A novel amino-benzosuberone derivative is a picomolar inhibitor of mammalian aminopeptidase N/CD13

Carmen Maiereanu ${ }^{\text {a }}$, Céline Schmitt ${ }^{\text {a }}$, Nadège Schifano-Faux ${ }^{\text {b }}$, Didier Le Nouën ${ }^{\text {a }}$, Albert Defoin ${ }^{\text {a,* }}$, Céline Tarnus ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Université de Haute Alsace, Laboratoire de Chimie Organique et Bioorganique, EA4466 ENSCMu, 3, rue Alfred Werner, F-68093, Mulhouse Cedex, France
${ }^{\mathrm{b}}$ Université de Lille 2, Laboratoire de Chimie Analytique, EA GRIIOT 4481 Faculté des Sciences Pharmaceutiques et Biologiques de Lille, 3, rue du Professeur Laguesse, B.P. 83. 59006 Lille cedex, France

ARTICLE INFO

Article history:

Received 21 March 2011
Revised 27 May 2011
Accepted 8 June 2011
Available online 19 July 2011

Keywords:

Aminobenzoheptenone
Aminopeptidase-N inhibitor
APN/CD13

Abstract

A new class of low molecular weight, highly potent and selective non peptidic inhibitors of aminopeptidase N (APN/CD13) is described. We report the synthesis and in vitro evaluation of racemic substituted analogues of 7-amino-benzocyclohepten-6-one 1a. We investigated various substitutions on the aromatic ring with phenyl and halogen groups. In vitro kinetic studies revealed that these compounds are among the most effective APN/CD13 inhibitors found so far. Hydrophobic substituents placed at position 1 or 4 on the cycloheptenone $\mathbf{1 a}$ led to the potent compounds $\mathbf{1 c} \mathbf{c} \mathbf{h}, \mathbf{b}^{\prime}-\mathbf{c}^{\prime}, \mathbf{f}^{\prime}, \mathbf{h}^{\prime}$ with K_{i} in the nanomolar range. The key finding of the present work was the observed additive effect of 1,4-disubstitutions which led to the discovery of the picomolar inhibitor $\mathbf{1 d ^ { \prime }}\left(K_{\mathrm{i}}=60 \mathrm{pM}\right)$. The designed inhibitors retain the selectivity of our lead structure 1a towards selected members of the aminopeptidase family, combined with an impressive increase in inhibitory potency and a conserved stability.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

APN/CD13 is a membrane-bound, zinc-dependent homodimeric enzyme and a member of the M1 family of aminopeptidases. ${ }^{1}$ Like other members of this family, APN/CD13 possesses the consensus zinc binding motif (HEXXH-(X18)-E) in its extracellular domain, as well as the exopeptidase motif (GXMEN) for binding the free primary amino group of the N -terminal residue of its peptidic substrates. APN/CD13 removes the N-terminal amino acid from unsubstituted oligopeptides, amides or arylamides, with a broad substrate specificity, ${ }^{1}$ although a significant preference for hydrophobic residues is observed. ${ }^{1}$ This ectoenzyme appears to be a multifunctional protein involved in the regulation of signalling peptides as well as in various cell activation and migration processes. ${ }^{2}$ APN/CD13 is emerging as a target of significant biological and medical importance. Indeed, several studies with bestatin, ${ }^{3}$ active site-directed anti-APN mAb, ${ }^{4}$ siRNA ${ }^{5}$ and KO mice, ${ }^{6}$ indicate that APN/CD13 is an active player in angiogenesis and tumor metastasis. In addition, overexpression of APN/CD13 has been found to correlate with immunological abnormalities such as chronic inflammatory diseases ${ }^{7}$ and autoimmune pathologies, ${ }^{8}$ suggesting a role of APN/CD13 in T cell function and activation. However, while a wealth of in vitro data have already been gathered, in vivo data on APN/CD13 blockade remain very scarce. Fur-

[^0]thermore, the exact role played by APN/CD13 in the pathologies mentioned above, as well as the cellular pathways involved, remain to be elucidated. To this end, a small molecular weight, drug-like, selective inhibitor of APN/CD13 would be of immense value for dissecting the biological and pathophysiological roles of this multifunctional enzyme that depend solely on its catalytic activity.

In the recent years, several classes of APN/CD13 inhibitors have been reported, including in particular hydroxamic, phosphoric, sulfonic and boronic acids. Recent reviews provide an excellent compendium of the currently available set of APN/CD13 inhibitors. ${ }^{9,10}$ While many of these compounds display high in vitro potency, their selectivity is, regrettably, not always well documented.

We have recently reported the discovery of 7-amino-benzocy-cloheptan-6-one 1a as a novel lead structure for selective APN/ CD13 inhibition (Scheme 1). ${ }^{11}$ This new chemotype displays an excellent ligand efficiency ($\mathrm{LE}=0.63$, according to the definition by Hopkins et al. ${ }^{12}$) and, therefore, represents a promising starting point for further chemical elaboration. Taking into account the preference of APN/CD13 for hydrophobic N-terminal amino acid residues, ${ }^{1}$ we designed hydrophobic analogues of our lead compound $\mathbf{1 a}$. We first investigated the extension of the aromatic system. This strategy led to the identification of the submicromolar inhibitors $\mathbf{1 h}$ and $\mathbf{1 h}$. We then explored substitutions of cycle A in position 1 and/or 4, and discovered compounds $\mathbf{1 f}$ and $\mathbf{1 e}$ with K_{i} values in the single-digit nanomolar range. When both positions were optimally substituted, an additive effect was obtained, leading to the picomolar inhibitor $\mathbf{1 d}^{\prime}$.

1a

1h

1h'

1b $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Cl}$
$b^{\prime} \mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{4}=\mathrm{H}$
c $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Br}$
$c^{\prime} \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{4}=\mathrm{H}$
d $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{4}=\mathrm{Br}$
$d^{\prime} \mathrm{R}^{1}=\mathrm{Br} \mathrm{R}^{4}=\mathrm{Ph}$
e $\mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{4}=\mathrm{Br}$
f $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Ph}$
$\mathbf{f}^{\prime} \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{4}=\mathrm{H}$
g $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{4}=\mathrm{Ph}$

Scheme 1. Chemical structures of the novel APN/CD13 inhibitors.
Hereafter, we describe the synthesis of these novel amino-benzosuberone analogues and report their inhibitory activities against a panel of representative metallo-aminopeptidases from the M1 and M17 families, ${ }^{13,14}$ including porcine kidney aminopeptidase N/CD13 (EC 3.4.11.2), bovine kidney leucine aminopeptidase (EC 3.4.11.1), Aeromonas proteolytica aminopeptidase (EC 3.4.11.10) and the aminopeptidase activity of human leukotriene A4 hydrolase (EC 3.3.2.6). Our data show that the amino-benzocycloheptanone (amino-benzosuberone) derivative $\mathbf{1 d}^{\prime}$ is the most potent inhibitor of mammalian APN/CD13 known to date ($K_{\mathrm{i}}=60 \mathrm{pM}$), and that it has a very high selectivity towards the M1 subfamily of one-zinc aminopeptidases, as opposed to the M17 subfamily which requires co-catalytic metal ions for activity.

2. Chemistry

2.1. Preparation of the key intermediate ketones $\mathbf{8 b}-\mathbf{e}, \mathrm{h}$

We followed the reaction scheme already described for the benzocycloheptenone $\mathbf{1 a}{ }^{11}$ from the α, α^{\prime}-dibromo derivative of the o-xylene $2 \mathbf{2 a}$. In the present work, we used the corresponding commercial o-xylene derivatives $\mathbf{2 b}, \mathbf{c}, \mathrm{h}$ or known dibromo one $\mathbf{2} \mathbf{e}^{15}$ as starting material. The bromodimethylbiphenyl $2 d$ was prepared according to the litterature ${ }^{16}$ (scheme 2) by coupling the phenylboronic acid with the diazonium salt 4. This salt was easily obtained from the 2,3-dimethylaniline 3a in ca. 50% overall yield, by bromination with an ammonium tribromide according to ${ }^{17}$ and diazotation.

The general reaction scheme for the synthesis of the ketone intermediates is depicted in Scheme 3. A photochemical bis-bromination of the xylenes $\mathbf{2 b}-\mathbf{e}, \mathbf{h}$ with two equivalents of N -bromosuccinimide

2a $X=H$
b $\mathrm{X}=\mathrm{Cl}$
c $\mathrm{X}=\mathrm{Br}$

2d

2 e

$\mathrm{PhB}(\mathrm{OH})_{2}$ $\mathrm{Pd}(\mathrm{OAc})_{2}$ $\xrightarrow[78 \%]{\mathrm{MeOH}, 65^{\circ} \mathrm{C}} \quad 2 \mathrm{~d}$
$\mathrm{NBu}_{4} \mathrm{Br}_{3}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad$ 3a $\mathrm{X}=\mathrm{H}$ $0^{\circ} \mathrm{C}, 77 \%$

2h

Scheme 2. Starting o-xylene derivatives and synthesis of the 4 -bromo-2,3dimethylbiphenyl 2d.

