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The  hydrothiolation of alkenes is a long known synthetically 
useful transformation,1 described as the thiol-ene click ( TEC) 

reaction by Schlaad.
2
 The reaction has emerged as a powerful 

tool for the construction of carbon-sulfur bonds in natural 

products, pharmaceuticals,
3
 polymers and organic materials

4
 as 

well as sulfur-containing ligands and chiral auxillaries.5 The 

radical TEC reaction
6
 is one of the most common methods for 

effecting the synthesis of thioethers involving the anti-

Markovnikov radical addition of thiols to alkenes (Scheme 1).
7
 

Particularly, this reaction is of significant importance in 
materials and biological sciences owing to its high efficiency 

and compatibility with a variety of  functional groups.
8
 

 Over the past several years, the application of visible light 

photoredox catalysis for the convenient generation of free 
radicals has stimulated their targeted use in organic synthesis. 

Basically, the success of this strategy relies on the pioneering 
work  of  the  research  groups  of  McMillan,

9
 Yoon,

10
 and 

Stephenson,
11

 who have used ruthenium and iridium transition 
metal complexes as efficient photoredox catalysts. Recently, 

Yoon and  co-workers
12

  have reported novel applications of 
visible light photoredox catalysis in  radical  thiol-ene  reactions  

employing  the  ruthenium complex Ru(bpz)3(PF6) (Scheme 1a).        

Stephenson and co-workers
13

 have also reported radical thiol-

ene reactions under visible light irradiation (blue LEDs) using 
ruthenium complex Ru(bpy)3Cl2 as the photoredox catalyst 

(Scheme 1a). However, the use of transition metal complexes as 

photoredox catalysts is disadvantageous because of high cost, 

potential toxicity and problematic removal of their undesired 
traces from products. In requisite of metal-free, cost effective,  

operationally  simple  and  ecofriendly  catalysts, some organic    

dyes,
14

 diarylketones
15

 and N-hydroxyphthalimide
16

 have shown  

enough promise  for high  photocatalytic  performance. It is 
known that after photoexcitation with visible light,     

diarylketones  selectively  abstract  a  hydrogen   atom  attached  

to a heteroatom.
15

 Based on earlier reports
15

 on successful use of 
benzophenone as a photocatalyst, it was chosen as a catalyst in 

the present study. Movassagh and Navidi have reported water 
promoted catalyst-free anti-Markovnikov addition of thiols to 

styrenes but the method is not applicable to aliphatic thiols and 
nonstyrenic alkenes.17 

  In view of the above points and our continued efforts       

focused on visible light mediated synthetic routes,
14b,18

 we     

hypothesized  that  photoexcited  benzophenone could  bring 

about  a metal- and oxidant-free radical thiol-ene reaction under  
visible light  irradiation ( Scheme 1b).   
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Scheme 1. Visible light mediated radical thiol-ene reactions.  
 

    In order to realize our hypothesis and optimize the reaction     

conditions, a model reaction of styrene (1a) with thiophenol 

(2a) was performed using catalytic amount of benzophenone in 
a solvent under nitrogen and  irradiation with a household 18 W 

compact fluorescent lamp (18 W CFL) (Table 1). We were 
delighted to get the desired product (3a) in 87% yield (Table 1, 

entry 1). Then, the control experiments were carried out, which 
show that benzophenone and visible light are essential for the 

reaction because in the absence of any of the reagents/reaction 
parameters the product was not detected  (Table 1, entry 1  
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versus 6 and 7).The optimum amount of the photocatalyst 

benzophenone required for the reaction was 10 mol%. On 

decreasing the amount of benzophenone from 10 mol% to 5 
mol% the yield was considerably reduced (Table 1, entry 1 

versus 4),   whereas the yield was not enhanced even on use of 
15 mol%   of   benzophenone (Table 1, entry 1 versus 5). The 

use of other organic catalyst was not so effective as 
benzophenone (Table 1, entry 1, versus 2 and 3). 

Table1  

Optimization of reaction conditions
a
 

 

Ph Ph

O

(10 mol% ) , CH3CN
PhSH

S
Ph

visible light, rt, N
2
, 12-24 h

1a 2a 3a

 

aReaction conditions: 1a (1.0 mmol), thiophenol (1.0 mmol), catalyst 

(mol%), in 3 mL solvent irradiated with a household 18 W compact 

fluorescent lamp Philips (18 W CFL) under nitrogen atmosphere at rt for 
12-24 h. bIsolated yield of the pure product 3a. cReaction was performed in 

the dark, n.d. = not detected. dReaction was carried out without catalyst. 
eReaction was quenched with 2,2,6,6-tetramethylpiperidyl-1-oxyl (TEMPO) 

(2 equiv).                                  
  

Moreover, the reaction was quenched with traditional radical 

seavenger 2,2,6,6-tetramethylpiperidyl-1-oxyl (TEMPO) (2 
equiv) indicating that the reaction might follow a radical 

pathway (Table 1, entry 6). 

