

Synthesis of Benzofurans with Remote Bromide Functionality by Domino "Ring-Cleavage-Deprotection-Cyclization" Reactions of 2-Alkylidenetetrahydrofurans with Boron Tribromide

Esen Bellur †,‡ and Peter Langer $^{*,\dagger,\$}$

Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany, Institut für Chemie und Biochemie, Universität Greifswald, Soldmannstrasse 16, 17487 Greifswald, Germany, and Leibniz-Institut für Organische Katalyse an der Universität Rostock e. V. (IfOK), Albert-Einstein-Strasse 29a, 18059 Rostock, Germany

peter.langer@uni-rostock.de

Received May 30, 2005

Bromination and subsequent Suzuki reactions of 2-alkylidenetetrahydrofurans, readily available by [3+2] cyclizations, afforded 1'-(2"-methoxyphenyl)-2-alkylidenetetrahydrofurans. Treatment of the latter with boron tribromide and subsequent addition of water resulted in the chemoselective formation of functionalized benzofurans containing a remote bromide functionality. The products are formed by a new domino "ring-cleavage-deprotection-cyclization" reaction. The addition of an aqueous solution of potassium tert-butoxide, rather than water, afforded saturated analogues of calycine by a "ring-cleavage-deprotection-ring-closure-lactonization" reaction.

Introduction

Functionalized benzofurans^{1,2} represent important synthetic building blocks and occur in a variety of pharmacologically relevant natural products, such as diazonamide A, anigopreissin A (Figure 1), euparin (Figure 2), coumestrol (Figure 3), dehydrotremetone, or cicerfuran (Figure 4).1 Synthetic amiodarone represents a potent antiarrythmic and antianginal drug that is used in the clinic.3

2-Alkylidenetetrahydrofurans represent useful synthetic building blocks. $^{4-6}$ We and others have reported a

FIGURE 1. Anigopreissin A.

FIGURE 2. Euparin.

FIGURE 3. Coumesterol.

number of one-pot syntheses of 2-alkylidenetetrahydrofurans by [3+2] cyclizations of 1,3-dicarbonyl dianions and 1,3-bis-silyl enol ethers with 1,2-dielectrophiles,7 and

^{*} Corresponding author. Fax: +381 4986412.

[†] Universität Rostock.

[‡] Universität Greifswald.

[§] Leibniz-Institut für Organische Katalyse an der Universität Rostock e. V. (IfOK). (1) For benzofuran natural products: (a) Fuerst, D. E.; Stoltz, B.

M.; Wood, J. L. Org. Lett. 2000, 22, 3521. (b) Schneider, B. Phytochem*istry* **2003**, *64*, 459. (c) Katritzky, A. R.; Kirichenkok, K.; Ji, Y.; Steel, P. J.; Karelson, M. *ARKIVOC* **2003**, *vi*, 49. (d) Czekei, M.; Novák, Z.; Timári, G.; Kotschy, A. ARKIVOC 2004, vii, 285 and references therein.

(2) For benzofuran syntheses: (a) Miyata, O.; Takeda, N.; Morikami, Y.; Naito, T. Org. Biomol. Chem. 2003, 1, 254. (b) Xie, X.; Chen, B.; Lu, J.; Han, J.; She, X.; Pan, X. Tetrahedron Lett. 2004, 45, 6235. (c) Ed., 3, Hall, 8, Sile, K., Fall, 8. Tetrahedron Lett. 2004, 43, 6250. Chang, H.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2004, 43, 6144. (d) Kurfurst, P.; Marek, J.; Vanco, J.; Csöllei, J. Acta Crystallogr. 2004, E60, 1989. For a review, see: (e) Butin, A. V.; Gutnow, A. V.; Abaev, V. T.; Krapivin, G. D. Molecules 1999, 4, 52.

FIGURE 4. Cicerfuran.

also by other methods. 8c-e 2-Alkylidenetetrahydrofurans have been functionalized by lithiation and subsequent alkylations;8a,b in addition, the bromination of the exocyclic double bond and subsequent cross-coupling reactions have been reported.8f Recently, we have reported the synthesis of 6-bromo-3-oxoalkanoates by reaction of 2-alkylidenetetrahydrofurans with boron tribromide (BBr₃). Herein, we wish to report the synthesis of benzofurans by BBr3-mediated domino "ring-cleavagedeprotection-cyclization" reactions of 2-alkylidenetetrahydrofurans. In addition, the synthesis of calycine analogues, 10 based on Suzuki-cross-coupling and BBr3 reactions, is reported. From a preparative viewpoint, our methodology allows a convenient access to functionalized benzofurans, containing a remote bromide functionality, which are not readily available by other methods. The chemistry reported herein complements our recently reported synthetic approach to benzofurans based on a "[3+2] cyclization/oxidation" 11 strategy. The reactions

(3) (a) Wendt, B.; Ha, H. R.; Hesse, M. Helv. Chim. Acta 2002, 85, 2990. (b) Carlsson, B.; Singh, B. N.; Temciuc, M.; Nilsson, S.; Li, Y. L.; Mellin, C.; Malm, J. J. Med. Chem. 2002, 45, 623 and references therein. (c) Kwiecien, H.; Baumann, E. J. Heterocycl. Chem. 1997, 34, 1587. (d) Larock, R. C.; Harrison, L. W. J. Am. Chem. Soc. 1984, 106, 4218. (e) Mátyus, P.; Varga, I.; Rettegi, T.; Simay, A.; Kallay, N.; Károlyházy, L.; Kocsis, A.; Varro, A.; Penzes, I.; Papp, J. G. Curr. Med. Chem. 2004, 1, 61.

(4) For cycloadditions, see: (a) Weichert, A.; Hoffmann, H. M. R. J. Org. Chem. 1991, 56, 4098. (b) Tchelitcheff, P. Bull. Soc. Chim. Fr. 1954, 672. (c) Ireland, R. E.; Haebich, D. Chem. Ber. 1981, 114, 1418. (d) Audrain, H.; Thorhauge, J.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2000, 65, 4487. For reactions with amines, see: (e) Detty, M. R. J. Org. Chem. 1979, 44, 2073. (f) Batra, S.; Srivastava, S.; Singh, K.; Chander, R.; Khanna, A. K.; Bhaduri, A. P. Bioorg. Med. Chem. 2000, 8, 2195. For cyclopropanations: (g) Kirmse, W.; Rode, K. Chem. Ber. 1987, 120, 847. For hydrogenations: (h) Ohta, T.; Miyake, T.; Seido, N.; Kumobayashi, H.; Takaya, H. J. Org. Chem. 1995, 60, 357. See also ref 2.

See also ref 2.

(5) Reviews: (a) Oivin, T. L. B. Tetrahedron 1987, 43, 3309. (b) Barrett, A. G. M.; Sheth, H. G. J. Org. Chem. 1983, 48, 5017. (c) Rao, Y. S. Chem. Rev. 1976, 76, 625. (d) Pattenden, G. Prog. Chem. Nat. Prod. 1978, 35, 133. (e) Knight, D. W. Contemp. Org. Synth. 1994, 1, 287. (f) Gerlach, H.; Wetter, H. Helv. Chim. Acta 1974, 57, 2306. (g) Schmidt, U.; Gombos, J.; Haslinger, E.; Zak, H. Chem. Ber. 1976, 109, 2628. (h) Bartlett, P. A.; Meadows, J. D.; Ottow, E. J. Am. Chem. Soc. 1984, 106, 5304. (i) Lygo, B. Tetrahedron 1988, 44, 6889.

Schmidt, U.; Gombos, J.; Hasiniger, E.; Zak, H. Chem. Ber. 1976, 109, 2628. (h) Bartlett, P. A.; Meadows, J. D.; Ottow, E. J. Am. Chem. Soc. 1984, 106, 5304. (i) Lygo, B. Tetrahedron 1988, 44, 6889.

(6) (a) Ley, S. V.; Lygo, B.; Organ, H. M.; Wonnacott, A. Tetrahedron 1985, 41, 3825. (b) Booth, P. M.; Fox, C. M. J.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 1987, 121. (c) Mori, K.; Sasaki, M.; Tamada, S.; Suguro, T.; Masuda, S. Tetrahedron 1979, 35, 1601.

(7) For reviews of cyclization reactions of free and masked dianions, see: (a) Langer, P. Chem.-Eur. J. 2001, 7, 3858. (b) Langer, P. Synthesis 2002, 441. (c) Langer, P.; Freiberg, W. Chem. Rev. 2004, 104, 4125.

(8) (a) Langer, P.; Bellur, E. J. Org. Chem. 2003, 68, 9742. See also: (b) Edwards, G. L.; Sinclair, D. J. Tetrahedron Lett. 1999, 40, 3933. (c) Krueger, S. A.; Bryson, T. A. J. Org. Chem. 1974, 39, 3167. (d) Gabriele, B.; Salerno, G.; Pascali, F. D.; Costa, M.; Chiusoli, G. P. J. Organomet. Chem. 2000, 593, 1, 409. (e) Pflieger, D.; Muckensturn, B. Tetrahedron 1989, 45, 7, 2031. (f) Bellur, E.; Langer, P. Synlett 2004, 2169.

(9) For an isolated example of the domino "ring-cleavage-deprotection-cyclization" reaction, see: (a) Bellur, E.; Langer, P. Synlett 2004, 2172. For open-chained products: (b) Bellur, E.; Langer, P. J. Org. Chem. 2005, 70, 3819.

(10) (a) Akermark, B. Acta Chem. Scand. 1961, 15, 1695. (b) The 2,3'-bifuranylidene subunit is present in the natural products charlic acid, charolic acid, and terrestric acid. Arai, H.; Miyajima, H.; Mushiroda, T.; Yamamoto, Y. Chem. Pharm. Bull. 1989, 12, 3229.

SCHEME 1. Bromination of 2-Alkylidenetetrahydrofurans $2a-c^a$

 a (i) (1) 2.3 equiv of LDA, THF, 0 °C, 1 h, (2) Br(CH₂)₂Cl, $-78 \rightarrow 20$ °C, 14 h, then reflux, 12 h; (ii) NBS (1.1–1.3 equiv), CCl₄, reflux, 3 h.