Scheme 3. Common synthesis of the intermediate ketones $\mathbf{8 b} \mathbf{b}, \mathbf{h}$.
(NBS) gave quantitatively the known α, α^{\prime}-dibromoxylenes $\mathbf{5 b}-\mathbf{c}, \mathbf{e}, \mathbf{h}$ and the new 5d. They were cyclised with the dimethyl acetonedicarboxylate $\mathbf{6}$ into the benzocycloheptanonediesters $\mathbf{7 b}-\mathbf{e}, \mathbf{h}$ as $50 /$ 50 diastereoisomeric cis-trans mixture. Without purification, an acidic or basic hydrolysis/decarboxylation provided easily the substituted benzocyclohepten-7-ones $\mathbf{8 b} \mathbf{- e , h}$ in good overall yield ($60-83 \%$) from the starting 0 -xylenes $\mathbf{2 b} \mathbf{b} \mathbf{e}, \mathbf{h}$.

2.2. 1,4 Symmetrically-disubstituted series

The commonly used reaction pathway is described in Scheme 4. These reactions led to a desymmetrisation of the molecules, except for the symmetric dibromo derivative $\mathbf{8 e}$. In this particular case, we used the pathway described previously for the non substituted ${ }^{11}$ series. The O-silylation reaction of the ketone $\mathbf{8 e}$ into the enol ether 9e was better performed with TfOSiMe $/ \mathrm{NEt}_{3}{ }^{18}$ than with DBU/ $\mathrm{ClSiMe} 3 .{ }^{19}$ The enol ether $\mathbf{9 e}$ was then oxidised with a peracid ${ }^{20}$ into the silyloxyketone 10e. This intermediate was not purified and directly reductively aminated ${ }^{21}$ into the amido-alcohol 11e as a cis/trans mixture after N -protection, in poor yield (15\%) in this case. Finally the isomeric mixture of alcohol derivatives 11e was oxidised with Dess-Martin periodinane ${ }^{22}$ into the amido-ketone 12e. Acidic deprotection with dry HCl in $\mathrm{Et}_{2} \mathrm{O}$ /dioxane gave the aminoketone 2 e as stable hydrochloride in 50% yield from 11e and in 7% overall yield from the ketone $\mathbf{8 e}$.

2.3. 1,4 Asymmetrically-disubstituted series

In the case of the asymmetric ketones $\mathbf{8 b} \mathbf{b} \mathbf{d}, \mathbf{h}$, two methods were employed. The reaction described in Scheme 3 led to the formation of a regioisomeric mixture of the intermediate enol ethers and silyl-oxy-ketones of type $\mathbf{9}$ and $\mathbf{1 0}$ respectively, in good yield from the ketones $\mathbf{8 b} \mathbf{- d , h}(85-96 \%)$. The reductive amination which follows, converted the silyloxy-ketones into the regioisomeric pair of cistrans isomeric mixtures of hydroxy-amides $\mathbf{1 1 b} \mathbf{b}, \mathbf{h} / \mathbf{1 1 b ^ { \prime }} \mathbf{- \mathbf { d } ^ { \prime } , \mathbf { h } ^ { \prime }}$. These intermediates were obtained with variable yields, depending on the corresponding ketones. The monohalogeno-derivatives $\mathbf{1 1 b}, \mathbf{b}^{\prime}$ and $\mathbf{1 1 \mathbf { c } , \mathbf { c } ^ { \prime }}$ were obtained in good yields (66% and 58%) starting from $\mathbf{8 b}$ and $\mathbf{8 c}$, respectively. The reaction was less efficient for the bromo-phenyl and benzo-derivatives 11d, \mathbf{d}^{\prime} and $\mathbf{1 1 h}, \mathbf{h}^{\prime}$, obtained in 29% and 37% yield from $\mathbf{8 d}$ and $\mathbf{8 h}$, respectively. The separation of the four isomers by classic flash-chromatography or by semi-preparative HPLC was fastidious. The isomeric chloro- and bromo- hydroxy-amides $\mathbf{1 1 b} / \mathbf{1 1} \mathbf{b}^{\prime}$ and $\mathbf{1 1 c} / \mathbf{1 1 \mathbf { c } ^ { \prime }}$ could hardly be purified in this way. In this series, the 1-chloro-derivative 11b' was the only compound which was obtained pure as a cis-trans mixture. The four isomers of the bromo-derivatives $\mathbf{1 1} \mathbf{c} / \mathbf{1 1} \mathbf{c}^{\prime}$ cis-trans could be separated by semi-preparative HPLC and the $\mathbf{1 1 h} / \mathbf{1 1} \mathbf{h}^{\prime}$ cis-trans by flash-chromatography. The mixture of phenyl-bromo isomers $\mathbf{1 1 d} / \mathbf{1 1 d} d^{\prime}$ was not resolved at this stage of the synthesis. The next step led to intermediates which were easier to isolate.

Scheme 4. Synthetic pathway for 1,4 mono- or disubstituted analogues. Reagents and conditions: (a) $\mathrm{Me}_{3} \mathrm{SiOTf}^{2} \mathrm{NEt}_{3}$, toluene, $80-85^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) $\mathrm{m}-\mathrm{CPBA}, \mathrm{CH} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (c) $\mathrm{Ti}(\mathrm{OiPr})_{4}, 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH}, 6 \mathrm{~h}$, then $\mathrm{NaBH}_{4}, 2 \mathrm{~h}$; (d) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 2 \mathrm{~h}$; (e) $\mathrm{NH}_{2} \mathrm{OH}$, pyridine, 68% for 11c, $\mathbf{c}^{\prime}, 73 \%$ for 11d,d'; (f) H_{2}, Raney-nickel, concd $\mathrm{NH}_{4} \mathrm{OH}(85-$ 98%, see text); (g) chromatographic separation (see text), then DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (h) dry HCl 2 M in $\mathrm{Et}_{2} \mathrm{O}$, dioxane.

A second synthetic route was considered for the monobromo and bromo-phenyl series. It started from the oxime mixtures 13c, \mathbf{c}^{\prime} and 13d, \mathbf{d}^{\prime}, obtained from the corresponding silyloxy-ketones $\mathbf{1 0 c}, \mathbf{c}^{\prime}$ and $10 d, \mathbf{d}^{\prime}$ by classical means. The reduction of the oxime function in amine by hydrogenolysis over Raney-nickel in the presence of ammonia and the following N -protection led to the same hydroxy-amide isomeric mixtures as described in our previous method. In this case, the diastereoisomeric monobromooximes $\mathbf{1 3} \mathbf{c}$ and $\mathbf{1 3} \mathbf{c}^{\prime}$ could be easily separated by both fractional crystallisation and flash chromatography, in reasonable yield of $33-35 \%$ for each isomer, and their reduction occurred with good yield (85% for $\mathbf{1 3} \mathbf{c}$, 98% for $\mathbf{1 3 c}^{\prime}$). By contrast, the phenyl-bromooxime mixture 13d, \mathbf{d}^{\prime} was not resolved, but the global yield of the final hydroxy-amide mixture 11d/11d ${ }^{\prime}$ from the ketone $\mathbf{8 d}$ was greatly improved (57% vs 29%).

Then, the oxidation of these various hydroxy-amides by the Dess-Martin periodinane as before, led to the corresponding keto-amide 12b',c,c$, \mathbf{\prime}, \mathbf{h}, \mathbf{h}^{\prime}$. The isomeric mixture $\mathbf{1 1 d} / \mathbf{1 1 d} \mathbf{d}^{\prime}$ was oxidised in 55% yield into the ketone mixture which could then be resolved by semi-preparative HPLC into the pure isomers 12d and $\mathbf{1 2 d}{ }^{\prime}$, in 17% and 38% yield, respectively.

All ketoamides 12c,d,h, $\mathbf{b}^{\prime}-\mathbf{d}^{\prime}, \mathbf{h}^{\prime}$ were deprotected with dry HCl in $\mathrm{Et}_{2} \mathrm{O}$ /dioxane into the corresponding crystallised amines of type 1, in good yield (77-95\%).

2.4. Synthesis of the mono- and di-phenyl keto-amines $\mathbf{1 f , f ^ { \prime }}, \mathrm{g}$

These compounds were obtained directly from the bromo-ketoamides 12c, $\mathbf{c}^{\prime}, \mathbf{e}$ in two chemical steps according to Scheme 5. The Suzuki coupling reaction, performed with the monobromo derivatives 12c, \mathbf{c}^{\prime} using the phenylboronic acid in dimethoxyethane (DME) as the solvent and cesium fluoride as the base gave the mono-phenyl compounds 12f,f' in good yield (ca. 80\%). The 1,4-diphenyl derivative $\mathbf{1 2 g}$ was obtained by two different routes with similar results. The coupling of the phenyl-bromoamide 12d under the conditions described above, using aqueous potassium carbonate as the base and conventional reflux heating, gave $\mathbf{1 2 g}$ in excellent yield. The second route started from the dibromo-amide 12e; a double coupling under microwave irradiation gave $\mathbf{1 2 g}$ in good yield.

