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Photochemical and thermal isomerization of various azobenzenes was systematically investigated to understand the correlation 
between the molecular structure and trans ↔ cis isomerization characteristics of azobenzenes. A blue shift in –* absorption 
band of ortho-alkylated azobenzenes (1o and 2o) was observed together with a reduction in molar extinction coefficient () in 
comparison with both meta-alkylated azobenzenes (4m and 5m) and 7p lacking the meta and ortho substituents. For ortho-        
alkylated azobenzene, photochemical trans-to-cis isomerization and thermal back cis-to-trans isomerization in solution oc-
curred slowly when compared with 4m, 5m and 7p. The half-life time of the cis form of 2o was found to be 380 h, which is 
about 8–50 times longer than those of comparable 4m, 5m (43–13 h) and 7p (7 h). Furthermore, comparison of the molecular 
structure and isomerization characteristics of azobenzene thiol (2o and 5m) self-assembled monolayers on flat gold surfaces 
indicates that the trans-to-cis photoconversion in monolayer systems is influenced by steric hindrance and strong intermolecu-
lar interaction between azobenzene units. 
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1  Introduction 

Photochromic azobenzene molecules undergo trans-to-cis 
isomerization upon irradiation with UV light and this pro-
cess can be reversed by either heating or irradiation with 
visible light [1–7]. The trans form is thermodynamically 
more stable by about 12 kcal mol1 than the cis form, and 
the cis form is kinetically stabilized by an activation barrier 
of isomerization. There are two possible isomerization 
mechanisms in azobenzene: via rotation of the phenyl ring 
about the N=N bond or in-plane inversion around one of the 
nitrogen atoms [1–9]. Experimental data and theoretical 
calculations predominantly support the inversion mecha-
nism for thermal isomerization of both the parent azoben-
zene and its substituted azobenzene derivatives [10–14]. 

In general, thermal cis-to-trans isomerization occurs on 

the time scale of minutes to hours and the lifetime of the cis 
form is influenced by the surrounding environment (sol-
vents, polymer matrix, temperature, etc.) as well as the mo-
lecular structure [15–23]. In particular, the steric factor in 
azobenzene can significantly vary the rate of thermal 
cis-to-trans isomerization. As an example the steric strain in 
azobenzenophanes, in which two azobenzenes are cyclically 
connected by relatively short atomic chains, influences the 
lifetime of the cis form, from seconds to years [24–28]. 
Tamaoki et al. have reported that the lifetime of the cis-cis 
isomer in a xanthene-based cyclic azobenzene dimer was 
increased up to 6.4 years, and that an azobenzenophane, an 
azobenzene dimer connected at 3- and 3′-positions without 
spacers, formed thermodynamically stable cis form [27, 28]. 

Other sterically hindered azobenzene molecules are pro-
duced by introducing bulky substituents to the benzene ring 
[29, 30]. Wheeler and Gore have reported the results of 
spectroscopic investigation of ortho- and para-substituted 
azobenzenes [31]. Bunce et al. have also showed spectro-
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scopic data and the results of quantum mechanical calcula-
tions for a series of azobenzenes [32, 33]. Despite these 
investigations, systematic information regarding photo-
chemical and thermal isomerization of ortho-, meta-, and 
para-substituted azobenzenes in solution as well as in mon-
olayers is desirable. Here we prepared ortho- (1o and 2o) 
and meta-alkylated (4m and 5m) azobenzenes, and 7p 
lacking the meta and ortho substituents (Scheme 1) to clari-
fy the relationship between the molecular structural and 
spectroscopic features. Photochemical and thermal isomeri-
zation as well as the related thermodynamic parameters was 
also investigated to obtain insight into molecular structure 
factors responsible for controlling trans ↔ cis isomerization 
and the lifetime of the cis form. Furthermore, we examined 
reversible photoswitching of the molecular conformation in 
self-assembled monolayers (SAMs) on a flat gold surface. 

 

 

Scheme 1  Molecular structures of 1o–2o, 4m–5m and 7p. 

2  Experimental section 

2.1  Instrumentation 

Dimethylformamide (DMF) and dichloromethane (DCM) of 
spectroscopic grade were used to dissolve the azobenzenes. 
Azobenzene solutions were exposed to UV light (365 nm, 1–2 
mW cm2, Mineralight lamp, Model UVGL-25) or visible 
light (436 nm, 1–2 mW cm2, a high-pressure UV lamp, Ushio 
Inc., combination of Toshiba color filters, Y-43+V-44). 
Absorption spectra were recorded on a Shimadzu UV-      
3100PC UV-vis-NIR scanning spectrophotometer. NMR 
spectra were obtained using JEOL JNM-EX270 (270 MHz) 
and JEOL JNM-ECP300 (300 MHz) spectrometers.  