SCHEME 2. Bromination of 2-Alkylidenetetrahydrofuran 2d^a

 a (i) 2 equiv of TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C; (ii) NBS (1.1 equiv), CCl₄, reflux, 3 h.

reported herein are of interest also from a methodology viewpoint: whereas the BBr₃-mediated cleavage of methylaryl ethers is well known and broadly used, ¹² reactions of other ethers are more rare. Known examples include the formation of ω -bromoalkanols by ring-opening of cyclic ethers with BBr₃/MeOH, ^{13a} or the transformation of lactones into ω -halocarboxylic acids. ^{13b}

Results and Discussion

Our first aim was the synthesis of the required starting materials (Schemes 1 and 2). The reaction of 2-alkylidenetetrahydrofurans $2\mathbf{a}-\mathbf{c}$, prepared by cyclization of 1-bromo-2-chloroethane with the dianions of 1,3-dicarbonyl compounds $1\mathbf{a}-\mathbf{c}$, 8a,14 with NBS (1.1–1.3 equiv)

^{(11) (}a) Bellur, E.; Freifeld, I.; Langer, P. Tetrahedron Lett. 2005, 46, 2185. (b) Bellur, E.; Görls, H.; Langer, P. Eur. J. Org. Chem. 2005, 2074

⁽¹²⁾ Review: (a) Bhatt, M. V.; Kulkarni, S. U. Synthesis 1983, 249. See also: (b) McOmie, J. F. W.; Watts, M. L.; West, D. E. Tetrahedron 1968, 24, 2289.

⁽¹³⁾ For the cleavage of cyclic ethers, see: (a) Kulkarni, S. U.; Patil, V. D. *Heterocycles* **1982**, *18*, 163. For the cleavage of lactones, see: (b) Olah, G. A.; Karpeles, R.; Narang, S. C. *Synthesis* **1982**, 963.

SCHEME 3. Synthesis of Benzofuran 8a^a

 a (i) $[2\text{-}(MeO)C_6H_4]B(OH)_2~(3.0~equiv),~Pd(PPh_3)_4~(3~mol\text{-}\%),~K_3PO_4~(6.0~equiv),~1,4\text{-}dioxane,~reflux,~6~h;~(ii)~(1)~4~equiv~of~BBr_3,~CH_2Cl_2,~0~\rightarrow~20~^\circ\text{C},~12~h,~20~^\circ\text{C},~6~h;~(2)~H_2O.$

afforded the 1'-bromo-2-alkylidenetetrahydrofurans $\bf 3a-c$ and the 1',3-dibromo-2-alkylidenetetrahydrofurans $\bf 4a-c$ (Scheme 1).

The NBS-mediated (1.1 equiv) bromination of 5-chloromethyl-2-alkylidenetetrahydrofuran **2d**, prepared by TiCl₄-mediated cyclization of 1,3-bis-silyl enol ether **5** with epichlorohydrin, ¹⁵ afforded the 1'-bromo-2-alkylidenetetrahydrofuran **3d** and the 1',3-dibromo-2-alkylidenetetrahydrofuran **6** (Scheme 2). The desired product **3d** could be isolated in pure form when 1.1 equiv of NBS was employed; however, the formation of **6** could not be entirely avoided. The use of 1.3 equiv of NBS resulted in a decrease of the yield of **3d** and gave an inseparable mixture of **3d** and **6**.

The synthesis of functionalized benzofurans by sequential Suzuki and BBr3 reactions was studied next (Scheme 3, Table 1). The Pd(PPh₃)₄ (3 mol-%) catalyzed Suzuki reaction of 3a with (2-methoxyphenyl)boronic acid gave the desired 2-alkylidenetetrahydrofuran 7a with excellent E-diastereoselectivity. Treatment of 7a with BBr₃ afforded the benzofuran 8a.9a We propose a mechanism that involves the formation of 8a (Scheme 3). The latter is formed by BBr₃-mediated ring-opening of 7a and cleavage of the arylmethyl ether to give intermediate A. Addition of water results in hydrolysis of the boronic ester moieties, to give boronic and hydrobromic acid (intermediate B), and subsequent acid-mediated cyclization and aromatization by extrusion of water. During the optimization, the use of an excess of BBr₃ (4 equiv) proved to be important.

TABLE 1. Synthesis of Benzofuran Derivatives

TABLE	1. Synt	hesis of Benzofuran D	erivatives
entry	substrate	% (7) ^{a, b}	% (8) ^a
1	3a	MeO OMe OMe	OH O OMe
2	3b	7 b (87%) OMe OEt	8b (97%)
3	3b	7c (93%) OMe OMe OEt	8c (84%) HO OEt
4	3b	7d (96%) MeO OMe OEt O7e (87%)	8d (97%) OH OEt Br 8e (92%)
5	3с	OMe O 7f (77%)	8f (71%)
6	3d	CI OMe OMe	CI O OMe
7	4a	7g (96%) OMe OMe OMe	8g (80%) Br HO Sh (58%)
		7h (92%)	Jii (5070)

^a Yields of isolated products. ^b E/Z > 98:2.

The preparative scope of our methodology was studied (Table 1). The Suzuki reaction of **3a** with 2,5-dimethoxyphenylboronic acid gave 2-alkylidenetetrahydrofuran **7b**.

⁽¹⁴⁾ Langer, P.; Holtz, E.; Karimé, I.; Saleh, N. N. R. *J. Org. Chem.* **2001**, *66*, 6057.

^{(15) (}a) Langer, P.; Armbrust, H.; Eckardt, T.; Magull, J. Chem-Eur. J. 2002, 8, 1443. (b) For an alternative synthesis of 2d, see: Pound, M. K.; Davies, D. L.; Pilkington, M.; de Pina Vaz Sousa, M. M.; Wallis, J. D. Tetrahedron Lett. 2002, 43, 1915.

SCHEME 4. Lactonization of 7a,ga

 a (i) (1) 4 equiv of BBr3, CH2Cl2, 0 \rightarrow 20 °C, 12 h, 20 °C, 6 h; (2) KOtBu, H2O (1 M), 1 h, 20 °C.

Treatment of the latter with BBr3 afforded the benzofuran 8b. The reaction of 3b with 2-methoxyphenyl-, 2,4dimethoxyphenyl-, and 2,6-dimethoxyphenylboronic acid afforded the functionalized 2-alkylidenetetrahydrofurans 7c-e, which were transformed into 8c-e. Likewise, the reaction of 3c with 2-methoxyphenylboronic acid afforded **7f**, which was transformed into the 3-benzoylbenzofuran **8f** by treatment with BBr₃. 2-Alkylidenetetrahydrofuran 7g was prepared by reaction of 3d with 2-methoxyphenylboronic acid; treatment of 7g with BBr₃ gave the benzofuran 8g. The Suzuki reaction of dibromide 4a with 2-methoxyphenylboronic acid afforded 2-alkylidene-1'.3diaryltetrahydrofuran 7h, which was formed by a double-Suzuki reaction of the 1,3-dibromoprop-1-ene moiety; the reaction of **7h** with BBr₃ afforded the benzofuran **8h**. All reactions proceeded in good to very good yields and with very good chemoselectivity. In addition, all Suzuki reactions proceeded with excellent *E*-diastereoselectivity.

The application of our methodology to the synthesis of 3-(dihydrofuran-2(3H)-ylidene)-3H-benzofuran-2-one 9a and of 3-[(5-chloromethyl)dihydrofuran-2(3H)-ylidene]-3H-benzofuran-2-one 9b, saturated analogues of calycine, 10 was studied next (Scheme 4).8c Treatment of 7a and 7g with BBr₃ (CH₂Cl₂) and subsequent addition of an aqueous solution of KOtBu (1 M) afforded **9a** and **9b** as separable mixtures of E/Z-isomers, respectively. We propose a mechanism that involves the formation of 9a and 9b by BBr₃-mediated ring-cleavage of 7a,g and cleavage of the arylmethyl ether (intermediate C). Addition of the aqueous solution of KOtBu (KOtBu + H₂O \rightarrow KOH + tBuOH) results in hydrolysis of the boronic ester moieties (intermediate D) and subsequent basemediated recyclization of the tetrahydrofuran moiety and lactonization. The formation of 9a, b as a mixture of E/Zisomers can be explained by keto-enol tautomerism of intermediate C.

In summary, we have reported a convenient and chemoselective formation of functionalized benzofurans containing a remote bromide functionality. The products are formed by a new BBr₃-mediated domino "ring-cleavage-deprotection-cyclization" reaction. The starting materials, 1'-(2"-methoxyphenyl)-2-alkylidenetetrahydro-

furans, were prepared by bromination and subsequent Suzuki reactions of 2-alkylidenetetrahydrofurans available by [3+2] cyclizations. In addition, we have reported the synthesis of saturated analogues of calycine, prepared by reaction of 1'-(2"-methoxyphenyl)-2-alkylidenetetrahydrofurans with BBr₃ and subsequent addition of an aqueous solution of KOtBu.

Experimental Section

General Procedure for the Reaction of 2-Alkylidenetetrahydrofurans with N-Bromosuccinimide (NBS). To a $\mathrm{CCl_4}$ -solution (5 $\mathrm{mL/mmol}$) of the 2-alkylidenetetrahydrofuran 2 (1 equiv) was added N-bromosuccinimide (1.1 equiv) at 20 °C. The reaction mixture was heated and stirred at reflux for 3 h. The reaction mixture was then allowed to cool to ambient temperature, and the solvent was removed in vacuo. The residue was purified by chromatography (silica gel, n-hexane/EtOAc) to give the bromo-2-alkylidenetetrahydrofurans 3,4,6.

Synthesis of 3,4a. Starting with **2a** (4.000 g, 28.0 mmol) and NBS (6.511 g, 36.6 mmol) in CCl_4 (40 mL), **Z-3a** (5.212 g, 84%) and **E-4a** (0.937 g, 11%) were isolated after chromatography (silica gel, n-hexane/EtOAc = $100:1 \rightarrow 1:1$) as yellowish and colorless solids, respectively.