After our standard acidic deprotection step, the final ketoamines $\mathbf{1 f}, \mathbf{f}^{\prime}, \mathbf{g}$ were obtained in ca. 75% yield from 12c, $\mathbf{c}^{\prime}, \mathbf{e}$, respectively.

2.5. Stereostructure and conformation of the hydroxy-amides 11b-d,e,h,b, $\mathbf{b}^{\prime}-\mathbf{d}^{\prime}, \mathbf{h}^{\prime}$

The structure of the different isomers of the hydroxy-amides mentioned in Scheme 6 was easily determined by NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectra of the trans-isomers were well resolved

Scheme 5. Synthesis of the mono- and di-phenyl compounds $\mathbf{1 f f} \boldsymbol{f}$. .
at room temperature, so that all $\mathrm{H}-\mathrm{H}$ coupling could be precisely measured. No significant differences were observed with the various substituents: For all trans-isomers, the large value of the coupling between the five adjacent protons: one $\mathrm{H}-5$ and $\mathrm{H}-6$ (ca. $10 \mathrm{~Hz}), \mathrm{H}-6$ and $\mathrm{H}-7(8.6-10.8 \mathrm{~Hz}), \mathrm{H}-7$ and $\mathrm{Hb}-8(11.0-12.0 \mathrm{~Hz})$, $\mathrm{Hb}-8$ and one $\mathrm{H}-9(11-12 \mathrm{~Hz})$ corresponded to five axial protons in a chair conformation (see Fig. 1 for 11c and 11c'). These axial protons in the 5 and 9 positions were generally $\mathrm{Hb}-5$ and $\mathrm{Hb}-9$, but Ha-5 for 11b-trans and 11c-trans, and Ha-9 for 11b-trans and 11c-trans. In the naphtho series, for 11h-trans these five protons were respectively $\mathrm{Ha}-11, \mathrm{H}-10, \mathrm{H}-9, \mathrm{Hb}-8$ and $\mathrm{Ha}-7$, and for $\mathbf{1 1 h}^{\prime}-$ trans $\mathrm{Ha}-7, \mathrm{H}-8, \mathrm{H}-9, \mathrm{Hb}-10$ and $\mathrm{Hb}-11$.

The cis-isomer 11c' could be fully analysed at 330 K and the weaker values of $J(6,7)$ and $J(5 \mathrm{~b}, 6)$ (2.2 and 7.2 Hz respectively) were consistent for an equatorial $\mathrm{H}-6$ in a chair conformation. A trans-diaxial relation was likely observed between $\mathrm{H}-7$ and $\mathrm{Hb}-8$ and $\mathrm{Hb}-8$ and the axial $\mathrm{Hb}-9$. This chair conformation is identical to the one determined previously for the benzo-unsubstituted analogue of type $\mathbf{1 1}^{11}\left(R^{1}=R^{4}=H\right)$.

$1 b^{\prime} \mathrm{X}=\mathrm{Cl}$

11h'

Scheme 6. Structures of the hydroxy-amides selected for conformational analysis by NMR.

Figure 1. Conformation of the hydroxy-amides $\mathbf{1 1 c}, \mathbf{c}^{\prime}$ and ketone derivative $\mathbf{1}$.

Trans- and cis-isomers were easily characterised by the δ-values of the protons NH and $\mathrm{H}-6, \mathrm{H}-7$ (respectively $\mathrm{H}-10$ and $\mathrm{H}-9$ for $\mathbf{1 1 h}$, $\mathrm{H}-8$ and $\mathrm{H}-9$ for $\mathbf{1 1 h}^{\prime}$): these protons appeared nearly at $5.05,4.1$ and 3.8 ppm for the cis-isomers, at $4.5,3.35$ and 3.7 ppm for the trans-isomers, respectively.

The structural determination of the regioisomeric hydroxyamides $\mathbf{1 1 b} / 11 b^{\prime}, \mathbf{1 1 c} / \mathbf{1 1 c}^{\prime}, \mathbf{1 1 d} / \mathbf{1 1 d}^{\prime}, \mathbf{1 1 h} / \mathbf{1 1 h}^{\prime}$ was deduced from the spatial deshielding of the peri H -atom caused by the aromatic halogen atom (Cl or Br in position 4 or 1) in the three halogeno-series, or by the naphthalene ring in the last series (Fig. 1 and Scheme 5). The equatorial Ha-5 proton in the 4 -halogenated isomers 11b and 11c, or the equatorial one $\mathrm{Ha}-9$ in the 1 -halogenated regioisomers $\mathbf{1 1 b}^{\prime}$ and 11c', were spatially close to the halogen atom (see Fig. 1 for 11c and 11c') and thus strongly deshielded with ca. $0.7-0.9 \mathrm{ppm}$. The same effect was observed for the Ha11 proton in $\mathbf{1 1 h}$ and $\mathbf{1 1 h}$ in the naphtho series. These equatorial protons appeared at $3.5-3.8 \mathrm{ppm}$ while the corresponding axial ones $\mathrm{Hb}-5, \mathrm{Hb}-9$ or $\mathrm{Hb}-11$ appeared at $2.8-3.1 \mathrm{ppm}$. The phenyl group at position 1 or 4 in 11d, \mathbf{d}^{\prime} had only a weak effect on these protons.

2.6. Conformation of the amino-ketones of type 1

In contrast to the hydroxy-amides of type 11, whose regular chair conformation was supported by the numerous H-H transdiaxial relations, the amino-ketones of type $\mathbf{1}$ seemed to adopt a slightly altered chair conformation. Indeed, the coupling constants between the axial $\mathrm{H}-7$ and axial $\mathrm{Hb}-8$ (respectively $\mathrm{H}-9$ and $\mathrm{Hb}-8$ for $\mathbf{1 h}, \mathrm{H}-9$ and $\mathrm{Hb}-10$ for $\mathbf{1 h}^{\prime}$) remained large ($11-12 \mathrm{~Hz}$), but the coupling constants between $\mathrm{Hb}-8$ and the axial $\mathrm{H}-9$ (or the cor-
responding $\mathrm{Hb}-8$ and $\mathrm{Ha}-7$ protons for $\mathbf{1 h}, \mathrm{Hb}-10$ and $\mathrm{Hb}-11$ for $\mathbf{1 h}^{\prime}$) were weaker ($7.6-10.2 \mathrm{~Hz}$), as for the corresponding trans-alcohol-amides of type 11. The chair conformation was favoured by the hydrogen bond between the carbonyl and amine functions and its alteration was due to the steric hindrance between the 1 -substituent and the equatorial $\mathrm{H}-9$ and/or between the 4 -substituent and the equatorial $\mathrm{H}-5$ (or between the $\mathrm{H}-1$ and equatorial $\mathrm{H}-11$ protons for the naphthalenic derivatives $\mathbf{1 h}$ and $\mathbf{1 h} \mathbf{h}^{\prime}$) (see Fig. 1).

The conformation of the keto-amides of type $\mathbf{1 2}$ seemed to be more altered and was not studied here.

3. Aminopeptidase inhibition and discussion

All compounds, evaluated as racemic mixtures, behaved as competitive inhibitors of the panel aminopeptidases. The inhibition constants (K_{i}) are reported in Table 1. We have previously reported that the aminobenzosuberone scaffold 1a was stable in aqueous solutions at the physiological pH used for the kinetic studies. ${ }^{11}$ We have also proposed that the ketone function most probably binds in its hydrate form to the zinc ion and to the catalytic glutamic acid residue in the APN/CD13 active site, thus mimicking the transition state that forms during peptide bond hydrolysis. This binding mode would be in line with the excellent ligand efficiency (0.63) of this very small lead structure. ${ }^{11}$

In the present work, we investigated various substituents in position 1 and/or 4 of the benzo aromatic ring A of our lead structure 1a, in order to assess the effect of electrostatic and steric variations on binding and to determine the best match to the APN/CD13 active site. Since APN has a preference for hydrophobic substrates, ${ }^{1}$ we focused on phenyl and halogen groups with large van der Waals radii. Halogen atoms are known to influence structureactivity relationships far beyond the mere steric aspects ${ }^{23}$ and many impressive examples of the use of halogen substituents in hit-to-lead conversion have been reported in the recent years. ${ }^{24}$

Our data show that all derivatives of the lead structure 1a display sub-micromolar inhibition constants towards the 'one zinc' APN/CD13, with an improved selectivity against the 'two zinc' family of enzymes represented here by the mammalian and bacterial LAPc and APaero, respectively. No inhibitory activity was observed up to an inhibitor concentration of $100 \mu \mathrm{M}$ towards the aminopeptidase activity of human $\mathrm{LTA}_{4} \mathrm{H}$ (data not shown).

3.1. Extension of the aromatic system

We first investigated the extension of the fused ring system with two compounds, $\mathbf{1 h}$ and $\mathbf{1 h ^ { \prime }}$, bearing a fused benzo[3,4] or benzo[1,2] ring, respectively. The observed improvement in inhibitory potency is consistent with our previously published SAR studies in the 3 -amino-2-tetralone series. ${ }^{25}$ Both extensions improved binding affinity, with compounds $\mathbf{1 h}\left(K_{\mathrm{i}}=0.1 \mu \mathrm{M}\right)$ being 10 times more active than our lead structure $\mathbf{1 a}$, and $\mathbf{1} \mathbf{h}^{\prime}$ showing an even larger increase in potency, with a K_{i} value of 40 nM .

