7.10 (m, 2 H), 6.99 (m, 1 H), 4.53 + 4.38 (t, J = 3.4 Hz, 1 H, OCHO), 4.52 +4.48 + 4.17 + 4.09 (d, J = 11.8 Hz, 2 H, Ar–OCH₂), 3.90 + 3.90 $(s, 3 H, OCH_3), 3.87 (s, 3 H, OCH_3), 3.71 + 3.53 + 3.44 - 3.34 (m, 3.44)$ 2 H, OCH₂), 1.80–1.41 (m, 6 H) ppm. ¹³C NMR (CDCl₃): δ = 192.24 (CHO), 192.15 (CHO), 159.57, 159.22, 138.33, 138.31, 137.28, 137.17, 135.50, 135.39, 132.42, 132.08, 131.97, 129.39, 129.29, 121.16, 121.05, 114.58, 114.51, 112.72, 109.35, 98.44 (OCHO), 98.00 (OCHO), 67.47 (Ar-OCH₂), 67.21 (Ar-OCH₂), 61.95 (OCH₂), 61.63 (OCH₂), 55.60 (OCH₃), 55.38 (OCH₃), 30.33, 30.19, 25.38, 25.34, 19.17, 18.98 ppm. HRMS: calcd. for C₂₁H₂₄O₅ 356.1624; found 356.1589.

Stilbene 87: The stilbene 87 was prepared from 86 (2.90 g, 8.14 mmol) and 20 in a procedure analogous to that used for the synthesis of 27 and was obtained as a colourless resin (E/Z mixture, 5.03 g, 97%). Complex NMR spectroscopic data. HRMS: calcd. for C₃₉H₄₂O₈ 638.2880; found 638.2848.

Bibenzyl 88: The bibenzyl 88 as benzyl alcohol was prepared from 87 (5.50 g, 8.61 mmol) in a procedure analogous to that used for the synthesis of 28 and was obtained as a colourless resin (4.16 g, 97%). ¹H NMR (CDCl₃): δ = 9.79 (s, 1 H, CHO), 7.62 (dd, J = 8.3, 2.0 Hz, 1 H), 7.37 (d, J = 2.0 Hz, 1 H), 7.11 (d, J = 2.5 Hz, 1 H), 7.08 (d, J = 8.3 Hz, 1 H), 7.03 (d, J = 8.3 Hz, 1 H), 7.00 (d, J= 8.3 Hz, 1 H), 6.90–6.80 (m, 6 H), 6.77 (dd, J = 8.3, 2.5 Hz, 1 H), 4.38 (d, J = 13.1 Hz, 1 H, CH₂OH), 4.30 (d, J = 13.1 Hz, 1 H, CH₂OH), 3.94 (s, 3 H, OCH₃), 3.86 (s, 3 H, OCH₃), 3.83 (s, 3 H, OCH₃), 2.72–2.56 (m, 4 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 190.45 (CHO), 159.09, 158.94, 156.15, 154.73, 146.81, 141.21, 140.49, 136.96, 131.98, 131.71, 131.39, 131.14, 130.17, 129.74, 127.78, 118.95, 118.17, 114.71, 112.68, 112.46, 111.99, 111.20, 63.12 (CH₂OH), 56.26 (OCH₃), 55.34 (OCH₃), 55.24 (OCH₃), 36.49 (CH₂CH₂), 35.63 (CH₂CH₂) ppm. HRMS: calcd. for C₃₁H₃₀O₆ 498.2042; found 498.2070.

Bibenzyl Dialdehyde 89: The dialdehyde 89 was prepared from 88 (1.13 g, 2.27 mmol) in a procedure analogous to that used for the synthesis of 29. The crude product was purified by flash chromatography (SiO₂, n-hexane/EtOAc 2:1) and 89 was obtained as a colourless resin (0.82 g, 73%). ¹H NMR (CDCl₃): δ = 9.68 (s, 1 H, CHO), 7.63 (dd, J = 8.3, 2.0 Hz, 1 H), 7.49 (d, J = 2.5 Hz, 1 H), 7.39 (d, J = 2.0 Hz, 1 H), 7.17 (dd, J = 8.5, 2.5 Hz, 1 H), 7.14 (d, J = 8.5 Hz, 1 H), 7.09 (d, J = 8.3 Hz, 1 H), 7.07 (d, J = 8.3 Hz, 1 H), 6.85 (d, J = 2.5 Hz, 1 H), 6.84 (d, J = 8.8 Hz, 2 H), 6.81 (dd, *J* = 8.3, 2.5 Hz, 1 H), 6.80 (d, *J* = 8.8 Hz, 2 H), 3.93 (s, 3 H, OCH₃), 3.90 (s, 3 H, OCH₃), 3.84 (s, 3 H, OCH₃), 2.78-2.64 (m, 4 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 192.23 (CHO), 190.37 (CHO), 159.49, 159.05, 156.21, 154.92, 146.64, 141.57, 137.98, 136.39, 135.18, 132.68, 132.15, 130.20, 129.64, 129.24, 127.74, 121.32, 119.28, 118.08, 114.86, 112.02, 111.22, 109.42, 56.25 (OCH₃), 55.58 (OCH₃), 55.31 (OCH₃), 36.33 (CH₂CH₂), 35.58 (CH_2CH_2) ppm. HRMS: calcd. for $C_{31}H_{28}O_6$ 496.1886; found 496.1848.