Methyl Bromo(dihydrofuran-2(3*H*)-ylidene)acetate (*Z*-3a). ¹H NMR (CDCl₃, 300 MHz): δ 2.23 (quint, J = 7.2 Hz, 2H, CH₂), 3.19 (t, J = 7.8 Hz, 2H, CH₂), 3.78 (s, 3H, OCH₃), 4.41 (t, J = 7.2 Hz, 2H, OCH₂). ¹³C NMR (CDCl₃, 75 MHz): δ 24.8, 32.3, 52.2, 73.0, 82.7, 164.7, 172.2. IR (KBr, cm⁻¹): ν = 2951 (w), 1699 (s), 1609 (s), 1435 (m), 1281 (s), 1213 (s), 1188 (m), 1073 (s), 973 (w), 925 (w), 879 (w), 770 (w), 759 (w). MS (EI, 70 eV): m/z (%) = 221 (M⁺ [⁸1Br], 72), 219 (M⁺ [⁷⁹Br], 71), 190 (87), 162 (3). Anal. Calcd for C₇H₉O₃Br (221.050): C, 38.04; H, 4.10. Found: C, 38.19; H, 3.64.

Methyl Bromo(3-bromodihydro-furan-2(3*H*)-ylidene)-acetate (*E*-4a). $^1{\rm H}$ NMR (CDCl $_3$, 300 MHz): δ 2.43–2.49 (m, 1H, CH $_2$), 2.53–2.61 (m, 1H, CH $_2$), 3.80 (s, 3H, OCH $_3$), 4.74–4.76 (m, 1H, OCH $_2$), 4.78–4.79 (m, 1H, OCH $_2$), 5.20 (d, J=5.4 Hz, 1H, CH–Br). $^{13}{\rm C}$ NMR (CDCl $_3$, 75 MHz): δ 34.7, 48.4, 52.1, 73.8, 87.1, 162.0, 167.0. IR (KBr, cm $^{-1}$): ν = 2950 (w), 1706 (s), 1605 (s), 1433 (m), 1271 (s), 1204 (s), 1174 (s), 1057 (w), 1039 (s), 1027 (s), 1004 (w), 765 (w). MS (EI, 70 eV): *m/z* (%) = 302 (M+ [2 × $^{81}{\rm Br}]$, 17), 300 (M+ [$^{81}{\rm Br}^{79}{\rm Br}]$, 34), 298 (M+ [2 × $^{79}{\rm Br}]$, 17), 269 (19), 241 (2), 221 (100), 189 (22), 161 (18). Anal. Calcd for C₇H₈O₃Br₂ (299.946): C, 28.03; H, 2.69. Found: C, 28.88; H, 2.85.

Synthesis of 3,4b. Starting with **2b** (1.432 g, 9.2 mmol) and NBS (2.122 g, 11.92 mmol) in CCl₄ (25 mL), **Z-4b** (0.740 g, 26%), **Z-3b** (0.886 g, 41%), and **E-4b** (0.430 g, 15%) were isolated after chromatography (silica gel, n-hexane/EtOAc = $100:1 \rightarrow 1:1$) as slightly yellowish solid, yellowish solid, and yellowish oil, respectively.

Ethyl Bromo(3-bromodihydrofuran-2(3*H*)-ylidene) acetate (*Z*-4b). 1 H NMR (CDCl₃, 300 MHz): δ 1.36 (t, J = 7.2 Hz, 3H, CH₃), 2.55–2.63 (m, 2H, CH₂), 4.29 (dq, J = 2.1, 7.2 Hz, 2H, OCH₂CH₃), 4.56–4.66 (m, 2H, OCH₂), 5.81 (dd, J = 4.5, 1.5 Hz, 1H, CH–Br). 13 C NMR (CDCl₃, 75 MHz): δ 13.9, 36.8, 44.1, 61.7, 70.6, 87.1, 162.5, 168.5. IR (KBr, cm⁻¹): ν = 2933 (w), 1701 (s), 1616 (s), 1371 (w), 1274 (s), 1216 (s), 1189 (m), 1160 (w), 1069 (s), 1026 (w), 953 (w), 928 (w), 872 (w), 757 (w). MS (EI, 70 eV): m/z (%) = 315 (M+ [2 × 81 Br], 11), 313 (M+ [81 Br 79 Br], 33), 311 (M+ [2 × 79 Br], 12), 269 (11), 235 (65), 305 (100), 189 (29), 161 (23). Anal. Calcd for C₈H₁₀O₃-Br₂ (313.973): C, 30.60; H, 3.21. Found: C, 30.32; H, 3.51.

Ethyl Bromo(dihydrofuran-2(3*H*)-ylidene)acetate (*Z*-3b). 1 H NMR (CDCl₃, 300 MHz): δ 1.32 (t, J = 7.2 Hz, 3H, CH₃), 2.23 (quint, J = 7.5 Hz, CH₂), 3.18 (t, J = 7.8 Hz, 2H, CH₂), 4.23 (q, J = 7.2 Hz, 2H, OCH₂CH₃), 4.40 (t, J = 7.2 Hz, 2H, OCH₂). 13 C NMR (CDCl₃, 150 MHz): δ 14.0, 24.6, 32.2, 60.8, 72.7, 83.0, 163.7, 171.7. IR (KBr, cm⁻¹): ν = 2995 (w),

 $2975~(w),\,2907~(w),\,1691~(s),\,1608~(s),\,1395~(w),\,1374~(m),\,1294~(s),\,1276~(s),\,1240~(w),\,1194~(s),\,1065~(s),\,1038~(m),\,953~(w),\,931~(m),\,874~(w),\,762~(m).$ MS (EI, 70 eV): $\it m/z~(\%) = 236~(M^+~[^{81}{\rm Br}],\,75),\,234~(M^+~[^{79}{\rm Br}],\,76),\,206~(44),\,189~(100),\,161~(5),\,110~(40),\,81~(12).$ Anal. Calcd for $C_8H_{11}O_3Br~(235.077)$: C, $40.88;~H,\,4.72.$ Found: C, $41.04;~H,\,4.61.$

E-4b. ¹H NMR (CDCl₃, 300 MHz): δ 1.32 (t, J=7.2 Hz, 3H, CH₃), 2.43–2.48 (m, 1H, CH₂), 2.52–2.61 (m, 1H, CH₂), 4.27 (q, J=7.2 Hz, 2H, OCH₂CH₃), 4.76 (dt, J=8.7, 0.9 Hz, 2H, OCH₂), 5.20 (d, J=5.4 Hz, 1H, CH–Br). ¹³C NMR (CDCl₃, 150 MHz): δ 14.1, 35.2, 48.7, 61.5, 74.0, 87.9, 162.0, 176.1. IR (neat, cm⁻¹): $\nu=2983$ (m), 2938 (w), 2905 (m), 1737 (s), 1703 (s), 1660 (m), 1616 (s), 1471 (m), 1440 (m), 1371 (s), 1316 (m), 1283 (s), 1272 (s), 1206 (s), 1184 (s), 1157 (s), 1117 (m), 1094 (m), 1088 (s), 935 (m), 925 (m), 865 (w), 847 (w), 763 (m), 709 (w). MS (EI, 70 eV): m/z (%) = 316 (M+ [2 × ⁸¹Br], 17), 314 (M+ [⁸¹Br⁷⁹Br], 37), 312 (M+ [2 × ⁷⁹Br], 18), 269 (29), 241 (3), 233 (6), 205 (100), 189 (35), 161 (23). The exact molecular mass $m/z=311.8997\pm2$ ppm [M+] for C₈H₁₀O₃Br₂ was confirmed by HRMS (EI, 70 eV).

Synthesis of 3,4c. Starting with **2c** (0.400 g, 2.13 mmol) and NBS (0.416 g, 2.34 mmol) in CCl₄ (30 mL), **Z-4c** (0.087 g, 12%) and **Z-3c** (0.302 g, 53%) were isolated after chromatography (silica gel, n-hexane/EtOAc = $100:1 \rightarrow 1:1$) as yellowish oils

2-Bromo-2-(3-bromodihydrofuran-2(3*H*)-ylidene)-1-phenylethanone (*Z*-4c).

1H NMR (CDCl₃, 300 MHz): δ 2.51–2.72 (m, 2H, CH₂), 4.60–4.71 (m, 2H, OCH₂), 5.60 (d, J = 5.4 Hz, 1H, CH–Br), 7.41–7.55 (m, 3H, 3 × CH of Ph), 7.75 (d, J = 3.9 Hz, 2H, 2 × CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): δ 36.8, 43.6, 70.5, 92.8, 127.7, 128.7, 132.0, 137.7, 166.9, 191.0. IR (neat, cm⁻¹): ν = 3059 (w), 2998 (w), 2962 (w), 2906 (m), 1659 (s), 1653 (s), 1598 (s), 1584 (s), 1581 (s), 1570 (s), 1473 (w), 1444 (m), 1370 (m), 1311 (s), 1276 (s), 1220 (s), 1174 (s), 1161 (s), 1115 (w), 1076 (w), 1055 (m), 1017 (s), 964 (s), 931 (s), 909 (m), 882 (m), 836 (m), 815 (w), 794 (m), 741 (m), 687 (s), 654 (s), 522 (m). MS (EI, 70 eV): mlz (%) = 348 (M⁺, [2 × ⁸¹Br], 7), 346 (M⁺ [⁸¹Br⁷⁹Br], 15), 344 (M⁺ [2 × ⁷⁹Br], 7), 267 (36), 186 (100). Anal. Calcd for C₁₂H₁₀O₂Br₂ (346.018): C, 41.65; H, 2.91. Found: C, 41.35; H, 3.60.