3.2. Substitution in position 1

To assess substitutions at position 1 of the benzo-ring A of our lead compound 1a, we synthesised the phenyl, chloro and bromo analogues $\mathbf{1 f}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$. All modifications led to an increased inhibitory potency, with the following rank order $\mathrm{Br}>\mathrm{Cl}>$ phenyl (K_{i} values of 20,90 and 250 nM , respectively. This SAR revealed steric tolerance in this position as well as a clear preference for bromide. As a matter of fact, the bromo derivative $\mathbf{1 c}^{\prime}$ was the most potent inhibitor in this series with a 50 -fold increase in potency when compared to 1a, and was also 5-10 times more active than the phenyl- or chloro-substituted analogues.

Table 1
Inhibition data of aminopeptidase activity ${ }^{\text {a }}$

Compounds			$K_{\mathrm{i}}(\mu \mathrm{M})$		
5	R^{1}	R^{4}	APN ${ }^{\mathrm{b}}$ [EC 3.4.11.2] 'One zinc'	LAPc ${ }^{\text {c }}$ [EC 3.4.11.1]	APaero ${ }^{\text {d }}$ [EC 3.4.11.10]
				'Two zinc enzymes'	
1a	H	H	1	>100	900
1b'	Cl	H	0.090	>100	>100
$1 \mathbf{c}^{\prime}$	Br	H	0.020	>100	>100
1f ${ }^{\prime}$	Ph	H	0.250	>100	>100
1c	H	Br	0.040	>100	213
1 f	H	Ph	0.007	>100	28
1d	Ph	Br	0.070	>100	>100
1d ${ }^{\prime}$	Br	Ph	$0.00006{ }^{\text {e }}$	70	39
1e	Br	Br	0.006	>100	>100
1g	Ph	Ph	0.040	50	>100
1h	Benz		0.100	>100	>100
1h'	Ben		0.040	>100	>100

${ }^{\text {a }}$ All substances were evaluated as racemic mixtures. $K_{\mathrm{i}}(\mu \mathrm{M})$ values were determined from Dixon plots at a substrate concentration set to the K_{m} value for the corresponding enzyme (see Section 5). Inactive compounds were tested up to their solubility limit under the assay conditions that is, $100 \mu \mathrm{M}$.
${ }^{\mathrm{b}}$ APN: porcine aminopeptidase-N (EC 3.4.11.2).
${ }^{\text {c }}$ LAPC: cytosolic leucine aminopeptidase from bovine kidney (EC 3.4.11.1).
${ }^{\text {d }}$ APaero: Aeromonas proteolytica aminopeptidase (EC 3.4.11.10).
${ }^{e}$ Dixon plot for APN inhibition with $\mathbf{1 d}$ ' is reported in Figure 2.

3.3. Substitution in position 4

We also selected bromo and phenyl groups for investigating potential substitutions in position 4. Both variations had a pronounced positive effect on binding affinity. In sharp contrast to substitutions in position 1, however, the phenyl derivative 1f was, with a K_{i} value of 7 nM , a more potent inhibitor than the bromo analogue 1c, which was, comparatively, five times less active ($K_{i}=40 \mathrm{nM}$) on APN. Among all monosubstituted analogues in position 1 or 4 , 1 f was clearly the best inhibitor.

3.4. Disubstitution in positions 1 and 4

Four compounds were designed and synthesised in this series, combining phenyl and/or bromo substituents in positions 1 and 4. The addition of a phenyl moiety in position 1 to the monosubstituted bromo-derivative in position $4\left(\mathbf{1 c}, K_{i}=40 \mathrm{nM}\right)$ led to the asymmetrical disubstituted analogue $\mathbf{1 d}\left(K_{i}=70 \mathrm{nM}\right)$ which did not show any improvement in the K_{i} value. The symmetric dibro-mo-derivative $\mathbf{1 e}\left(K_{\mathrm{i}}=6 \mathrm{nM}\right)$, however, was about 5 times more active that the monosubstituted analogues $\mathbf{1 c}^{\prime}\left(K_{\mathrm{i}}=20 \mathrm{nM}\right)$ and 1c $\left(K_{\mathrm{i}}=40 \mathrm{nM}\right)$. The other symmetrically disubstituted diphenyl derivative $1 \mathrm{~g}\left(K_{\mathrm{i}}=40 \mathrm{nM}\right)$ was slightly weaker than the monosubstituted 4 -phenyl derivative ($\mathbf{1 f}, K_{\mathrm{i}}=7 \mathrm{nM}$). Nevertheless, $\mathbf{1 g}$ was more potent than the monosubstituted 1-phenyl derivative $\mathbf{1 f}^{\prime}$ ($K_{\mathrm{i}}=250 \mathrm{nM}$).

Based on these results, we expected the asymmetrical disubstitution combining a bromo group in position 1 and a phenyl ring in position 4 to be the most interesting combination, for the corresponding monosubstitutions seemed optimal in both cases. Very gratifyingly, our expectation was fully confirmed by the outstanding inhibitory potency of the disubstituted derivative $\mathbf{1 d}^{\prime}$ which, with a K_{i} value of 60 pM , turned out to be 100 to 1000 times more potent than the corresponding monosubstituted analogues. This new structure is also 20,000 times more active than our starting lead compound 1a. This spectacular enhancement in potency was achieved through the additive effect obtained by combining the substituents in positions 1 and 4 that fit the APN active site best. Kinetic data for APN inhibition by this particular compound are
reported in Fig. 2 as a Dixon plot ${ }^{34}$ which clearly showed that compound $\mathbf{1 \mathbf { d } ^ { \prime }}$ remains a competitive, reversible inhibitor although its potency is close to the range of tight binding Inhibition. This is perfectly in line with the core structure of our compound series, which are cyclic substrate analogues retaining the metal chelating groups.

Not only is this novel APN/CD13 inhibitor by far more potent than any other compound investigated in this work, it is also undoubtedly among the most potent and selective non peptidic inhibitors of mammalian APN/CD13 known to date.

4. Conclusion

Metallopeptidases constitute a large family of proteolytic enzymes using a transition metal ion at their catalytic center. Small-molecule metallopeptidase inhibitors are generally designed to bind directly to the active site metal, ${ }^{10}$ thus achieving a high ligand efficiency, often at the expense, however, of selectivity. The development of highly specific metallopeptidase inhibitors is a technically challenging, yet medically important scientific endeavour, in view of the prominent role played by metallopeptidases in many pathologies. We recently reported the discovery of aminobenzosuberone 1a as a novel war head showing promise for the selective inhibition of the 'one zinc' mammalian aminopeptidase APN/CD13. ${ }^{11}$

In the present study, a series of highly potent analogues of aminobenzosuberone 1a is reported. Our data demonstrate that very large improvements in potency can be achieved without compromising selectivity. Moreover, the novel APN inhibitors reported here remain well within the boundaries of Lipinski's rule-of-five which delimits 'drug-like’ chemical space. ${ }^{27}$ With a molecular weight of only 329 Da , there is still ample room for fine tuning the pharmacological properties of our highly selective, picomolar inhibitor $\mathbf{1 d}^{\prime}$. Alternatively, it may be possible to tune the selectivity of this compound series towards related aminopeptidases of pharmaceutical interest, such as Plasmodium falciparum aminopeptidase N. ${ }^{28}$

We strongly believe that $\mathbf{1 d}^{\prime}$, as well as other potent compounds reported here, will be highly valuable chemical probes for investigating APN/CD13 and for delineating its physiological and pathological roles that require catalytic activity.

Figure 2. Kinetic data for APN inhibition by compound 1d'. (A) Dixon plot: the effect of the inhibitor on the enzyme rate is determined at 3 substrate concentrations ($S_{1}=K_{\mathrm{m}} /$ $2, S_{2}=K_{\mathrm{m}}$ and $S_{3}=2 K_{\mathrm{m}}$) over a range of inhibitor concentrations [I], from 0.2 to 1 nM . The concentration of APN (Specific activity, 28 Units per mg) was 0.1 mUnit per assay $(12 \mathrm{pM})$. Data for each substrate concentration fall on a straight line that interact on [I] $=K_{\mathrm{i}}=0.06 \mathrm{nM}$. With an average experimental error of 10% ($n=3$). (B) The replot of the slopes of the Dixon plot is a straight line through the origin, indicating a pure competitive inhibition. ${ }^{34}$

5. Experimental part

5.1. General

Flash chromatography: silica gel (Merck 60, 230-400 mesh). TLC: Al-roll silica gel (Merck 60, F_{254}). Mp: Kofler hot bench, corrected. IR spectra (v in cm ${ }^{-1}$): Nicolet 405 FT-IR. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (400 MHz and 100.6 MHz resp.) spectra: Bruker Avance 400 , tetramethylsilane (TMS), or natrium (D_{4})-trimethylsilylpropionate (D_{4}-TSP) in $\mathrm{D}_{2} \mathrm{O}\left({ }^{1} \mathrm{H} \mathrm{NMR}\right)$ and CDCl_{3}, or MeOD- $\mathrm{D}_{4}\left[\delta\left(\mathrm{CDCl}_{3}\right)=77.0\right.$, $\delta\left(\mathrm{CD}_{3} \mathrm{OD}\right)=35.0$ with respect to TMS $]\left({ }^{13} \mathrm{C}\right.$ NMR $)$ as internal references; δ in ppm and J in Hertz. High resolution MS were measured on a Bruker MicrOTof spectrometer in Institut de Chimie, UMR 7177 CNRS, ULP, Strasbourg, France, or Agilent Technologies 6510 (QTof) spectrometer in ENSCMu, Université de Haute Alsace, Mulhouse, France or Waters Micromass Q-Tof Ultima API, Basilea Pharmaceuticals, Basel. Microanalyses were carried out by the Service Central de Microanalyses du CNRS, F-69390 Vernaison or by the Service de Microanalyse, UMR 7565 CNRS Université Henri Poincaré F-54506 Vandoeuvre-les-Nancy.