2.2  Synthesis 

All azobenzenes (including 2o and 5m [34]) were synthesized 
according to the procedure in the literature [35, 36].  

(E)-1-(4′-butoxy-3,5-diethylbiphenyl-4-yl)-2-(4-(decyloxy)-3- 
isopropylphenyl)diazene (1o)  

1o was prepared by reacting (E)-4-((4′-butoxy-3,5-diethyl- 
biphenyl-4-yl)diazenyl)-2-sec-butylphenol (3.00 g, 6.5 
mmol) with 1-bromodecane (4.33 g, 19.6 mmol) in 60 mL 
acetone in the presence of K2CO3 (2.71 g, 19.6 mmol) and a 
catalytic amount of tetrabutylammonium bromide. The 
reaction mixture was stirred at 60 °C for 7 h and then cooled 
to room temperature, followed by addition of water and ethyl 
acetate. The organic layer was collected and the solvent was 
evaporated. The residue was purified by silica gel column 
chromatography (hexane:dichloromethane, v/v = 3/1). 

Yield: 55%. 1H NMR (270 MHz, CDCl3, ppm) 0.88 (t, 
3H, CH3), 0.99 (t, 3H, CH3), 1.1–1.6 (m, 28H, CH2 and 
CH3), 1.82 (m, 4H, CH2), 2.74 (q, 4H, ArCH2CH3), 3.37 (m, 
1H, ArCH), 4.02 (tt, 4H, ArOCH2), 6.94 (m, 3H, Ar-H), 
7.31 (s, 2H, Ar-H), 7.53–7.83 (m, 4H, Ar-H). 13C NMR 
(300 MHz, CDCl3) 13.9, 14.1, 15.6, 19.3, 22.4, 22.7, 25.4, 
26.2, 27.2, (–CH2–; 29.72, 29.31, 29.54, 29.57), 31.3, 31.9, 
67.8, 68.3, 110.9, 114.7, 120.4, 122.1, 125.8, 128.1, 133.4, 
136.8, 137.8, 140.0, 147.0, 150.1, 158.7, 159.1. Anal. calcd: 
C, 80.09%; H, 9.65%; N, 4.79%. Found: C, 80.03%; H, 
9.75%; N, 4.72%. FAB-MS (m/z): [M+H]+ found 585, calcd 
for C39H56N2O2 = 584.43. 

(E)-1-(4′-butoxy-2-methylbiphenyl-4-yl)-2-(3-sec-butyl-4- 
(hexadecyloxy)phenyl)diazene (4m) 
1H NMR (270 MHz, CDCl3)  0.81 (m, 6H, CH3), 0.90 (t, 
3H, CH3), 1.2–1.8 (m, 37H, CH2 and CH3), 2.30 (s, 3H, 
ArCH3), 3.10 (m, 1H, ArCH), 3.96 (tt, 4H, ArOCH2), 
6.84–6.90 (m, 3H, Ar-H), 7.18–7.28 (m, 3H, Ar-H), 
7.64–7.75 (m, 4H, Ar-H). 13C NMR (300 MHz, CDCl3) 
12.3, 13.9, 14.1, 19.3, 20.3, 20.7, 22.7, 26.1, (–CH2–; 29.28, 
29.33, 29.35, 29.58, 29.65, 29.66, 29.69, 29.77), 31.4, 31.9, 
33.9, 67.7, 68.3, 111.0, 114.1, 120.0, 121.8, 122.0, 124.2, 
130.2, 130.6, 133.5, 136.3, 136.7, 143.6, 146.8, 151.8, 
158.4, 159.2. Anal. calcd: C, 80.57%; H, 10.06%; N, 4.37%. 
Found: C, 80.21%; H, 10.16%; N, 4.39%. FAB-MS (m/z): 
[M+H]+ found 641, calcd for C43H64N2O2 = 640.50. 