2-Bromo-2-(dihydrofuran-2(3*H*)-ylidene)-1-phenylethanone (*Z*-3c). ^1H NMR (CDCl₃, 300 MHz): δ 2.21 (quint, J=7.5 Hz, 2H, CH₂), 2.94 (t, J=7.8 Hz, 2H, CH₂), 4.45 (t, J=7.2 Hz, 2H, OCH₂), 7.38–7.53 (m, 3H, 3 × CH of Ph), 7.61–7.71 (m, 2H, 2 × CH of Ph). ^{13}C NMR (CDCl₃, 75 MHz): δ 25.2, 32.7, 72.9, 91.3, 127.9 (2C), 128.5 (2C), 131.4, 139.2, 171.5, 191.8. IR (neat, cm⁻¹): $\nu=2959$ (w), 2927 (w), 1684 (s), 1646 (s), 1596 (s), 1448 (m), 1420 (w), 1312 (m), 1285 (m), 1253 (w), 1210 (s), 1183 (m), 1118 (w), 1075 (w), 1033 (m), 995 (w), 965 (w), 930 (w), 693 (w), 649 (w). MS (EI, 70 eV): mlz (%) = 267 (M⁺, [^81Br], 22), 265 (M⁺ [^78Br], 21), 186 (35), 162 (3), 146 (11), 129 (2), 105 (100), 77 (64), 70 (18).

Synthesis of 3d,6. Starting with **2d** (1.000 g, 5.25 mmol) and NBS (1.027 g, 5.77 mmol) in CCl_4 (50 mL), **6** (0.680 g, 48%) and **3d** (0.492 g, 35%) were isolated after chromatography (silica gel, n-hexane/EtOAc = $100:1 \rightarrow 2:1$) as a yellowish oil and a white solid, respectively.

Methyl (3-Bromo-5-chloromethyldihydrofuran-2(3*H*)-ylidene)acetate (6). $^{1}{\rm H}$ NMR (CDCl₃, 300 MHz): δ 2.38–2.71 (m, 2H, CH₂), 3.73 (s, 3H, OCH₃), 3.79 (dd, J=9.4, 4.9 Hz, 2H, CH₂–Cl), 5.03 (sext, J=4.9 Hz, 1H, OCH), 5.33 (s, 1H, CH=C), 5.81 (d, J=5.6 Hz, 1 H, CH=Br). $^{13}{\rm C}$ NMR (CDCl₃, 75 MHz): δ 38.3, 43.8, 50.5, 52.2, 79.9, 90.7, 166.0, 171.8. IR (neat, cm⁻¹): ν = 2953 (w), 1708 (s), 1653 (s), 1625 (m), 1436 (m), 1407 (w), 1358 (m), 1335 (w), 1284 (m), 1243 (w), 1215 (m), 1194 (m), 1164 (w), 1125 (s), 1071 (m), 1048 (m), 999 (w), 944 (w), 889 (w), 837 (w), 757 (w), 716 (w). MS (EI, 70 eV): m/z (%) = 272 (M+ [$^{81}{\rm Br}^{37}{\rm Cl}$], 21), 270 (M+ [$^{81}{\rm Br}^{35}{\rm Cl}$], 99), 268 (M+ [$^{79}{\rm Br}^{35}{\rm Cl}$], 72), 239 (99), 189 (100), 157 (56), 139 (27), 125 (11), 110 (20), 101 (35), 81 (25).

Methyl Bromo(5-chloromethyldihydrofuran-2(3H)-ylidene)acetate (3d). mp = 40 °C. ¹H NMR (CDCl₃, 300

MHz): δ 2.11–2.22 (m, 1H, CH₂), 2.35–2.46 (m, 1H, CH₂), 3.09–3.21 (m, 1H, CH₂), 3.30–3.41 (m, 1H, CH₂), 3.63–3.73 (m, 2H, CH₂–Cl), 3.78 (s, 3H, OCH₃), 4.80–4.87 (m, 1H, OCH). ¹³C NMR (CDCl₃, 75 MHz): δ 27.3, 31.9, 45.1, 52.1, 82.8, 82.9, 164.2, 171.1 IR (KBr, cm⁻¹): ν = 2953 (w), 1701 (s), 1614 (s), 1434 (m), 1346 (w), 1280 (s), 1221 (m), 1192 (m), 1122 (w), 1075 (s), 1037 (m), 883 (w), 760 (w), 748 (w), 738 (w). MS (EI, 70 eV): m/z (%) = 272 (M+ [⁸¹Br³⁷Cl], 8), 270 (M+ [⁸¹Br³⁵Cl], 48), 268 (M+ [⁷⁹Br³⁵Cl], 39), 238 (100), 235 (72), 219 (5), 201 (14), 191 (5), 159 (23), 117 (11), 69 (36). Anal. Calcd for C₈H₁₀-BrClO₃ (269.522): C, 35.65; H, 3.74. Found: C, 35.38; H, 4.00.

General Procedure for the Suzuki Reaction of 2-Alkylidenetetrahydrofurans with Arylboronic Acids. To a 1,4-dioxane solution (3 mL/mmol) of the bromo-2-alkylidenetetrahydrofuran (3,4) (1 equiv) were added potassium phosphate (K_3PO_4 , 6 equiv), the boronic acid (ArB(OH)2, 3 equiv), and Pd(PPh3)4 (0.03 equiv) at 20 °C. The reaction mixture was heated and stirred at reflux for 6 h. The reaction mixture was then allowed to cool to ambient temperature, and diethyl ether (10 mL/mmol) was added. The precipitate was filtered off, washed with diethyl ether, and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, n-hexane/EtOAc) to give the aryl-substituted 2-alkylidenetetrahydrofurans 7.

 $Methyl (Dihydrofuran \hbox{-} 2(3H) \hbox{-} ylidene) \hbox{-} (2\hbox{-}methoxyphen$ yl)acetate (7a). Starting with 3a (0.100 g, 0.45 mmol), 2-methoxyphenylboronic acid (0.213 g, 1.36 mmol), K₃PO₄ (0.575 g, 2.71 mmol), and Pd(PPh₃)₄ (0.016 g, 0.014 mmol) in 1,4-dioxane (5 mL), 7a was isolated after chromatography (silica gel, n-hexane/EtOAc = $100:1 \rightarrow 1:1$) as a slightly yellowish solid (0.107 g, 96%). ¹H NMR (CDCl₃, 300 MHz): δ 2.12 (quint, J = 7.2 Hz, 2H, CH₂), 3.28 (t, J = 7.8 Hz, 2H, CH_2), 3.63 (s, 3H, OCH_3), 3.77 (s, 3H, OCH_3), 4.19 (t, J = 7.2Hz, 2H, OCH₂), 6.90-6.98 (m, 2H, $2 \times CH$), 7.19 (d, J = 9.3Hz, 1H, CH), 7.24-7.30 (m, 1H, CH). ^{13}C NMR (CDCl₃, 75 MHz): δ 24.0, 31.1, 51.0, 55.5, 71.9, 100.4, 110.9, 120.1, 124.6, 128.3, 131.8, 157.1, 168.9, 171.5. IR (KBr, cm⁻¹): $\nu = 2943$ (w), 1704 (s), 1623 (s), 1599 (w), 1492 (m), 1464 (w), 1435 (m), 1376 (w), 1315 (m), 1271 (m), 1244 (m), 1184 (s), 1114 (w), 1075 (s), 1068 (s), 1024 (m), 979 (m). MS (EI, 70 eV): m/z (%) = 248 (M⁺, 100), 216 (25), 189 (57), 174 (7), 158 (3). Anal. Calcd for C₁₄H₁₆O₄ (248.278): C, 67.73; H, 6.50. Found: C, 67.51;

Methyl (Dihydrofuran-2(3H)-ylidene)-(2,5-dimethoxyphenyl)acetate (7b). Starting with 3a (0.100 g, 0.45 mmol), 2,5-dimethoxybenzeneboronic acid (0.253 g, 1.36 mmol), K₃-PO₄ (0.576 g, 2.71 mmol), and Pd(PPh₃)₄ (0.016 g, 0.014 mmol) in 1,4-dioxane (5 mL), 7b was isolated after chromatography (silica gel, n-hexane/EtOAc = $50:1 \rightarrow 1:1$) as a yellowish solid (0.109 g, 87%). ¹H NMR (CDCl₃, 300 MHz): δ 2.13 (quint, J = 7.5 Hz, 2H, CH₂), 3.27 (t, J = 7.8 Hz, 2H, CH₂), 3.64 (s, 3H, OCH_3), 3.73 (s, 3H, OCH_3), 3.77 (s, 3H, OCH_3), 4.20 (t, J =7.2 Hz, 2H, OCH₂), 6.77–6.86 (m, 3H, $3 \times$ CH). ¹³C NMR $(CDCl_3, 150 \text{ MHz}): \delta 24.2, 31.4, 51.3, 55.7, 56.5, 72.3, 100.5,$ 112.2, 112.8, 118.1, 125.9, 151.8, 153.3, 169.0, 171.9. IR (KBr, cm $^{-1}$): $\nu = 3009$ (w), 2986 (w), 2953 (m), 2900 (w), 2837 (w), 1700 (s), 1621 (s), 1609 (s), 1497 (s), 1464 (m), 1428 (m), 1377 (w), 1306 (s), 1279 (s), 1236 (s), 1217 (s), 1185 (s), 1160 (m), 1137 (s), 1072 (s), 1053 (s), 1026 (m), 983 (w), 983 (w), 964 (m), 936 (w), 899 (w), 805 (m), 779 (w), 724 (w). MS (EI, 70 eV): m/z (%) = 278 (M⁺, 100), 247 (8), 231 (3), 219 (15), 217 (1), 204 (1), 155 (28), 91 (7), 77 (5), 70 (13). Anal. Calcd for C₁₅H₁₈O₅ (278.304): C, 64.74; H, 6.52. Found: C, 64.75; H,