5.2. Reagents and solvents

5\% Pd/C and Raney-nickel were obtained from Fluka, other reactants were purchased from usual provider. Dess-Martin periodinane (DMP) was prepared according to, ${ }^{22}$ or purchased in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution and NMR-titrated by oxidation of benzyl alcohol. Usual solvents were freshly distilled, dry EtOH and MeOH distilled over $\mathrm{Mg} / \mathrm{MgI}_{2}$, dry THF over Na and benzophenone, dry $\mathrm{Et}_{2} \mathrm{O}$ was distilled and stored over $\mathrm{Na}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ and kept over $\mathrm{Na}_{2} \mathrm{CO}_{3}$. NEt_{3} was distilled before use.

6. Syntheses of the xylenes 2d,e, 3b and 4

6.1. 4-Bromo-2,3-dimethylaniline hydrobromide (3b)

To a solution of $\mathbf{3 a}(2.5 \mathrm{~mL}$, 20.1 mmol$)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added $\mathrm{NBu}_{4} \cdot \mathrm{Br}_{3}\left(10.2 \mathrm{~g}, 20.1 \mathrm{mmol}, 1\right.$ equiv) at $0^{\circ} \mathrm{C}$ under Ar gon, then the solution was stirred at $0^{\circ} \mathrm{C}$ for 15 min . The precipitate of $\mathbf{3 b} \cdot \mathrm{HBr}(4.33 \mathrm{~g}, 75 \%)$ was isolated by filtration, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried under vacuum.

Compound $\mathbf{3 b} \cdot \mathrm{HBr}$: colorless crystals, mp 258-60 ${ }^{\circ} \mathrm{C}$. IR (KBr): 2921, 2577, 1531, 1510, 1456, 1180, 1001, 905, 824, 801, $543 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$): 2.36 (s, 3H, Me-2); 2.48 (s, 3H, Me-3); 7.13 (d, 1H, H-6); 7.58 (d, 1H, H-5); J(5,6) $=8.6 \mathrm{~Hz}$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$): 15.6 ($\mathrm{Me}-2$); 20.7 (Me-3); 123.6 (C(6)); 127.3 (C(4)); 130.5 (C(2)); 132.7 (C(5)) 134.4 (C(3)); 140.5 (C(1)). Free base (by stirring with aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: same values as in lit. ${ }^{15}$

6.2. 4-Bromo-2,3-dimethylbenzenediazonium tetrafluoroborate

 (4)To a solution of $\mathbf{3 b} \cdot \mathrm{HBr}(4.12 \mathrm{~g}, 14.7 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ were added 50% aqueous HBF_{4} ($5.6 \mathrm{~mL}, 44 \mathrm{mmol}, 3$ equiv) and then with stirring at $-20^{\circ} \mathrm{C}$ dropwise $\mathrm{tBuONO}(2.2 \mathrm{~mL}, 16.1 \mathrm{mmol}$, 1.1 equiv). The solution was stirred at $-20^{\circ} \mathrm{C}$ for further 45 min , $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was then added and the precipitate of $4(3.46 \mathrm{~g}$, 78%) was isolated by filtration and washing with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$.

Compound 4: colorless crystals, mp $162-171^{\circ} \mathrm{C}$. (KBr): 3568, 3048, 2256, 1548, 1430, 1386, 1300, 1196, 1083, 1029, 896, $823 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): 8.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}(5,6)=9.0 \mathrm{~Hz}$, $\mathrm{H}-6) ; 8.07$ (d, 1H, J(5,6) = $9.0 \mathrm{~Hz}, \mathrm{H}-5) ; 2.76$ (s, 3H, Me-2); $2.50(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}-3$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$): 144.9 (C(1)); 143.5 (C(3)); 141.8 (C(2)); 138.0 (C(4)); 134.7 (C(5)); 131.3 (C(6)); 20.3 $\left(\mathrm{CH}_{3}-3\right) ; 18.3\left(\mathrm{CH}_{3}-2\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BBrF}_{4} \mathrm{~N}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (307.88): C, 31.21; H, 2.95; N, 9.10. Found: C, 31.0; H, 2.7; N, 8.8.

6.3. 1,4-Dibromo-2,3-dimethylbenzene (2e)

A solution of the free base $\mathbf{3 b}$ [$8.69 \mathrm{~g}, 43.5 \mathrm{mmol}$, obtained by stirring a suspension of $\mathbf{3 b}$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ with $\mathrm{Na}_{2} \mathrm{CO}_{3}(5 \mathrm{~g}$, $50 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and then filtration and evaporation of the solvent] in MeCN (100 mL) was added under Ar to a solution of $\mathrm{CuBr}_{2}(9.71 \mathrm{~g}, 43.5 \mathrm{mmol}, 1$ equiv) and $t \mathrm{BuONO}(4.93 \mathrm{~g}$, $5.68 \mathrm{ml}, 47.8 \mathrm{mmol}, 1.1$ equiv) in $\mathrm{MeCN}(200 \mathrm{~mL})$. The mixture was stirred at rt for 16 h , then at $82^{\circ} \mathrm{C}$ for 4 h . The mixture was left at rt , diluted with $\operatorname{AcOEt}(200 \mathrm{~mL})$, washed with brine $(2 \times 100 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated to give $\mathbf{2 e}(9.79 \mathrm{~g}, 85 \%)$. Same NMR data as in lit. ${ }^{15}$

6.4. 4-Bromo-2,3-dimethyl-biphenyle (2d)

A solution of $4(10.9 \mathrm{~g}, 36.3 \mathrm{mmol})$ and phenylboronic acid ($5.0 \mathrm{~g}, 41.5 \mathrm{mmol}, 1.15$ equiv) in $\mathrm{MeOH}(300 \mathrm{~mL}$) was refluxed under Ar with $\mathrm{Pd}(\mathrm{OAc})_{2}\left(0.82-0.6 \mathrm{~g}, 0.1-0.07\right.$ equiv) at $65^{\circ} \mathrm{C}$ for 2 h . The solution was left at rt, diluted with AcOEt (500 mL), washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{SO}_{4} \mathrm{Mg}\right)$ and evaporated. The residue was purified by flash chromatography (cyclohexane), to give $\mathbf{2 d}$ in two crops after crystallisation in $i \operatorname{PrOH}(3.5-5.1 \mathrm{~g}, 34-54 \%)$.

Compound 2d: colorless crystals, $\mathrm{mp} 56-57^{\circ} \mathrm{C}(\mathrm{MeOH})$. IR (KBr): 2922, 1443, 1006, 823, 765, $703 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 7.44 (d, 1H, H-5); 7.39 (tm, 2H, Har-m); 7.34 (tm, 1H, Har-p); 7.24 (dm, 2H, Har-o); 6.93 (d, 1H, H-6); 2.46 (s, 3H, Me-3); 2.21 (s, 3H, $\mathrm{Me}-2) ; J(5,6)=8.3, J(\mathrm{o}, \mathrm{m})=7.5, J(\mathrm{~m}, \mathrm{p})=7.3 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): 141.8,141.7(\mathrm{C}(2), \mathrm{C}(3)) ; 136.5,136.0\left(\mathrm{C}(1), \mathrm{C}\left(1^{\prime}\right)\right) ; 129.5$ (C(5)); 129.3 (C(2'),C(6')); 128.6 (C(6)); 128.1 (C($\left.\left.3^{\prime}\right), C\left(5^{\prime}\right)\right) ; 126.9$ (C(4')); 124.6 (C(4)); 20.2 (Me-3); 18.6 (Me-2). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \operatorname{Br}$ (261.16): C, 64.39; H, 5.02; Br, 30.60. Found: C, 64.5; H, 4.9; Br, 30.3.