(E)-1-(4′-butoxybiphenyl-4-yl)-2-(4-(decyloxy)phenyl)diazene 
(7p) 

Yield: 45%. 1H NMR (300 MHz, CDCl3)  0.89 (t, 3H, 
CH3), 0.99 (t, 3H, CH3), 1.1–1.7 (m, 16H, CH2), 1.82 (m, 
4H, CH2), 4.04 (tt, 4H, ArOCH2), 6.97 (m, 4H, Ar-H), 7.58 
(d, 2H, Ar-H), 7.67 (d, 2H, Ar-H), 7.91 (m, 4H, Ar-H). Anal. 
calcd: C, 78.97% ; H, 8.70%; N, 5.76%. Found: C, 78.81%; 
H, 8.63%; N, 5.75%. FAB-MS (m/z): [M + H]+ found 488, 
calcd for C32H43N2O2 = 487.33. 

3  Results and discussion 

The photophysical data corresponding to the azobenzenes 
used in this study are presented in Table 1. Varying the sub-
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stituents at one end of the tail part for the same azobenzene 
unit (1o–2o and 4m–5m) has little effect on the transition 
bands in UV-vis absorption spectra; that is, strong spectral 
overlap between the bands can be seen in Figure 1. The se-
ries of meta-methylated azobenzenes in dichloromethane 
(DCM) possessed strong –* absorption bands at 368 nm 
and negligibly weak n–* bands in the as-prepared trans-      
rich state. The max of –* absorption band at 354 nm of 
ortho-alkylated azobenzenes showed a blue shift, together 
with a considerable reduction of about 30%–40% in molar 
extinction coefficient (), in comparison with those of 
4m–5m and 7p (Table 1) [37].  

The observed spectroscopic features are closely related to 
the steric effect arising from the substitution of two ethyl 
groups at the ortho positions with respect to the azo group. 
It is known that unsubstituted trans-azobenzene adopts a 
planar conformation, and that methyl substituents even at 
the ortho positions have little influence on the planar struc-
ture of azobenzene in the crystal state [13, 38]. By contrast, 
our X-ray crystal structure analysis revealed that the intro-
duction of two ethyl groups at the ortho positions led to a 
large distortion of the phenyl ring from coplanarity [35, 39].  

3.1  Photochemical trans-to-cis isomerization 

Figure 2 shows typical examples of changes in the absorb- 

Table 1  Photophysical data of azobenzenes in dichloromethane (DCM) 

Cpd 
–* (nm) 

(L mol1 cm1) 
n–* (nm) 

(L mol1 cm1)a) t1/2 (h)b) 

1o 353.5 (25,000) 448 (2,000) c) 

2o 354 (26,000) 449 (2,100) 380 

4m 368 (36,000) 447.5 (3,400) 43 

5m 368 (37,000) 447 (3,400) 13 

7p 373 (41,000) 450 (4,200) 7 

a) After UV light irradiation (cis-rich state); b) at 293 K; c) not deter-
minable. 

 

 
Figure 1  UV-vis absorption spectra of as-prepared azobenzenes (1o–2o, 
4m–5m and 7p) in DCM. 

 

Figure 2  (a) Changes in the normalized absorbance at max as a function 
of 365 nm light irradiation time. Inset: changes in absorption spectra of 5m 
in DCM. 1H NMR spectra of (b) all-trans 5m and (c) after UV light irradi-
ation.  

ance at max during trans-to-cis isomerization of the azo-
benzenes as a function of 365 nm light irradiation time. UV 
light irradiation for 6 min caused sufficient trans-to-cis 
isomerization for 5m, as shown with the significant reduc-
tion in –* absorption band. By contrast, 2o reached a 
cis-rich photostationary state within 10 min of UV light 
irradiation and showed slower trans-to-cis isomerization. 
More than 95% of the cis form for all azobenzenes was 
generated at a photostationary state of UV light irradiation, 
as confirmed by NMR and UV-vis absorption spectroscopy 
measurements. 

3.2  Photochemical and thermal cis-to-trans isomeriza-
tion 

Reverse cis-to-trans isomerization can be induced either 
photochemically or thermally. First, upon irradiation of the 
UV-exposed solution with visible light at 436 nm, the –* 
absorption band was increased up to about 70% with respect 
to the initial –* absorbance (Figure 3). This result indi-
cates that about 30% of the cis form still existed in the pho-
tostationary state of visible light [40]. Further alternating UV 
and visible light irradiation caused reversible trans-to-cis and 
cis-to-trans isomerization processes, reaching respective  
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Figure 3  Changes in absorption spectra of 2o in DCM. Inset: Normalized 
absorbance at max upon alternating UV and visible light irradiation.  

photostationary states of UV and visible light. 
Second, dark incubation of the UV-exposed solution re-

sulted in a slow maximization of –* absorption band as a 
consequence of thermal cis-to-trans isomerization, which 
followed the first-order kinetics according to the following 
equation:  