Ethyl (Dihydrofuran-2(3*H*)-ylidene)-(2-methoxyphenyl)acetate (7c). Starting with 3b (0.200 g, 0.85 mmol), 2-methoxybenzeneboronic acid (0.400 g, 2.55 mmol), K_3PO_4 (1.085 g, 5.11 mmol), and $Pd(PPh_3)_4$ (0.030 g, 0.026 mmol) in 1,4-dioxane (8 mL), 7c was isolated after chromatography (silica gel, n-hexane/EtOAc = 50:1 \rightarrow 1:1) as a slightly yellowish solid (0.207 g, 93%), mp = 59 °C. ¹H NMR (CDCl₃, 300 MHz): δ 1.17 (t, J = 7.2 Hz, 3H, CH₃), 2.12 (quint, J =

7.5 Hz, 2H, CH₂), 3.27 (t, J=7.8 Hz, 2H, CH₂), 3.77 (s, 3H, OCH₃), 4.13 (q, J=7.2 Hz, 2H, OCH₂CH₃), 4.18 (t, J=7.2 Hz, 2H, OCH₂), 6.88–6.97 (m, 2H, 2 × CH), 7.18–7.29 (m, 2H, 2 × CH). 13 C NMR (CDCl₃, 150 MHz): δ 14.6, 24.3, 31.4, 55.6, 59.6, 72.1, 101.1, 110.9, 120.3, 125.0, 128.4, 132.1, 157.4, 168.7, 171.4. IR (KBr, cm⁻¹): $\nu=29.82$ (m), 2958 (m), 2940 (m), 2900 (m), 2836 (w), 1697 (s), 1627 (s), 1603 (m), 1492 (s), 1462 (m), 1437 (m), 1371 (m), 1304 (s), 1267 (s), 1241 (s), 1185 (s), 1115 (m), 1069 (s), 1028 (m), 1008 (m), 955 (w), 933 (m), 876 (w), 849 (w), 782 (w), 755 (m), 647 (w). MS (EI, 70 eV): m/z (%) = 262 (M⁺, 100), 217 (13), 216 (15), 189 (53), 91 (31). Anal. Calcd for C₁₅H₁₈O₄ (262.305): C, 68.69; H, 6.92. Found: C, 68.78; H, 6.81.

Ethyl (Dihydrofuran-2(3H)-ylidene)-(2,4-dimethoxyphenyl)acetate (7d). Starting with 3b (0.150 g, 0.64 mmol), 2,4-dimethoxybenzeneboronic acid (0.355 g, 1.91 mmol), K₃- PO_4 (0.813 g, 3.83 mmol), and $Pd(PPh_3)_4$ (0.022 g, 0.019 mmol) in 1,4-dioxane (10 mL), 7d was isolated after chromatography (silica gel, n-hexane/EtOAc = $50:1 \rightarrow 1:1$) as a white solid $(0.180 \text{ g}, 96\%), \text{ mp} = 91 \text{ °C}. \text{ }^{1}\text{H NMR (CDCl}_{3}, 300 \text{ MHz}): \delta$ 1.17 (t, J = 7.2 Hz, 3H, CH₃), 2.11 (quint, J = 7.5 Hz, 2H, CH_2), 3.25 (t, J = 7.8 Hz, 2H, CH_2), 3.75 (s, 3H, OCH_3), 3.81 (s, 3H, OCH₃), 4.12 (q, J = 7.2 Hz, 2H, OCH₂CH₃), 4.18 (t, $J = 7.2 \text{ Hz}, 2H, OCH_2), 6.48-6.51 \text{ (m, 2H, 2} \times \text{CH)}, 7.08-$ 7.11 (m, 1H, CH). $^{13}\mathrm{C}$ NMR (CDCl_3, 150 MHz): δ 14.4, 24.1, 31.1, 55.1, 55.3, 59.4, 71.8, 98.5, 100.5, 103.9, 117.4, 132.1, 158.1, 159.9, 168.6, 171.09. IR (KBr, cm⁻¹): $\nu = 3000$ (w), 2977 (w), 1690 (s), 1616, (s), 1584 (w), 1511 (m), 1464 (w), 1309 (m), 1289 (m), 1265 (m), 1209 (m), 1187 (m), 1167 (m), 1108 (w), 1069 (s), 1032 (m), 1008 (w), 947 (w), 819 (w). MS (EI, 70 eV): m/z (%) = 292 (M⁺, 100), 246 (20), 231 (1), 219 (16), 190 (8). Anal. Calcd for C₁₆H₂₀O₅ (292.331): C, 65.74; H, 6.90. Found: C, 65.91; H, 6.87.

Ethyl (Dihydrofuran-2(3H)-ylidene)-(2,6-dimethoxyphenyl)acetate (7e). Starting with 3b (0.170 g, 0.72 mmol), 2,6-dimethoxybenzeneboronic acid (0.403 g, 2.17 mmol), K₃-PO₄ (0.921 g, 4.34 mmol), and Pd(PPh₃)₄ (0.025 g, 0.022 mmol) in 1,4-dioxane (10 mL), **7e** was isolated after chromatography (silica gel, *n*-hexane/EtOAc = $100:1 \rightarrow 1:1$) as a yellowish solid $(0.182 \text{ g}, 87\%), \text{ mp} = 82 \text{ °C}. \text{ }^{1}\text{H NMR (CDCl}_{3}, 300 \text{ MHz}): \delta$ 1.15 (t, J = 7.2 Hz, 3H, CH_3), 2.11 (quint, J = 7.2 Hz, 2H, CH₂), 3.29 (t, J = 7.5 Hz, 2H, CH₂), 3.76 (s, 6H, 2 × OCH₃), 4.11 (q, J = 7.2 Hz, 2H, OC H_2 CH₃), 4.16 (t, J = 7.2 Hz, 2H, OCH_2), 6.59 (d, J = 8.4 Hz, 2H, 2 × CH), 7.22 (t, J = 8.4 Hz, 1H, CH). 13 C NMR (CDCl₃, 150 MHz): δ 14.7, 24.3, 31.3, 56.2, 59.5, 72.0, 96.3, 104.4, 113.8, 128.7, 158.4, 168.8, 171.8. IR (KBr, cm $^{-1}$): $\nu = 2976$ (m), 2926 (m), 2855 (w), 1696 (s), 1630 (s), 1589 (m), 1468 (s), 1436 (m), 1378 (w), 1286 (m), 1248 (s), 1182 (s), 1112 (s), 1067 (s), 1030 (m), 931 (w), 746 (w). MS (EI, 70 eV): m/z (%) = 292 (M⁺, 95), 263 (6), 219 (100), 204 (4), 190 (15), 188 (4), 173 (8), 157 (3), 137 (5). Anal. Calcd for C₁₆H₂₀O₅ (292.331): C, 65.74; H, 6.90. Found: C, 65.61; H,

 $\hbox{2-(Dihydrofuran-2(3H)-ylidene)-2-(2-methoxyphenyl)-}$ 1-phenyl-ethanone (7f). Starting with 3c (0.100 g, 0.374 mmol), 2-methoxyphenylboronic acid (0.176 g, 1.12 mmol), K₃-PO₄ (0.478 g, 2.25 mmol), and Pd(PPh₃)₄ (0.013 g, 0.011 mmol) in 1,4-dioxane (10 mL), 7f was isolated after chromatography (silica gel, *n*-hexane/EtOAc = $100:1 \rightarrow 2:1$) as a yellowish solid (0.085 g, 77%), mp = 123 °C. 1 H NMR (CDCl₃, 300 MHz): δ 2.16 (quint, J = 7.5 Hz, 2H, CH_2), 3.22 (t, J = 7.8 Hz, 2H, CH_2), 3.44 (s, 3H, OCH_3), 4.27 (t, J = 7.2 Hz, 2H, OCH_2), 6.63 (dd, J = 5.1, 1.2 Hz, 1H, CH), 6.94 (dt, J = 7.5, 1.2 Hz, 1H,CH), 7.11-7.18 (m, 3H, $3 \times$ CH of Ar), 7.22-7.28 (m, 1H, CH), 7.45 (dt, J = 7.5, 1.5 Hz, 3H, 3 × CH of Ar). ¹³C NMR (CDCl₃, 50 MHz): δ 24.2, 31.4, 54.8, 71.8, 108.5, 110.7, 120.2, 126.3, 127.0 (2C), 128.1 (2C), 128.2, 130.1, 131.8, 140.6, 156.3, 171.3, 196.1. IR (KBr, cm⁻¹): $\nu = 2992$ (w), 2987 (w), 2936 (w), 1654 (s), 1595 (s), 1581 (s), 1487 (m), 1458 (m), 1443 (w), 1322 (m), 1300 (w), 1260 (s), 1249 (s), 1186 (s), 1114 (m), 1051 (w), 1022 (m), 967 (s), 932 (m), 889 (m), 760 (m), 712 (w), 712 (w), 663 (w). MS (EI, 70 eV): m/z (%) = 294 (M⁺, 88), 263 (29), 217 (39, 189 (28), 171 (4), 157 (1), 105 (100), 91 (17), 77 (62).

Methyl (5-Chloromethyl-dihydrofuran-2(3H)-ylidene)-(2-methoxyphenyl)acetate (7g). Starting with 3d (0.150 g, 0.56 mmol), 2-methoxyphenylboronic acid (0.262 g, 1.67 mmol), K₃PO₄ (0.709 g, 3.34 mmol), and [Pd(PPh₃)₄] (0.019 g, 0.017 mmol) in 1,4-dioxane (5 mL), 7g was isolated after chromatography (silica gel, n-hexane/EtOAc = $100:1 \rightarrow 1:1$) as a slightly yellowish oil (0.159 g, 96%). 1H NMR (CDCl₃, 300 MHz): δ 2.02–2.14 (m, 1H, CH₂), 2.19–2.31 (m, 1H, CH₂), 3.26-3.36 (m, 2H, CH₂), 3.54 (d, J = 5.1 Hz, 2H, CH₂-Cl), $3.60 \text{ (s, 3H, OCH}_3), 3.75 \text{ (s, 3H, OCH}_3), 4.58 \text{ (quint, } J = 7.2 \text{ (s. 3H, OCH}_3), 4.58 \text{ (quint,$ Hz, 1H, OCH), 6.87-6.96 (m, 2H, 2 × CH of Ar), 7.18-7.27 (m, 2H, 2 \times CH of Ar). ¹³C NMR (CDCl₃, 75 MHz): δ 26.6, 30.7, 45.4, 51.0, 53.3, 81.6, 100.9, 110.6, 120.0, 124.2, 128.3, 131.8, 157.0, 168.7, 170.3. IR (neat, cm⁻¹): $\nu = 2950$ (w), 1704 (s), 1632 (s), 1492 (m), 1460 (m), 1435 (s), 1346 (w), 1308 (m), 1265 (m), 1244 (s), 1185 (s), 1116 (m), 1072 (s), 1026 (m), 926 (w), 755 (m). MS (EI, 70 eV): m/z (%) = 298 (M⁺ [³⁷Cl], 33), 296 (M⁺ [³⁵Cl], 100), 264 (50), 237 (58), 200 (7).