7. α, α^{\prime}-Dibromoxylene derivatives 5b-e,h

General procedure (a): A solution of 1,2-dimethylaryle $\mathbf{2 b} \mathbf{e} \mathbf{e} \mathbf{h}$ (10 mmol) and finely pulverised N -bromosuccinimide (NBS $3.68 \mathrm{~g}, 21 \mathrm{mmol}$, 2.1 equiv) in $\mathrm{CCl}_{4}(40-80 \mathrm{~mL})$ was irradiated with HPK125 mercury lamp for $1-2 \mathrm{~h}$ with good stirring (tlc or ${ }^{1} \mathrm{H}$ NMR monitoring). The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with $\mathrm{H}_{2} \mathrm{O}$ or 2 N aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and dried over MgSO_{4}. The solvent was evaporated to give quantitatively $\mathbf{5 b}-\mathbf{e}, \mathbf{h}$ which was used without further purification.

7.1. 1-Chloro-2,3-bis(bromomethyl)benzene (5b)

General procedure (a) with $\mathbf{2 b}$ ($2.0 \mathrm{~g}, 10.8 \mathrm{mmol}$) and NBS (4.04 g , 22.7 mmol , 2.1 equiv) in CCl_{4} (70 mL) to give $\mathbf{5 b}^{29}$ (3.7 g , quant.).

Compound 5b: yellowish oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.38$ (dd, 1H, H-6); 7.28 (dd, 1H, H-4); 7.24 (t, 1H, H-5); 4.81 (s, 2H, CH2Br-2); $4.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}-3\right) ; J(4,5)=7.6, J(4,6)=1.6, J(5,6)=7.8 \mathrm{~Hz}$.

7.2. 1-Bromo-2,3-bis(bromomethyl)benzene (5c)

General procedure (a) with 2c ($5 \mathrm{~g}, 27 \mathrm{mmol}$) and NBS (10.1 g , 56.7 mmol , 2.1 equiv) in $\mathrm{CCl}_{4}(200 \mathrm{~mL})$ to give $5 \mathbf{c}(9.36 \mathrm{~g}$, quant.).

Compound 5c: yellowish oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.57$ (dd, 1H, H-6); 7.32 (dd, 1H, H-4); 7.15 (t, 1H, H-5); 4.84 (s, 2H, $\left.\mathrm{CH}_{2} \mathrm{Br}-2\right) ; \quad 4.63 \quad\left(\mathrm{~s}, \quad 2 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{Br}-3\right) ; \quad J(4,5)=7.5, \quad J(4,6)=1.5$, $J(5,6)=8.1 \mathrm{~Hz}$. Same data as in lit. ${ }^{30}$

7.3. 4-Bromo-2,3-bis(bromomethyl)-biphenyle (5d)

General procedure (a) with 2d ($5.0 \mathrm{~g}, 19.1 \mathrm{mmol}$) and NBS (7.2 g , $40 \mathrm{mmol}, 2.1$ equiv) in CCl_{4} (200 mL) to give $\mathbf{5 d}$ (9.5 g , quant.).

Compound 5d: colorless crystals, mp 84-86 ${ }^{\circ} \mathrm{C}$ (cyclohexane). IR (KBr): 556, 613, 659, 704, 759, 827, 1188, 1203, 1222, 1434, 1446, $3032 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}(5,6)=8.3 \mathrm{~Hz}$, H-5); 7.45 (m, 5Har); 7.09 (d, 1H, J(5,6) = $8.3 \mathrm{~Hz}, \mathrm{H}-6$); 4.97 (s, 2H, $\mathrm{CH}_{2} \mathrm{Br}-3$); 4.55 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}-2$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): 28.6 ($2-\mathrm{CH}_{2} \mathrm{Br}$); 29.9 ($3-\mathrm{CH}_{2} \mathrm{Br}$); 125.6 (C(4)); 128.0, 128.4, 128.7 (3 CHar); 132.0 (C(6)); $133.3(\mathrm{C}(5)) ; 136.2,136.6$ (C(1),C($\left.1^{\prime}\right)$); 139.2 $\mathrm{C}(2)$); $143.4 \mathrm{C}(3)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Br}_{3}$ (418.96): C, 40.14; H, 2.65. Found: C, 39.9; H, 2.4.

7.4. 1,4-Dibromo-2,3-bis(bromomethyl)benzene (5e)

General procedure (a) with $2 \mathrm{e}(1.22 \mathrm{~g}, 4.62 \mathrm{mmol})$ and NBS ($1.75 \mathrm{~g}, 9.71 \mathrm{mmol}, 2.1$ equiv) in $\mathrm{CCl}_{4}(70 \mathrm{~mL})$ to give $\mathbf{5 e}$ as orange crystals $(1.83 \mathrm{~g}, 94 \%)$. Same NMR data as in lit. ${ }^{31}$

7.5. 1,2-Bis-bromomethyl-naphtalene (5h)

General procedure (a) with $\mathbf{2 h}(1.0 \mathrm{~g}, 6.4 \mathrm{mmol})$ and NBS (2.39 g , 13.4 mmol , 2.1 equiv) in CCl_{4} (50 mL) to give $\mathbf{5 h}(2.0 \mathrm{~g}$, quant.).

Compound 5h: orange crystals, mp $149-150{ }^{\circ} \mathrm{C}\left(\mathrm{lit}^{32} 148.5-\right.$ $\left.149.5^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.16(\mathrm{dm}, 1 \mathrm{H}, \mathrm{H}-8) ; 7.87$ (ddd, 1H, H-5); 7.84 (d, 1H, H-4); 7.65 (td, 1H, H-7); 7.55 (td, 1H,

H-6); 7.45 (d, 1H, H-3); 5.12 (s, 2H, CH2Br-1); 4.78 (s, 2H, CH2Br2); $J(3,4)=8.4, J(5,6)=8.0, J(5,7)=1.4, J(5,8)=0.6, J(6,7)=6.8$, $J(6,8)=1.0, J(7,8)=8.6 \mathrm{~Hz}$. Data in agreement with those of lit. ${ }^{33}$

8. Preparation of the ketonediesters $7 \mathrm{~b}-\mathrm{e}, \mathrm{h}$ by reaction with ace-tone-dicarboxylate 6 and decarboxylation into ketones $8 \mathrm{~b}-\mathrm{e}, \mathrm{h}$

General procedure (b), reaction with methyl acetonedicarboxylate (6): A solution of 1,2-bis-bromomethylaryle $\mathbf{5 a - e}, \mathbf{h}$ (10 mmol) and $\mathbf{6}\left(1.7 \mathrm{ml}, 12 \mathrm{mmol}, 1.2\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25-40 \mathrm{~mL})$ was added dropwise to a solution of $\mathrm{NBu}_{4} \mathrm{Br}(2.0 \mathrm{~g}, 6 \mathrm{mmol}, 0.6$ equiv $)$ in 1 N aqueous $\mathrm{NaHCO}_{3}(50-80 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25-40 \mathrm{~mL})$. The biphasic mixture was vigorously stirred at $40^{\circ} \mathrm{C}$ under Argon for 6 h to overnight. The layers were separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organic solutions were evaporated. The residue was dissolved in AcOEt and washed with brine ($3 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and evaporated to give a yellowish resin which was used without further purification (quantitative).

General procedure (c), decarboxylation in acidic medium: A vigorously stirred biphasic solution of $\mathbf{7 b}-\mathbf{e}, \mathbf{h}(10 \mathrm{mmol})$ in 3 M aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(50 \mathrm{~mL})$ and $\mathrm{MeCN}(15 \mathrm{~mL})$ was refluxed at $90^{\circ} \mathrm{C}$ for 16 h . The mixture was diluted with AcOEt (100 mL), neutralised with 2 M aqueous NaOH . The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}$ or brine, the aqueous layer extracted with AcOEt, the combined organic phases were dried over MgSO_{4} and evaporated to give the crude ketone 8.

General procedure (d), decarboxylation in basic medium: A vigorously stirred biphasic solution of 1 N aqueous $\mathrm{NaOH}(70 \mathrm{ml})$ and $\mathbf{7 b}-\mathbf{e}, \mathbf{h}$ (10 mmol) in MeCN solution (20 ml) was refluxed at $90^{\circ} \mathrm{C}$ for 2 h . The mixture was left at rt , neutralised with concd HCl and extracted with $\operatorname{AcOEt}(2 \times 50 \mathrm{~mL})$. The combined organic phase was washed with brine ($4 \times 10 \mathrm{~mL}$), dried over MgSO_{4} and evaporated to give the ketone 8 which was purified by flash chromatography.

8.1. Dimethyl 1-chloro-7-oxo-5,6,8,9-tetrahydro-benzocyclohe-pten-6,8-dicarboxylate (7b) and 1-chloro-5,6,8,9-tetrahydro-benzocyclohepten-7-one (8b)

General procedure (b) with $\mathrm{NBu}_{4} \mathrm{Br}(5.1 \mathrm{~g}, 16.0 \mathrm{mmol}, 0.6$ equiv) $\mathbf{5 b}$ ($7.6 \mathrm{~g}, 25.5 \mathrm{mmol}$), $\mathbf{6}$ ($5.3 \mathrm{~g}, 30.5 \mathrm{mmol}, 1.2$ equiv) in 1 M aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ for 16 h to give $\mathbf{7 b}(7.5 \mathrm{~g}$, 96%) as 50/50 isomeric mixture.