Dehydroplagiochin G Trimethyl Ether (90): The stilbene **90** was prepared from **89** (1.00 g, 2.01 mmol) in a procedure analogous to that used for the synthesis of **30** and was obtained as a colourless solid (NMR: E/Z 2.5:1, 365 mg, 39%); m.p. 92 °C. HRMS: calcd. for C₃₁H₂₈O₄ 464.1988; found 464.1976.

Plagiochin G Trimethyl Ether (91): The stilbene **90** (345 mg, 1.01 mmol) was hydrogenated in a procedure analogous to that used for the synthesis of **31** and was obtained as a colourless solid (347 mg, 99%); m.p. 70 °C. ¹H NMR (CDCl₃): δ = 7.20 (d, *J* = 2.5 Hz, 1 H), 7.03 (d, *J* = 8.5 Hz, 1 H), 6.95–6.91 (m, 3 H), 6.78–6.66 (m, 7 H), 5.29 [d (not resolved), 1 H], 3.90 (s, 3 H, OCH₃), 3.87 (s, 3 H, OCH₃), 3.73 (s, 3 H, OCH₃), 3.14–2.83 (m, 7 H, CH₂CH₂), 2.24–2.16 (m, 1 H, CH₂CH₂) ppm. ¹³C NMR (CDCl₃): δ = 158.36, 158.17, 154.94, 151.33, 146.25, 140.29, 139.57, 139.22, 133.23, 132.78, 132.34, 132.09, 131.67, 130.18, 129.78, 123.91, 122.49, 120.76, 115.49, 115.03, 113.35, 111.63, 110.10, 108.98, 56.16, 55.22, 55.07, 34.96, 34.74, 31.53, 30.21 ppm. HRMS: calcd. for C₃₁H₃₀O₄ 466.2144; found 466.2165.

Plagiochin G (15): Plagiochin G (15) was prepared from its trimethyl ether **91** (330 mg, 0.71 mmol) in a procedure analogous to that used for the synthesis of **8** and was obtained as a colourless solid (255 mg, 85%); m.p. 222 °C. NMR spectroscopic data; see Tables 3 and 4. HRMS: calcd. for $C_{28}H_{24}O_4$ 424.1675; found 424.1691.

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support (Sp 498/2-1).

- Y. Asakawa, in: Progress in the Chemistry of Organic Natural Products (Eds.: E. Herz, G. W. Kirby, R. E. Moore, W. Steglich, Ch. Tamm), Springer, Wien, New York, 1995, p. 5.
- [2] G. M. Keserü, M. Nógrádi, Phytochemistry 1992, 31, 1573– 1576.
- [3] S. Friederich, M. Rueffer, Y. Asakawa, M. H. Zenk, *Phytochemistry* **1999**, *52*, 1195–1202.
- [4] Y. Asakawa, M. Toyota, M. Tori, T. Hashimoto, Spectroscopy 2000, 14, 149–175.
- [5] T. Eicher, S. Fey, W. Puhl, E. Büchel, A. Speicher, *Eur. J. Org. Chem.* 1998, 877–888.
- [6] A. Speicher, J. Holz, Tetrahedron Lett. 2010, 51, 2986–2989.
- [7] G. Bringmann, J. Mühlbacher, M. Reichert, M. Dreyer, J. Kolz, A. Speicher, J. Am. Chem. Soc. 2004, 126, 9283–9290.
- [8] J. M. Scher, J. Zapp, H. Becker, N. Kather, J. Kolz, A. Speicher, M. Dreyer, K. Maksimenka, G. Bringmann, *Tetrahedron* 2004, 60, 9877–9881.
- [9] Y. Asakawa, R. Matsuda, Phytochemistry 1982, 21, 2143-2144.
- [10] Y. Asakawa, M. Tori, K. Takikawa, H. G. Krishnamurty, S. Kanti Kar, *Phytochemistry* 1987, 26, 1811–1816.
- [11] M. Toyota, F. Nagashima, J. Asakawa, *Phytochemistry* 1988, 27, 2603–2608.
- [12] T. Hashimoto, M. Tori, Y. Asakawa, Y. Fukazawa, *Tetrahedron Lett.* 1987, 28, 6295–6298.
- [13] C. Niu, J. B. Qu, H. X. Lou, Chem. Biodivers. 2006, 3, 34-40.
- [14] J. Qu, C. Xie, H. Guo, W. Yu, H. X. Lou, *Phytochemistry* **2007**, 68, 1767–1774.
- [15] A. Speicher, M. Groh, J. Zapp, A. Schaumlöffel, M. Knauer, G. Bringmann, *Synlett* 2009, 1852–1858.
- [16] L. Fang, H. F. Guo, H. X. Lou, Helv. Chim. Acta 2007, 90, 748–752.
- [17] Y. Asakawa, A. Ludwiczuk, F. Nagashima, M. Toyota, T. Hashimoto, M. Tori, Y. Fukuyama, L. Harinantenaina, *Heterocycles* 2009, 77, 99–150.
- [18] Y. Asakawa, Curr. Pharm. Des. 2008, 14, 3067-3088.
- [19] C. F. Xie, J.-B. Qu, X.-Z. Wu, N. Liu, M. Ji, H.-X. Lou, Nat. Prod. Res. 2010, 24, 515–520.
- [20] A. Gottsegen, M. Nógrádi, B. Vermes, M. Kajtar-Peredy, E. Bihatsi-Karsai, *Tetrahedron Lett.* **1988**, 29, 5039–5040.
- [21] T. Yoshida, T. Hashimoto, S. Takaoka, Y. Kan, M. Tori, Y. Asakawa, *Tetrahedron* 1996, 52, 14487–14500.