Methyl (2-Methoxyphenyl)-[3-(2-methoxyphenyl)-dihydrofuran-2(3H)-ylidene]acetate (7h). Starting with Z-4a (0.300 g, 1.0 mmol), 2-methoxybenzeneboronic acid (0.940 g, 6.0 mmol), K₃PO₄ (1.274 g, 6.0 mmol), and [Pd(PPh₃)₄] (0.058 g, 0.05 mmol) in 1,4-dioxane (5 mL), 7h was isolated after chromatography (silica gel, n-hexane/EtOAc = 100:1 \rightarrow 2:1) as a white solid (0.325 g, 92%), mp = 112 °C. 1 H NMR (CDCl₃, 300 MHz): δ 1.58-2.05 (m, 1H, CH₂), 2.41-2.56 (m, 1H, CH), $3.43 \ (s,\ 3H,\ OCH_3),\ 3.82 \ (s,\ 3H,\ OCH_3),\ 3.91 \ (s,\ 3H,\ OCH_3),$ 4.04-4.18 (m, 1H, OCH₂), 4.24 (dt, J = 8.4, 1.8 Hz, 1H, OCH₂), $5.34 \, (dd, J = 8.7, 1.5 \, Hz, 1H, CH), 6.86 - 7.05 \, (m, 4H, 4 \times CH),$ 7.19-7.32 (m, 2H, 2 × CH), 7.37-7.45 (m, 1H, CH), 7.81-7.85 (m, 1H, CH). ¹³C NMR (CDCl₃, 75 MHz): δ 32.7, 42.7, 50.9, 55.4, 55.6, 70.0, 101.9, 110.4, 111.0, 120.1, 120.2, 125.0, 127.0, 127.6, 128.4, 130.0, 131.8, 156.5, 157.3, 167.7, 172.7. IR (KBr, cm⁻¹): $\nu = 2946$ (w), 1705 (m), 1631 (m), 1600 (s), 1577 (m), 1489 (s), 1461 (s), 1436 (s), 1402 (m), 1368 (s), 1344 (s), 1296 (m), 1270 (m), 1234 (s), 1197 (w), 1166 (m), 1109 (m), 1076 (s), 1054 (s), 1024 (s), 982 (w), 779 (m), 758 (s), 704 (w), 656 (m), 528 (w). MS (EI, 70 eV): m/z (%) = 354 (M⁺, 100), 322 (39), 295 (25), 247 (32). The exact molecular mass m/z = 354.1467 ± 2 ppm [M⁺] for $C_{21}H_{22}O_5$ was confirmed by HRMS (EI, 70 eV).

General Procedure for the Synthesis of Benzofurans by Reaction of 2-Alkylidenetetrahydrofurans with Borontribromide. To a CH $_2$ Cl $_2$ -solution (10 mL/mmol) of the 2-alkylidenetetrahydrofuran 7 (1 equiv) was added BBr $_3$ (4 equiv) at 0 °C. The reaction mixture was allowed to warm to 20 °C over 12 h and was stirred for 6 h at 20 °C. Water (15 mL/mmol substrate) was slowly added to the reaction mixture, and the organic layer was separated. The aqueous layer was extracted with CH $_2$ Cl $_2$ (3 × 30 mL/mmol substrate). The combined organic extracts were dried (Na $_2$ SO $_4$), filtered, and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, n-hexane/EtOAc) to give 8.

Methyl 2-(3'-Bromopropyl)benzofuran-3-carboxylate (8a). Starting with 7a (0.150 g, 0.60 mmol) and BBr₃ (0.605 g, 2.42 mmol) in CH₂Cl₂ (6 mL), 8a was isolated after chromatography (silica gel, *n*-hexane/EtOAc = 100:1 → 1:1) as a yellowish oil (0.163 g, 92%). ¹H NMR (CDCl₃, 300 MHz): δ 2.34 (quint, J = 7.2 Hz, 2H, CH₂), 3.35 (t, J = 7.5 Hz, 2H, CH₂), 3.47 (t, J = 6.9 Hz, 2H, CH₂-Br), 3.95 (s, 3H, OCH₃), 7.28−7.33 (m, 2H, 2 × CH), 7.42−7.45 (m, 1H, CH), 7.95−7.98 (m, 1H, CH). ¹³C NMR (CDCl₃, 75 MHz): δ 26.8, 30.8, 32.4, 51.4, 109.2, 110.9, 121.9, 123.9, 124.6, 125.8, 153.6, 164.5, 165.2. IR (neat, cm⁻¹): ν = 2952 (m), 1714 (s), 1593 (s), 1478 (m), 1451 (s), 1437 (s), 1386 (m), 1342 (w), 1284 (m), 1235 (s), 1174 (s), 1127 (w), 1106 (m), 1073 (s), 1010 (w), 959 (w), 935 (w), 861 (w), 790 (m), 752 (s). MS (EI, 70 eV): m/z (%) = 298 (M+ [⁸¹Br], 38), 296 (M+ [⁷⁹Br], 39), 266 (7), 217 (16), 203 (10),

188 (100), 174 (5), 170 (29), 158 (47), 144 (4). Anal. Calcd for $C_{13}H_{13}BrO_3$ (297.148): C, 52.55; H, 4.41. Found: C, 52.84; H, 4.74.

Methyl 2-(3'-Bromopropyl)-5-hydroxybenzofuran-3carboxylate (8b). Starting with 7b (0.070 g, 0.25 mmol) and BBr₃ (0.504 g, 2.0 mmol) in CH₂Cl₂ (5 mL), 8b was isolated after chromatography (silica gel, n-hexane/EtOAc = 100:1 -5:1) as a white solid (0.076 g, 97%), mp = 154 °C. $^1\mathrm{H}$ NMR (CDCl₃, 300 MHz): δ 2.34 (quint, J = 7.05 Hz, 2H, CH₂), 3.33 $(t, J = 7.5 \text{ Hz}, 2H, CH_2), 3.47 (t, J = 6.6 \text{ Hz}, 2H, CH_2-Br),$ 3.95 (s, 3H, OCH₃), 5.31 (broad s, 1H, OH), 6.83 (dd, J = 8.7, 2.4 Hz, 1H, CH), 7.30 (d, J = 8.7 Hz, 1H, CH), 7.46 (d, J = 2.4 HzHz, 1H, CH). 13 C NMR (CDCl₃/DMSO- d_6 , 150 MHz): δ 26.4, 30.2, 32.2, 50.8, 106.3, 108.4, 110.6, 112.9, 126.1, 147.4, 153.7, 163.9, 165.0. IR (KBr, cm⁻¹): $\nu = 3326$ (s), 2962 (w), 2947 (w), 1687 (s), 1624 (w), 1605 (w), 1578 (m), 1488 (m), 1468 (s), 1441 (s), 1408 (m), 1382 (m), 1306 (m), 1267 (s), 1239 (m), 1224 (m), 1197 (m), 1169 (s), 1133 (w), 1111 (w), 1077 (m), 1048 (m), 955 (w), 867 (m), 816 (m), 789 (m), 731 (w), 664 (m), 623 (w). MS (EI, 70 eV): m/z (%) = 314 (M⁺ [81Br], 89), 312 (M⁺ [79Br], 92), 281 (7), 233 (6), 219 (6), 205 (100), 175 (18), 147 (8). The exact molecular mass $m/z = 311.9997 \pm 2$ ppm [M⁺] for C₁₃H₁₃O₄Br was confirmed by HRMS (EI, 70 eV). Anal. Calcd for C₁₃H₁₃BrO₄ (313.147): C, 49.86; H, 4.18. Found: C, 50.14;

Ethyl 2-(3'-Bromopropyl)benzofuran-3-carboxylate (8c). Starting with **7c** (0.080 g, 0.30 mmol) and BBr₃ (0.306 g, 1.2 mmol) in CH₂Cl₂ (3 mL), 8c was isolated after chromatography (silica gel, n-hexane/EtOAc = $100:1 \rightarrow 50:1$) as a slightly yellowish oil (0.078 g, 84%). ¹H NMR (CDCl₃, 300 MHz): δ 1.46 (t, J = 7.2 Hz, 3H, CH₃), 2.36 (quint, J = 6.6 Hz, 2H, CH_2), 3.36 (t, J = 7.2 Hz, 2H, CH_2), 3.48 (t, J = 6.6 Hz, 2H, CH_2-Br), 4.42 (q, J = 7.2 Hz, 2H, OCH_2), 7.29–7.32 (m, 2H, $2 \times \text{CH}$), 7.44–7.47 (m, 1H, CH), 7.97–8.00 (m, 1H, CH). ¹³C NMR (CDCl₃, 150 MHz): δ 14.7, 27.2, 31.1, 32.7, 60.7, 109.6, 111.2, 122.2, 124.1, 124.8, 126.3, 153.9, 164.4, 165.3. IR (neat, cm $^{-1}$): ν = 2979 (w), 2931 (w), 1711 (s), 1593 (m), 1479 (w), 1451 (m), 1404 (w), 1380 (m), 1347 (w), 1283 (w), 1234 (s), 1176 (m), 1128 (w), 1104 (w), 1070 (s), 1012 (w), 789 (w), 751 (m). MS (EI, 70 eV): m/z (%) = 312 (M⁺ [81Br], 88) 310 (M⁺ [79Br], 95), 281 (17), 265 (14), 231 (7), 217 (3), 203 (27), 189 (4), 175 (100), 157 (36), 128 (15). HRMS (FT-ICR): calcd for C₁₄H₁₅- BrO_3 [M⁺]: 313.02623 (81Br); 311.02828 (79Br); found: 313.02576 (81Br), 311.02779 (79Br).