General procedure (c) with crude $\mathbf{7 b}$ ($7.5 \mathrm{~g}, 24.2 \mathrm{mmol}$) in MeCN (20 mL) and aqueous $3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL}$) to give the crude $\mathbf{8 b}$ ($4.5 \mathrm{~g}, 83 \%$ from 3b).

Compound 7b: yellowish resin. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: $3.0-$ $4.0(\mathrm{~m}, 12 \mathrm{H})$; 7.0-7.4 (m, 3H). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClLiO}_{5}[\mathrm{M}+\mathrm{Li}]^{+}: 317.0763$; found: 317.0752.

Compound 8b: yellowish resin. IR (KBr): 2956, 2945, 1699, 1450, 1349, 1187, 880, 794, $786 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 300 MHz): 7.32 (m, 1H, H-2); 7.12 (m, 2H, H-4, H-3); 3.16 (m, $2 \mathrm{H}, \mathrm{CH}_{2}(9)$); 2.96 (m, 2H, CH2 (5)); $2.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}(6), \mathrm{CH}_{2}(8)\right.$). ${ }^{13} \mathrm{C} \quad$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 210.4$ (CO(7)); 142.9, 137.9 (C(9a),C(4a)), 133.7 (C(1)); 128.2, 127.7, 127.6 (C(4),C(3),C(2)); 44.4, 43.2 (C(6),C(8)); 30.9 (C(5)); 25.2 (C(9)). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClLiO}[\mathrm{M}+\mathrm{Li}]^{+}$: 201.0653; found: 201.0636.
8.2. Dimethyl 1-bromo-7-oxo-5,6,8,9-tetrahydro-benzocyclohe-pten-6,8-dicarboxylate (7c) and 1-bromo-5,6,8,9-tetrahydro-benzocyclohepten-7-one (8c)

General procedure (b) with $\mathrm{NBu}_{4} \mathrm{Br}(5.2 \mathrm{~g}, 16.2 \mathrm{mmol}, 0.6$ equiv), $\mathbf{5 c}(9.36 \mathrm{~g}, 27.3 \mathrm{mmol}), \mathbf{6}(5.6 \mathrm{~g}, 32.4 \mathrm{mmol}, 1.2$ equiv) in 5%
aqueous $\mathrm{NaHCO}_{3}(120 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ for 6 h to give 7 c (10.9 g , quant.).

General procedure (c) with 7c (10.9 g, 27 mmol) in MeCN (50 mL) and aqueous $3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL})$. The crude product was purified by flash chromatography (cyclohexane/AcOEt 9:1) to give 8 c ($4.0 \mathrm{~g}, 62 \%$ from 3 c).

Compound 7c: yellowish resin. IR (KBr): 2953, 1744, 1719, 1653, 1437, 1333, 1305, 1226, 1161, $783 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): 3.2-4.2(\mathrm{~m}, 12 \mathrm{H}) ; 7.0-7.2(\mathrm{~m}, 2 \mathrm{H}) ; 7.4-7.6(\mathrm{~m}, 1 \mathrm{H})$. HR-MS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 355.0176; found: 355.0174; calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 376.9995; found: 376.9993.

Compound 8c: colorless crystals, mp 32-34 ${ }^{\circ} \mathrm{C}$. IR (KBr): 2952, 2907, 1702, 1561, 1448, 1344, 1184, 873, $781 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2) ; 7.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4) ; 7.05(\mathrm{t}$, $1 \mathrm{H}, \mathrm{H}-3) ; 3.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(9)\right) ; 2.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(5)\right) ; 2.62(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}(6), \mathrm{CH}_{2}(8)\right) ; J(1,2)=8.1, J(2,3)=7.4 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz})$: 210.2 (CO(7)); 142.8 (C(9a)), 139.6 (C(4a)); 131.6 (C(2)); 128.4, $128.2 \quad(C(4), C(3)) ; 124.5 \quad(C(1)) ; 44.4,43.1$ (C(6),C(8)); 31.1 (C(5)); 28.5 (C(9)). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 260.9885$ and 262.9866; found: 260.9879 and 262.9864.

8.3. Dimethyl 1-bromo-4-phenyl-7-oxo-5,6,8,9-tetrahydro-ben-zocyclohepten-6,8-dicarboxylate (7d) and 1-bromo-4-phenyl-5,6,8,9-tetrahydrobenzocycloheptene-7-one (8d)

General procedure (b) with $\mathrm{NBu}_{4} \mathrm{Br}(1.74 \mathrm{~g}, 5.30 \mathrm{mmol}, 0.6$ equiv) $\mathbf{5 d}(3.7 \mathrm{~g}, 8.83 \mathrm{mmol}), \mathbf{6}(2.0 \mathrm{~mL} 13.2 \mathrm{mmol}, 1.5$ equiv) in 5% aqueous $\mathrm{NaHCO}_{3}(75 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ for 16 h to give $7 \mathbf{d}(3.6 \mathrm{~g}$, quant.) as 50:50 cis/trans isomeric mixture.

General procedure (c) with $7 \mathbf{d}(16.9 \mathrm{~g}, 39 \mathrm{mmol})$ in MeCN $(115 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{SO}_{4} 3.8 \mathrm{M}(186 \mathrm{ml})$ at $100^{\circ} \mathrm{C}$ for 3 days. Crude ketone was purified by flash chromatography (cyclohexane/AcOEt $9: 1$) then crystallised from MeOH to give pure $\mathbf{8 d}$ ($7.6 \mathrm{~g}, 64 \%$ from 3d).

General procedure (d) with 7d (3.6 g, 8.8 mmol) in MeCN (20 mL) and aqueous $1 \mathrm{M} \mathrm{NaOH}(60 \mathrm{~mL})$ for 16 h . The crude product was purified by flash chromatography (cyclohexane/AcOEt 9:1) to give 8d ($1.20 \mathrm{~g}, 43 \%$ from 3d).

Compound 7d: colorless crystals, mp $146-152{ }^{\circ} \mathrm{C}$ (AcOEt). IR (KBr): 706, 765, 816, 1164, 1231, 1280, 1291, 1305, 1440, 1452, 1641, 1735, $2947 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.6-7.4(\mathrm{~m}$, 4Har); 7.25-7.15 (m, 2Har); 7.2-7.1 (m, 1Har); 3.2-4.0 (m, 12H). HR-MS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BrNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 453.0308$ and 455.0287; found: 453.0303 and 455.0287 .

Compound 8d: orange crystals; mp $117-119{ }^{\circ} \mathrm{C}\left(i \operatorname{Pr}_{2} \mathrm{O}\right)$. IR (KBr): 710, 776, 819, 1175, 1451, 1693, $2943 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): 7.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}(2,3)=8.4 \mathrm{~Hz}, \mathrm{H}-2) ; 7.45-7.36(\mathrm{~m}, 3 \mathrm{H}$, 2 Har-m, Har-p); 7.23 (m, 2Har-o); $7.03(\mathrm{~d}, 1 \mathrm{H}, J(2,3)=8.4 \mathrm{~Hz}, \mathrm{H}-$ 3); $3.30\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}_{2}(9)\right) ; 2.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(6)\right) ; 2.65(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}(8)\right) ; 2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(6)\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 210.2$ (C(7)); 141.4, 140.9, 140.3, 140.1 ((C(9a), C(4a), C(4), Car-s); 130.7 (C(2)); 129.8 (C(3)); 129.0 (Car-o); 128.4 (Car-m); 127.4 (Car-p); 123.5 (C(1)); 44.3 (C(6)); 43.1 (C(8)); 28.8 (C(9)); 26.4 (C(5)). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrLiO} \quad[\mathrm{M}+\mathrm{Li}]^{+}$: 321.0461 and 323.0446 ; found: 321.0474 and 323.0461.

8.4. Dimethyl 1,4-dibromo-7-oxo-5,6,8,9-tetrahydro-benzocy-clohepten-6,8-dicarboxylate (7e) and 1,4-dibromo-5,6,8,9-tetra-hydrobenzocycloheptene-7-one (8e)

General procedure (b) with $\mathrm{NBu}_{4} \mathrm{Br}(0.84 \mathrm{~g}, 2.56 \mathrm{mmol}$, 0.6 equiv), $5 \mathbf{e}(1.8 \mathrm{~g}, 4.27 \mathrm{mmol}), \mathbf{6}(0.92 \mathrm{ml}, 6.40 \mathrm{mmol}, 1.5$ equiv) in 5% aqueous $\mathrm{NaHCO}_{3}(36 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ for 16 h to give $7 \mathbf{e}(1.84 \mathrm{~g}$, quant.) as 50:50 cis/trans isomeric mixture.