Next, the reaction was optimized for an effective solvent 

system. It was found that CH3CN was the best among the tested 
solvents EtOH, DMF, DMSO and CH3CN (Table 1, entry 1 

versus 9-11) hence it was used throughout the present study.  

    Under the established reaction conditions, we surveyed the 

generality and scope of the present thiol-ene reaction across a 
range of olefins 1 and thiophenols 2 incorporating various 

substituents like Me, MeO, NO2, Cl, and Br. The reaction 
worked well in all the cases and afforded sulfides 3 in good to 

excellent yields and high purity.  Styrenes and thiophenols with 

an electron-donating group on the aromatic ring appear to react 

faster and afford marginally higher yields in comparison to 
those bearing an electron-withdrawing group (Table 2, products 

3b and 3c versus 3d, 3f and 3i).This is probably because an 

electron-donating group stabilizes the electron-deficient 

benzylic and thiyl radical intermediates C and D involved in the 
reaction (Scheme 2). The protocol was also applicable to 

aliphatic alkenes and thiols to give satisfactory results (Table 2, 

3e, 3h, 3k, and 3o). However, in this case the yield was slightly 

lower as compared to styrenes and thiolphenols. 

     Table 2 

     Substrate scope for the radical thiol-ene reaction 

1 2 3a-3ob

( 75-94% )c

Ph Ph

O

R1SH

visible light, rt, N2, 12-18 h

R2 R1S
R2

(10 mol%), CH3CN

 

S

CH3O

3d, 14 h , 84% 3e, 12 h , 85% 3f, 16 h , 79%

S

OCH3Ph

S

3j, 18 h , 84% 3k, 14 h , 83% 3l, 14 h , 76%

CH3

Ph

S

3a, 12 h , 87% 3b, 12 h , 90% 3c, 12 h , 94%

3g, 12 h , 92% 3h, 16 h , 78% 3i, 14 h , 81%

3m , 14 h , 82% 3n, 14 h , 81% 3o, 16 h , 75%

n-Hex
S Ph

S Ph

Br

Ph
S Ph

Me

S Ph

S Ph

Ph
S

CH3

Ph
S

Ph

S

NO2

Ph

S

Cl

Ph

S

Br

Ph
S

 

a 
For experimental procedure, see ref. 19.

 

b All compounds are known and were characterized by comparison of their 

spectral data with those reported in the literature.12b,20 
c Yields of isolated pure compounds 3. 

     

On  the  basis  of  our  observations  and  the  literature  
reports,

12,15a
  a  plausible mechanistic pathway is depicted in 

Scheme 2. As already reported,
15a

 on irradiation with visible 
light, benzophenone is photoexcited to A, which abstracts a 

hydrogen radical from thiol 2 to generate the thiyl radical C and 
the ketyl radical B in the present case. The thiyl radical C adds 

to olefin 1 to form a radical intermediate D, which abstracts a 
hydrogen radical from the ketyl radical B to complete the 

photocatalytic cycle  of  benzophenone and afford the final 
product 3. The excitation of benzophenone by the visible light 

was ensured by using a 400 nm long-pass filter.
15a
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  Scheme 2. Plausible mechanism for anti-Markovnikov thiol-ene reaction.   

Entry  Catalyst (mol %)                Solvent       Time (h) Yield (%)b 

1        

2 

3 

4 

5 

6 

7 

8 

9 

10     

11 

  Benzophenone (10%)               CH3CN 

  Acetone (10%)                         CH3CN 

 Acetophenone   (10%)               CH3CN 

 Benzophenone   (5 %)               CH3CN 

 Benzophenone   (15 %)             CH3CN 

 Benzophenone   (10 %)             CH3CN        

          -                                        CH3CN 

  Benzophenone (10%)               CH3CN 

 Benzophenone (10% )                EtOH 

 Benzopnenone (10%)                 DMF                   

 Benzophenone (10%)                 DMSO                        

   12 

   12 

   12 

   12 

   12 

   24 

   24 

   24 

   12 

   12                   

   12 

 87 

 67 

 62 

 58 

 87 

n.d.
c
 

n.d.d 

tracese 

 53  

 71 

 76 
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    In conclusion, we have developed a convenient and highly     

regioselective synthesis of sulfides from readily available and 

diversified olefins and thiols. The  present radical  thiol-ene    
reaction  utilizes  visible light  as  the  greenest  energy source 

and  benzophenone  as  an  inexpensive  organophotocatalyst to 
afford  sulfides  in  good  to excellent yields  and high purity at 

ambient temperature. The protocol is metal-and oxidant-free, 
operationally simple and compatible with a variety of functional 

groups in both the reaction partners. 
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• Metal- and oxidant-free one-pot 

protocol for the synthesis of thioethers. 

• Visible light-mediated radical thiol-ene 

click (TEC) reactions. 

• Utilization of benzophenone as a stable 

and inexpensive organophotoredox 

catalyst. 

• Highly regioselective efficient anti-

Markovnikov hydrothiolation of 

unactivated olefins. 

 
 