Ethyl 2-(3'-Bromopropyl)-6-hydroxybenzofuran-3-car**boxylate (8d).** Starting with 7d (0.080 g, 0.27 mmol) and BBr₃ (0.549 g, 2.2 mmol) in CH₂Cl₂ (3 mL), 8d was isolated after chromatography (silica gel, n-hexane/EtOAc = $100:1 \rightarrow 5:1$) as a white solid (0.085 g, 97%), mp = 132 °C. $^1\mathrm{H}$ NMR (CDCl $_3$, 300 MHz): δ 1.44 (t, J = 7.2 Hz, 3H, CH₃), 2.33 (quint, J =7.05 Hz, 2H, CH₂), 3.31 (t, J = 7.5 Hz, 2H, CH₂), 3.47 (t, J =6.6 Hz, 2H, CH₂–Br), 4.41 (q, J = 7.2 Hz, 2H, OCH₂), 4.97 (broad s, 1H, OH), 6.84 (dd, J = 8.7, 2.1 Hz, 1H, CH), 6.94 (d, J = 2.1 Hz, 1H, CH), 7.80 (d, J = 8.7 Hz, 1H, CH). ¹³C NMR (CDCl₃+ d_6 -DMSO, 150 MHz): δ 14.3, 26.7, 30.8, 32.6, 60.1, 97.8, 109.1, 113.1, 118.0, 121.7, 154.6, 155.5, 163.3, 164.2. IR (KBr, cm⁻¹): $\nu = 3304$ (s), 2987 (w), 1676 (s), 1628 (m), 1594 (m), 1510 (w), 1495 (w), 1443 (s), 1406 (w), 1367 (m), 1301 (m), 1284 (m), 1262 (m), 1247 (m), 1196 (m), 1140 (m), 1113 (s), 1076 (s), 950 (w), 838 (w), 817 (w). MS (EI, 70 eV): m/z (%) = 328 (M⁺ [81Br], 97), 326 (M⁺ [79Br], 100), 297 (2%), 281 (9), 219 (75), 191 (88), 173 (19). The exact molecular mass m/z = 326.0154 ± 2 ppm [M⁺] for $C_{14}H_{15}O_4Br$ was confirmed by HRMS (EI, 70 eV). Anal. Calcd for C₁₄H₁₅BrO₄ (327.174): C, 51.40; H, 4.62. Found: C, 51.30; H, 4.97.

Ethyl 2-(3'-Bromopropyl)-4-hydroxybenzofuran-3-carboxylate (8e). Starting with 7e (0.070 g, 0.24 mmol) and BBr₃ (0.480 g, 1.92 mmol) in CH₂Cl₂ (3 mL), 8e was isolated after chromatography (silica gel, n-hexane/EtOAc = $100:1 \rightarrow 50:1$) as a white solid (0.073 g, 92%); mp = 86 °C. ¹H NMR (CDCl₃, 300 MHz): δ 1.40 (t, J = 7.2 Hz, 3H, CH₃), 2.27 (quint, J = 7.05 Hz, 2H, CH₂), 3.23 (t, J = 7.5 Hz, 2H, CH₂), 3.41 (t, J =

6.6 Hz, 2H, CH₂–Br), 4.41 (q, J=7.2 Hz, 2H, OCH₂), 6.70 (dd, J=8.1, 0.9 Hz, 1H, CH), 6.88 (dd, J=8.1 Hz, 0.9 Hz, 1H, CH), 7.12 (t, J=8.1 Hz, 1H, CH), 10.40 (s, 1H, OH). ¹³C NMR (CDCl₃, 150 MHz): δ 14.5, 27.6, 31.0, 32.7, 62.5, 102.4, 109.5, 110.3, 113.7, 126.9, 151.5, 155.3, 163.8, 167.4. IR (KBr, cm⁻¹): $\nu=3417$ (w), 3146 (w), 3126 (w), 3068 (w), 3043 (w), 2974 (w), 2933 (w), 1667 (s), 1630 (m), 1595 (m), 1481 (m), 1420 (m), 1384 (m), 1353 (w), 1328 (w), 1284 (m), 1240 (m), 1201 (m), 1155 (w), 1084 (m), 1045 (m), 1022 (w), 769 (m), 750 (m), 728 (w). MS (EI, 70 eV): m/z (%) = 328 (M⁺ [⁸¹Br], 61), 326 (M⁺ [⁷⁹Br], 62), 282 (100), 219 (14), 200 (7), 186 (4), 173 (38). The exact molecular mass $m/z=326.0154\pm2$ ppm [M⁺] for C₁₄H₁₅O₄Br was confirmed by HRMS (EI, 70 eV). Anal. Calcd for C₁₄H₁₅BrO₄ (327.174): C, 51.40; H, 4.62. Found: C, 52.15; H, 4.73.

3-Benzoyl-2-(3'-bromopropyl)benzofuran (8f). Starting with **7f** (0.050 g, 0.17 mmol) and BBr₃ (0.171 g, 0.68 mmol) in CH₂Cl₂ (3 mL), 8f was isolated after chromatography (silica gel, n-hexane/EtOAc = 100:1 \rightarrow 1:1) as a slightly yellowish oil $(0.036~{\rm g},\,71\%).$ $^1{\rm H}$ NMR (CDCl₃, 300 MHz): δ 2.35 (quint, J=7.1 Hz, 2H, CH₂), 3.10 (t, J = 7.4 Hz, 2H, CH₂), 3.44 (t, J = $6.8 \text{ Hz}, 2H, CH_2-Br), 7.16-7.40 \text{ (m, 3H, 3} \times CH), 7.47-7.64$ $(m, 4H, 4 \times CH), 7.81-7.84 (m, 2H, 2 \times CH).$ ¹³C NMR (CDCl₃, 75 MHz): δ 27.0, 31.0, 32.4, 111.1, 117.4, 121.5, 123.7, 124.6, $126.6,\, 128.6\, (2C),\, 129.2\, (2C),\, 132.9,\, 139.1,\, 153.7,\, 163.5,\, 191.9.$ IR (neat, cm⁻¹): $\nu = 2968$ (m), 2925 (s), 2857 (m), 1730 (m), 1652 (s), 1573 (m), 1451 (s), 1377 (m), 1281 (m), 1242 (m), 1178 (m), 1117 (s), 1075 (w), 1017 (w), 937 (w), 899 (w), 753 (m), 700 (w). MS (EI, 70 eV): m/z (%) = 344 (M⁺ [81Br], 29), 342 $(M^{+})^{79}Br$, 30), 263 (17), 249 (40), 135 (90), 221 (159), 205 (10), 178 (13), 160 (10), 148 (100), 131 (12), 105 (44), 77 (32). HRMS (ESI): calcd for $C_{18}H_{15}BrO_2$ [M⁺]: 344.02349 (^{81}Br), 342.02554 (79Br); found: 344.02303 (81Br), 342.02576 (79Br).

Methyl 2-(3'-Bromo-4'-chlorobutyl)benzofuran-3-car**boxylate (8g).** Starting with 7g (0.050 g, 0.17 mmol) and BBr₃ (0.171 g, 0.67 mmol) in CH₂Cl₂ (3 mL), 8g was isolated after chromatography (silica gel, *n*-hexane/EtOAc = $100:1 \rightarrow 10:1$) as a slightly yellowish oil (0.047 g, 80%). 1H NMR (CDCl₃, 300 MHz): δ 2.21–2.34 (m, 1H, CH₂), 2.57–2.69 (m, 1H, CH₂), 3.31-3.42 (m, 1H, CH₂), 3.44-3.54 (m, 1H, CH₂), 3.80 (dd, $J = 11.4, 8.4 \text{ Hz}, 1\text{H}, \text{CH}_2-\text{Cl}), 3.97 \text{ (dd}, J = 11.4, 4.8 \text{ Hz}, 1\text{H},$ CH₂-Cl), 3.97 (s, 3H, OCH₃), 4.14-4.22 (m, 1H, CH-Br), 7.30-7.33 (m, 2H, 2 \times CH of Ar), 7.44-7.48 (m, 1H, CH of Ar), 7.96-7.99 (m, 1H, CH of Ar). ¹³C NMR (CDCl₃, 75 MHz): δ 26.0, 33.5, 48.0, 51.6, 51.9, 109.4, 111.0, 122.0, 124.0, 124.7, 125.9, 153.9, 164.6, 164.8. IR (neat, cm⁻¹): $\nu = 2952$ (w), 2926 (w), 1714 (s), 1594 (m), 1446 (m), 1383 (w), 1285 (w), 1237 (s), 1176 (m), 1106 (w), 1070 (s), 794 (w), 751 (m). MS (EI, 70 eV): m/z (%) = 348 (M⁺ [81Br³⁷Cl], 6), 346 (M⁺ [81Br³⁵Cl], 34), 344 $(M^{+}$ [79Br35Cl], 24), 314 (2), 229 (18), 203 (24), 189 (100), 169 (13), 159 (22), 131 (12), 114 (8). HRMS (ESI): calcd for $C_{14}H_{14}BrClO_3$ [M⁺]: 345.97944 (81Br), 343.98148 (79Br); found: 345.96002 (81Br), 343.98353 (79Br).