- [22] L. Harinantenaina, D. N. Quang, N. Takeshi, T. Hashimoto, C. Kohchi, G.-I. Soma, Y. Asakawa, J. Nat. Prod. 2005, 68, 1779–1781.
- [23] L. Harinantenaina, Y. Asakawa, Nat. Prod. Commun. 2007, 2, 701–709.
- [24] K. Dodo, A. Aoyama, T. Noguchi-Yachide, M. Makishima, H. Miyachi, Y. Hashimoto, *Bioorg. Med. Chem.* 2008, 16, 4272– 4285.
- [25] H. Hioki, N. Shima, K. Kawaguchi, K. Harada, M. Kubo, T. Esumi, T. Nishimaki-Mogami, J. I. Sawada, T. Hashimoto, Y. Asakawa, Y. Fukuyama, *Bioorg. Med. Chem. Lett.* 2009, 19, 738–741.
- [26] A.-H. Xu, Z.-M. Hu, J. B. Qu, S. M. Liu, A. K. A. Syed, H.-Q. Yuan, H.-X. Lou, *Acta Pharmacol. Sin.* 2010, 31, 609–615.
- [27] A. Gottsegen, M. Nógrádi, B. Vermes, M. Kajtar-Peredy, E. Bihatsi-Karsai, J. Chem. Soc. Perkin Trans. 1 1990, 315–320.
- [28] D. C. Harrowven, T. H. Woodcock, D. Peter, Angew. Chem. Int. Ed. 2005, 44, 3899–3901.
- [29] A. Bardon, N. Kamiya, M. Toyota, S. Takaoka, Y. Asakawa, *Phytochemistry* **1999**, *52*, 1323–1330.
- [30] S. Valcic, H. Becker, Phytochemistry 1997, 44, 89-100.
- [31] A. Cheng, L. Sun, X. Wu, H. Lou, Biol. Pharm. Bull. 2009, 32, 1417–1421.
- [32] X. Z. Wu, A. X. Cheng, L. M. Sun, H. X. Lou, Acta Pharmacol. Sin. 2008, 29, 1478–1485.
- [33] L. M. Sun, B. B. Lv, A. X. Cheng, X. Z. Wu, H. X. Lou, *Biol. Pharm. Bull.* 2009, 32, 36–40.

- [34] Y. Q. Shi, X. J. Qu, Y. X. Liao, C. F. Xie, Y. N. Cheng, S. Li, H. X. Lou, *Eur. J. Pharmacol.* **2008**, 584, 66–71.
- [35] J. Xing, B. Lv, C. Xie, J. Qu, H. Lou, J. Pharm. Biomed. Anal. 2008, 47, 949–953.
- [36] S. Reichert, B. Breit, Org. Lett. 2007, 9, 899-902.
- [37] O. Baron, P. Knochel, Angew. Chem. Int. Ed. 2005, 44, 3133-3135.
- [38] A. Speicher, T. Backes, K. Hesidens, J. Kolz, *Beilstein J. Org. Chem.* 2009, 5, 71.
- [39] M. Kodama, Y. Shiobara, H. Sumitomo, K. Matsumura, M. Tsukamoto, C. Harada, J. Org. Chem. 1988, 53, 72–77.
- [40] J. M. Saá, G. Martorell, A. Garcia-Raso, J. Org. Chem. 1992, 57, 678–685.
- [41] P. Kurach, S. Lulinski, J. Serwatowski, Eur. J. Org. Chem. 2008, 3171–3178.
- [42] M. Rosillo, G. Dominguez, L. Casarrubios, U. Amador, J. Perez-Castells, J. Org. Chem. 2004, 69, 2084–2093.
- [43] A. Speicher, J. Prakt. Chem. 2000, 342, 162-168.
- [44] G. Keserü, G. Mezey-Vandor, M. Nógrádi, B. Vermes, M. Kajtar-Peredy, *Tetrahedron* 1992, 48, 913–922.
- [45] C. S. Dowd, K. Herrick-Davis, C. Egan, A. DuPre, C. Smith, M. Teitler, R. A. Glennon, J. Med. Chem. 2000, 43, 3074–3084.
- [46] R. C. Larock, M. J. Doty, J. Org. Chem. 1993, 58, 4579–4583. Received: July 20, 2010
 Published Online: November 5, 2010