 
 

 
ln o

t

A A
kt

A A
 

where Ao, A∞, and At are the absorbance at max of –* 
band of trans-azobenzene, before exposure to UV light, at a 
photostationary state of UV light, and at time t, respectively. 
k is the first-order rate constant for thermal cis-to-trans 
isomerization. The absorbances are substantially propor-
tional to the concentrations of the trans form at the moni-
toring wavelength and the ratio of the trans form was cor-
rected based on NMR data. Obviously, thermal back 
cis-to-trans isomerization of the sterically hindered 2o pro-
ceeded much more slowly at room temperature and the 
half-life time of 2o (380 h) was approximately 8–50 times 
longer than those of the comparable 4m–5m (43– h) and 
7p (7 h), as shown in Figure 4 and Table 1. Such slow 
isomerization rate of 2o is due to bulky substituents that in-
hibit large-scale distortion of the azo group for trans ↔ cis 
isomerization [33]. Further evidence for trans ↔ cis isom-
erization was provided by NMR experiments (Figure 5). 
Approximately 50% of cis-to-trans conversion of 2o took 
place after about 2 weeks in the dark and approximately 3%– 
5% of the cis form still existed in solution after 2 months, 
consistent with UV-vis absorption spectroscopic data.  

Calculation of the first-order rate constant at the various 
temperatures allowed us to estimate thermodynamic activa-
tion parameters such as the activation energy (Ea), activa-
tion enthalpy (H‡), and activation entropy (S‡) for ther-
mal cis-to-trans reaction from Arrhenius and Eyring plots. 
Figure 6 shows the first-order plot for thermal cis-to-trans 
isomerization of 2o in DMF. The evaluated values for 2o 
and 5m, and 7p in DMF and DCM are listed in Table 2. The 

preexponential factor, A2o, was one order larger in magni-
tude and the corresponding activation entropy (S‡

2o) was 
less negative (faster component) when compared with those 
for 5m and 7p. On the other hand, the activation energies of 
ortho-alkylated 2o were about 2–4 kcal mol1 higher than 
those of 5m and 7p in solution (Ea(2o) > Ea(5m) > Ea(7p)). 

 

 

Figure 4  First-order plots for thermal cis-to-trans isomerization of azo-
benzenes in DCM at 20 °C. 

 

Figure 5  Changes in the normalized absorbance at max of –* band (○) 
of 2o, and the ratio of the trans form (●) of 2o obtained from 1H NMR 
experiments as a function of dark incubation time at ambient temperature. 

 

Figure 6  First-order plots for thermal cis-to-trans isomerization of 2o in 
DMF at various temperatures.  
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Table 2  Thermodynamic activation parameters of thermal cis-to-trans isomerization of 2o, 5m and 7p 

Cpd 
DCM 

 
DMF 

A (s1) 
Ea 

(kcal mol1) 
H‡ 

(kcal mol1) 
S‡ 

(cal K1 mol1) 
A (s1) 

Ea 
(kcal mol1) 

H‡ 

(kcal mol1) 
S‡ 

(cal K1 mol1) 
2o 2.3×1011 23.8 23.2 8.5  2.6×1011 23.9 23.4 8.3 
5m 0.14×1011 20.4 19.8 13.4  0.93×1011 21.6 21.1 10.3 
7p 0.065×1011 19.4 18.8 15.6  0.81×1011 20.9 20.3 10.7 

 
Figure 7 shows isokinetic plots for H‡ and S‡ based 

on the rate constants at various temperatures for azoben-
zenes so as to evaluate the mechanism of thermal isomeri-
zation. All the plots for 2o, 5m, and 7p in different solvents 
are around the straight line including azobenzenes known to 
isomerize through the inversion mechanism [11, 13, 29]. 
Steric hindrance arising from additional substitutions at the 
meta and ortho positions did not cause a large deviation 
from the linear relationship. Our data thus suggest that 
isomerization for the azobenzenes used in this study pro-
ceeds through the inversion mechanism rather than the rota-
tion mechanism requiring a larger volume change, irrespec-
tive of substituents attached to azobenzene units.  