Methyl 2-[3'-Bromo-1'-(2"-hydroxyphenyl)propyl]benzofuran-3-carboxylate (8h). Starting with 7h (0.030 g, 0.085 mmol) and BBr₃ (0.129 g, 0.51 mmol) in CH₂Cl₂ (9 mL), 8h was isolated after chromatography (silica gel, n-hexane/ EtOAc = $100:1 \rightarrow 4:1$) as a colorless oil (0.019 g, 58%). ¹H NMR $(CDCl_3, 300 \text{ MHz}): \delta 2.68-2.81 \text{ (m, 1H, CH}_2), 2.84-2.95 \text{ (m, }$ $1H,\,CH_2),\,3.25-3.41\,(m,\,2H,\,CH_2-Br),\,4.06\,(s,\,3H,\,OCH_3),\,5.53$ (t, J = 7.6 Hz, 1H, CH), 6.91-6.97 (m, 2H, $2 \times$ CH), 7.13-6.97 $7.19 \text{ (m, 1H, CH)}, 7.29-7.35 \text{ (m, 2H, 2 \times CH)}, 7.45-7.50 \text{ (m, }$ 2H, 2 \times CH), 7.86–7.89 (m, 1H, CH), 7.91 (s, 1H, OH). $^{13}\mathrm{C}$ NMR (CDCl $_3$, 75 MHz): δ 30.6, 35.0, 35.3, 52.5, 111.3, 117.9, 120.9, 121.1, 122.1, 124.3, 124.5, 124.8, 125.2, 127.7, 128.8, 153.9, 154.5, 165.5, 167.1. IR (neat, cm⁻¹): $\nu = 3354$ (br), 2974 (m), 2956 (m), 2928 (m), 2858 (w), 1738 (w), 1712 (s), 1688 (s), 1588 (m), 1482 (m), 1454 (s), 1368 (m), 1288 (m), 1239 (s), 1174 (s), 1154 (m), 1108 (s), 1069 (s), 1020 (m), 984 (w), 793 (w), 754 (s). MS (EI, 70 eV): m/z (%) = 390 (M⁺ [81Br], 18), 388 $(M^{+} [^{79}Br], 19), 356 (17), 329 (5), 281 (44), 263 (11), 249 (100),$ 221 (65), 205 (5), 134 (25), 107 (13). The exact molecular mass $m/z = 388.0310 \pm 2$ ppm [M⁺] for $C_{19}H_{17}BrO_4$ was confirmed by HRMS (EI, 70 eV).

General Procedure for the Synthesis of 9 by Reaction of 2-Alkylidenetetrahydrofurans with Borontribromide. To a CH₂Cl₂-solution (10 mL/mmol) of the 2-alkylidenetetrahydrofuran (7) (1 equiv) was added BBr₃ (4 equiv) at 0 °C. The reaction mixture was allowed to warm to 20 °C over 12 h and was stirred for 12 h at 20 °C. The reaction mixture was then poured into an aqueous solution of KOtBu (1 M, 10 mL/ mmol). The mixture was stirred for 1 h and later extracted with CH₂Cl₂ (3 × 30 mL/mmol). The combined organic extracts were dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, n-hexane/EtOAc) to give **9**.

3-(Dihydro-furan-2(3H)-ylidene)-3H-benzofuran-2one (9a). Starting with 7a (0.070 g, 0.282 mmol) and BBr₃ (0.283 g, 1.13 mmol) in CH_2Cl_2 (3 mL), **E-9a** and **Z-9a** were isolated after chromatography (silica gel, n-hexane/EtOAc = $50:1 \rightarrow 1:1$) as yellowish solids (0.031 g, 54%; 0.020 g, 35%).

E-9a. mp = 170 °C. ¹H NMR (CDCl₃, 300 MHz): δ 2.28 (quint, J = 7.5 Hz, 2H, CH₂), 3.37 (t, J = 7.8 Hz, 2H, CH₂), 4.62 (t, J = 7.2 Hz, 2H, OCH_2), 7.06-7.21 (m, 3H, $3 \times CH$ of Ar), 7.60 (dd, J = 7.2, 1.2 Hz, 1H, CH of Ar). ¹³C NMR (CDCl₃, 75 MHz): δ 23.5, 31.4, 75.0, 95.9, 110.0, 122.0, 123.5, 124.1, 126.7, 151.0, 169.8, 175.2. IR (KBr, cm⁻¹): $\nu = 2911$ (w), 1750 (s), 1652 (s), 1611 (w), 1589 (w), 1479 (w), 1459 (m), 1420 (w), 1392 (m), 1247 (s), 1220 (m), 1166 (m), 1032 (m), 977 (s), 939 (m), 866 (m), 780 (m), 751 (m). MS (EI, 70 eV): m/z (%) = 202 $(M^+, 100), 159 (10)$. The exact molecular mass m/z = 202.0630 \pm 2 ppm [M⁺] for $C_{12}H_{10}O_3$ was confirmed by HRMS (EI, 70 eV).

Z-9a. mp = 106 °C. ¹H NMR (CDCl₃, 300 MHz): δ 2.34 (quint, J = 7.5 Hz, 2H, CH₂), 3.19 (t, J = 7.8 Hz, 2H, CH₂), $4.68 \text{ (t, } J = 7.2 \text{ Hz, } 2H, \text{ OCH}_2), 7.06-7.25 \text{ (m, } 4H, \text{ } 4\times\text{ CH of } 1.00 \text{ } 1.00 \text$ Ar). ¹³C NMR (CDCl₃, 75 MHz): δ 23.1, 32.4, 75.3, 95.9, 110.6, 119.6, 123.4, 124.7, 126.5, 151.3, 165.9, 172.9. IR (KBr, cm⁻¹): $\nu = 2958 \text{ (w)}, 2928 \text{ (w)}, 2855 \text{ (w)}, 1814 \text{ (w)}, 1760 \text{ (s)}, 1638 \text{ (s)},$ 1457 (s), 1422 (w), 1392 (w), 1349 (w), 1308 (w), 1288 (w), 1245 (s), 1221 (m), 1192 (m), 1158 (w), 1133 (s), 1084 (s), 1028 (s), 997 (m), 976 (w), 924 (s), 868 (w), 776 (m), 750 (s). MS (EI, 70 eV): m/z (%) = 202 (M⁺, 87), 159 (100). The exact molecular mass $\textit{m/z} = 202.0630 \pm 2 \text{ ppm [M^+]}$ for $C_{12}H_{10}O_3$ was confirmed by HRMS (EI, 70 eV).

3-(5-Chloromethyl-dihydro-furan-2(3H)-ylidene)-3H**benzofuran-2-one (9b).** Starting with 7g (0.050 g, 0.17 mmol)

and BBr₃ (0.171 g, 0.67 mmol) in CH₂Cl₂ (3 mL), *E-9b* and Z-9b were isolated after chromatography (silica gel, n-hexane/ EtOAc = $100:1 \rightarrow 1:1$) as yellowish solids (0.028 g, 65%; 0.013

E-9b. mp = 61 °C. ¹H NMR (CDCl₃, 300 MHz): δ 2.12-2.23 (m, 1H, CH₂), 2.39–2.52 (m, 1H, CH₂), 3.25–3.38 (m, 1H, CH_2), 3.52–3.60 (m, 1H, CH_2), 3.80 (d, J = 5.1 Hz, 1H, CH_2 -Cl), 3.84 (d, J = 5.1 Hz, 1H, CH₂-Cl), 5.02-5.08 (m, 1H, OCH), 7.07-7.21 (m, 3H, 3 × CH of Ar), 7.61 (dd, J = 7.5, 1.2 Hz, 1H, CH of Ar). $^{13}\mathrm{C}$ NMR (CDCl_3, 75 MHz): δ 26.1, 31.0, 45.3, 85.2, 96.3, 109.8, 122.0, 123.4, 126.8, 126.8, 150.8, 169.4, 173.3. IR (KBr, cm⁻¹): $\nu = 2976$ (s), 2932 (w), 2866 (m), 1758 (s), 1746 (s), 1655 (s), 1612 (w), 1455 (s), 1378 (m), 1360 (m), 1296 (w), 1242 (s), 1206 (s), 1151 (s), 1118 (s), 1076 (m), 1015 (s), 964 (s), 933 (w), 874 (w), 832 (w), 752 (s). MS (EI, 70 eV): m/z $(\%) = 252 \text{ (M}^+ [37Cl], 20), 250 \text{ (M}^+ [35Cl], 73), 215 (20), 187 (8),$ 160 (100), 104 (25), 85 (76), 76 (26). HRMS (ESI): calcd for C₁₃H₁₁ClO₃ [M⁺]: 252.03672 (³⁷Cl), 250.03967 (³⁵Cl); found: $252.03800\ (^{37}{\rm Cl}),\ 250.03903\ (^{35}{\rm Cl}).$

Z-9b. ¹H NMR (CDCl₃, 300 MHz): δ 2.34–2.39 (m, 1H, CH_2), 2.45-2.58 (m, 1H, CH_2), 3.14-3.39 (m, 2H, CH_2), 3.86 $(d, J = 0.9 \text{ Hz}, 1H, CH_2-Cl), 3.87 (d, J = 1.8 \text{ Hz}, 1H, CH_2-Cl)$ Cl), 5.13-5.19 (m, 1H, OCH), 7.08-7.23 (m, 4H, 4 × CH of Ar). ¹³C NMR (CDCl₃, 75 MHz): δ 25.5, 31.0, 45.6, 85.1, 95.9, 110.5, 119.6, 123.3, 124.2, 126.6, 151.2, 167.3, 171.6. IR (KBr, cm⁻¹): $\nu = 2927$ (w), 1756 (s), 1644 (s), 1459 (w), 1243 (m), 1140 (m), 1086 (m), 1014 (m), 938 (w), 777 (w), 747 (m). MS (EI, 70 eV): m/z (%) = 252 (M⁺ [³⁷Cl], 2), 250 (M⁺ [³⁵Cl], 12), 215 (12), 187 (7), 160 (100), 104 (35), 85 (86), 76 (24). HRMS (ESI): calcd for C₁₃H₁₁ClO₃ [M⁺]: 252.03672 (³⁷Cl), 250.03967 (35Cl); found: 252.03800 (37Cl), 250.03903 (35Cl).

Acknowledgment. Financial support from the DAAD (scholarship for E.B.), from the BASF AG, and from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Supporting Information Available: Experimental procedures, spectroscopic data, and copies of NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

JO051079Z