3.3  Photoresponsive azobenzene-based self-assembled 
monolayers (SAMs) 

We fabricated SAMs of azobenzene thiols (2o and 5m) to 
investigate the photoresponse of azobenzene units chemi-
sorbed on flat gold surfaces. Azobenzene SAMs were pre-
pared by immersion of sold substrates in azobenzene solu-
tion in DCM for 1–2 days. After immersion, the sample was 
rinsed with DCM, and blown dry with nitrogen gas [34, 36, 
41]. Single-component azobenzene thiol generated a homo-
geneously distributed smooth monolayer with the root-      
meansquare surface roughness of 1.6±0.2 Å. The contact 
angles of 2o and 5m SAMs for water on a flat gold substrate 
were 94°±1° and 94.6°±1°, respectively. The –* absorption 
band at 350 nm of ortho-alkylated 2o monolayer was similar 
to that (max = 354 nm) of the monomer-like absorption  

 

 

Figure 7  Isokinetic plots for H‡ and S‡ of thermal isomerization of 
azobenzenes. 2o (); 5m (▲); 7p (); unsubstituted azobenzene in dif-
ferent solvents [11, 13] (); para-substituted azobenzene [11] (); ortho-      
alkylated azobenzenes [29] (). 

spectrum in solution (Figure 8(a)). By contrast, the –* 
absorption band of 5m monolayer was substantially blue-      
shifted (Figure 8(b)), which is explained in terms of 
H-aggregation through strong intermolecular interaction 
between planar 5m azobenzene units.  

UV light irradiation caused the significant decrease in the 
–* absorption band and emergence of a band at around 
280 nm (Figure 8(a)). The trans-to-cis photoconversion was 
found to be ~90% for sterically hindered 2o SAMs, almost 
identical to those obtained with 2o dissolved in solution, 
strongly indicative of reversible photoswitching of the mo-
lecular conformation between the trans and cis forms in 
monolayer systems. Despite the high trans-to-cis pho-
toisomerization, the molecular photoswitches in smooth 
azobenzene thiol monolayers could hardly be visualized by 
atomic force microscopy. 

On the other hand, the estimated trans-to-cis photocon-
version yield of 5m SAMs was about 50%, even though the 
area-per-molecule value is improved by the introduction of 
alkyl groups at the meta position. UV light irradiation for 
10–15 min decreased the contact angle to 91° from 94.6° 
(Figure 8(c)). The contact angle did not increase to a higher 
value after the first visible-light irradiation. Upon the se-
cond UV light irradiation, the contact angle on the SAM 
was decreased to ~87°. This behavior might be associated 
with the relatively low photoconversion and strong molecu-
lar interactions between the planar azobenzene units.  

Thermal cis-to-trans isomerization of 5m SAM pro-
ceeded over 2 h at ambient temperature. The kinetics of the 
photoisomerization reaction was characterized by use of the 
first-order plot. As shown in Figure 8(d), the cis-to-trans 
isomerization deviated from the linearity predicted by the 
first-order, suggesting the strong tendency to form H-aggre-      
gates between 5m molecules in monolayers. Nevertheless, 
the origin of difference in the thermal cis-to-trans isomeri-
zation rate between in monolayer and in solution still re-
mains to be solved. 

4  Conclusions 

The spectroscopic features and trans ↔ cis isomerization 
behavior of ortho-ethylated azobenzenes (1o and 2o) were 
investigated in comparison with meta-methylated azoben-
zenes (4m and 5m) and 7p lacking the meta and ortho sub-
stituents. In contrast to 4m, 5m and 7p, the sterically hin-
dered 1o and 2o undergo distortion of the phenyl ring in the  
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Figure 8  UV-vis absorption spectral changes of (a) 2o and (b) 5m SAMs on gold substrates; (c) changes of the water contact angle of 5m SAM as a func-
tion of photoirradiation during four cycles; (d) first-order plot for thermal cis-to-trans isomerization of 5m in SAM. 

azobenzene unit from coplanarity, which is likely responsi-
ble for spectroscopic features (such as a blue shift in –* 
absorption bands and a reduction in the molar extinction 
coefficient). Photochemical and thermal isomerization rates 
and the lifetime of the cis form showed obvious dependence 
on the molecular structure of azobenzene. For 2o slow 
thermal isomerization was found when compared with 4m, 
5m and 7p. The experimental results for thermal isomeriza-
tion indicate that the inversion mechanism is predominantly 
operative in the azobenzenes, irrespective of additional sub-
stituents attached to the azobenzene unit. Furthermore, SAMs 
of sterically hindered azobenzene thiols showed the reversi-
ble photoswitching nature on gold surface. Our investigation 
suggests that understanding the correlation between the mo-
lecular structure and isomerization characteristics provides 
insight into the molecular design strategy for controlling 
photochemical and thermal isomerization behaviors.  
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dai), Technical Department, Tokyo Institute of Technology, for FAB-MS 
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