General procedure (d) with $7 \mathrm{e}(1.85 \mathrm{~g}, 4.26 \mathrm{mmol})$ in MeCN $(10 \mathrm{~mL})$ and aqueous $1 \mathrm{M} \mathrm{NaOH}(30 \mathrm{~mL})$ for 2 h . The crude product was purified by flash chromatography (cyclohexane/AcOEt 9:1) to give $\mathbf{8 e}(1.15 \mathrm{~g}, 85 \%$ from $\mathbf{3 e}$)

Compound 7e: yellowish oil. IR (KBr): 804, 1159, 1232, 1443, 1648, 1717, $3412 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 3.40-4.20(\mathrm{~m}$, $12 \mathrm{H})$; 7.26-7.40 (m, 2H). HR-MS (ESI ${ }^{+}$IsoTof) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{NaO}_{5} \quad[\mathrm{M}+\mathrm{Na}]^{+}: 454.9100,456.9081$ and 458.9063; found: 454.9107, 456.9082 and 458.9067.

Compound $\mathbf{8 e}$: orange crystals, $\mathrm{mp} 94^{\circ} \mathrm{C}$. IR (KBr): 3054, 2951, 2878, 1697, 1445, 1213, 1183, 1103, 878, 817, $527 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.36$ (s, 2H, H-2, H-3); 3.28 (m, 4H, $\left.\mathrm{CH}_{2}(5), \mathrm{CH}_{2}(9)\right) ; 2.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}(6), \mathrm{CH}_{2}(8)\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): 209.3$ (CO(7)); 141.7 (C(4a),C(9a)); 132.3 (C(2),C(3)); 123.3 (C(1),C(4)); 43.0 (C(6),C(8)); 29.4 (C(5),C(9)). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{NO}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 333.94376$, found: 333.9432.

8.5. Dimethyl 9-oxo-7,8,10,11-tetrahydro-naphthocycloheptene-8,10-dicarboxylate (7h) and 7,8,10,11-tetrahydro-cyclohepta[a] naphthalen-9-one (8h)

General procedure (b) with $\mathrm{NBu}_{4} \mathrm{Br}(1.32 \mathrm{~g}, 4 \mathrm{mmol}, 0.6$ equiv), $\mathbf{5 h}(2.0 \mathrm{~g}, 6.36 \mathrm{mmol}), 6(1.22 \mathrm{~g}, 1.01 \mathrm{ml}, 7 \mathrm{mmol}, 1.1$ equiv), in $1 \mathrm{~N} \mathrm{NaHCO}_{3}$ solution (30 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ for 16 h to give $7 h(2.1 \mathrm{~g}$, quant.) as $50: 50$ cis/trans isomeric mixture.

General procedure (c) with $7 \mathbf{h}(2.0 \mathrm{~g}, 6.09 \mathrm{mmol})$, in MeCN (10 mL) and aqueous $3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(30 \mathrm{~mL})$ to give $\mathbf{8 h}(0.9 \mathrm{~g}, 75 \%)$.

Compound $\mathbf{7 h}$: yellowish resin. IR (KBr): 2953, 1743, 1711, 1648, 1436, 1354, 1293, 1231, 1211, 1166, 817, $748 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 3.2-4.1(\mathrm{~m}, 12 \mathrm{H}) ; 7.3-7.4(\mathrm{~m}, 1 \mathrm{H}) ; 7.44-$ $7.55(\mathrm{~m}, 2 \mathrm{H}) ; 7.65-7.85(\mathrm{~m}, 2 \mathrm{H}) ; 8.0-8.2(\mathrm{~m}, 2 \mathrm{H})$. HR-MS (ESI-QTof) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 349.1046; found: 349.1057; $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{LiO}_{5}[\mathrm{M}+\mathrm{Li}]^{+}: 333.1314$; found: 333.1304.

Compound 8h: yellowish resin. IR (KBr): 2950, 1694, 1597, 1512, 1436, 1384, 1323, 1189, 827, $755 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): 8.11$ (d, $1 \mathrm{H}, \mathrm{H}-1$); 7.86 (dd, $1 \mathrm{H}, \mathrm{H}-4) ; 7.73$ (d, 1H, H$5) ; 7.54$ (ddd, $1 \mathrm{H}, \mathrm{H}-2$); 7.47 (ddd, $1 \mathrm{H}, \mathrm{H}-3$); 7.36 (d, $1 \mathrm{H}, \mathrm{H}-6$); $3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(11)\right) ; 3.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(7)\right) ; 2.69(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}(10), \mathrm{CH}_{2}(8)\right) ; J(1,2)=8.6, J(1,3)=1.0, J(2,3)=6.8, J(2,4)=1.4$, $J(3,4)=8.0, J(5,6)=8.4 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 211.1$ $(C(7)) ; 138.1,135.6,132.9,131.4$ (4Car); 128.8, 127.8, 127.2, 126.4, 125.1, 122.8 (6CHar); 44.1, 43.5 (C(8), C(10)); 30.8 (C(7)); 23.2 (C(11)). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 233.0937; found: 233.0941; for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{LiO}\left(\mathrm{M}+\mathrm{Li}^{+}\right)$: 217.1200; found: 217.1219.

9. Silyl enol ethers 9 or 9/9' mixture and silyl ether ketones 10 or 10/10' mixture

General procedure (e): To a solution of $\mathbf{8}(10 \mathrm{mmol}$, dried by evaporation with toluene) an dry toluene ($20-50 \mathrm{ml}$) and NEt_{3} $\left(1.9 \mathrm{~mL}, 14 \mathrm{mmol}, 1.4\right.$ equiv) was added at rt dropwise $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($2.15 \mathrm{~mL}, 12 \mathrm{mmol}, 1.2$ equiv) at rt under Ar . The solution was stirred at $80^{\circ} \mathrm{C}$ for 2 h , then left at rt diluted wit $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with cyclohexane (100 mL). The organic phases were washed with brine (20 mL), dried over MgSO_{4} and evaporated to give quantitatively 9 or $9 / 9^{\prime}$ mixture as orange resin which was used without further purification.

General procedure (f): To a solution of $\mathbf{9}$ or $9 / \mathbf{9}^{\prime}$ mixture (10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, at $0^{\circ} \mathrm{C}$ under Ar , was added portionwise m-CPBA ($2.5 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ equiv) and stirred for 2 h (tlc monitoring). The solids were discarded by filtration and the organic phase evaporated. The solution of the residue in cyclohexane $(100 \mathrm{~mL})$ was washed with aqueous $1 \mathrm{M} \mathrm{NaHCO} 3(20 \mathrm{~mL})$ solution
(containing $\mathrm{Na}_{2} \mathrm{SO}_{3}$ or $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (10 mmol) to reduce the peracid excess) and with brine (20 mL), dried over MgSO_{4} and evaporated to give $\mathbf{1 0}$ or $\mathbf{1 0} / \mathbf{1 0}^{\prime}$ mixture as yellowish resin which was used without further purification.
9.1. 1-Chloro-7-trimethylsilyloxy-6,9-dihydro-5H-benzocycloheptene (9b) and 4-chloro-7-trimethylsilyloxy-6,9-dihydro-5Hbenzocycloheptene ($9 b^{\prime}$); 4-chloro-6-(trimethylsilyloxy)-5,6,8,9-tetrahydrobenzocyclohepten-7-one (10b) and 1-chloro-6-(trime-thylsilyloxy)-5,6,8,9-tetrahydrobenzocyclohepten-7-one (10b')

General procedure (e) with $\mathbf{8 b}(4.2 \mathrm{~g}, 21.6 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(4.22 \mathrm{~mL}$, 30.3 mmol , 1.4 equiv) in toluene (40 ml) and with $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($4.7 \mathrm{~mL}, 26 \mathrm{mmol}, 1.2$ equiv) to give a $55: 45 \mathbf{9 b} / 9 \mathbf{b}^{\prime}$ mixture ($5.5 \mathrm{~g}, 96 \%$).

Compound $\mathbf{9 b} / \mathbf{9 b}$ ': brownish resin, characterised by NMR only. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$), major isomer 9b: $7.20(\mathrm{~m}, 1 \mathrm{Har}) ; 7.00$ (m, 2Har); 5.07 (m, 1H, H-8); 3.51 (d, 2H, $J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}(9)$); 2.95 (m, 2H, CH $\mathrm{CH}_{2}(5)$); 2.31 (m, 2H, CH $\mathrm{CH}_{2}(6)$); 0.13 (s, $9 \mathrm{H}, \mathrm{SiMe}_{3}$). Minor isomer 9b': 7.20 (m, 1 Har); 7.00 (m, 2Har); 5.07 (m, 1H, H-8); 3.30 (d, $2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2}(9)$); 3.15 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}(5)$); 2.31 ($\mathrm{m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}(6)\right) ; 0.14\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right)$.

General procedure (f) with $\mathbf{9 b} / \mathbf{9 b}$ ' $(5.5 \mathrm{~g}, 20.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), m-СРВА ($5.6 \mathrm{~g}, 32.6 \mathrm{mmol}, 1.5$ equiv) for 2 h to give a $55: 45$ 10b/10b' mixture ($5.2 \mathrm{~g}, 85 \%$ from ketone $\mathbf{8 b}$).

Compound 10b/10b': brownish oil characterised by NMR only. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) major isomer 10b: $7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$; 7.00 (m, 2Har); 4.19 (ddd, 1H, H-6); 3.31 (dd, 1H, Ha-5); 3.15 (dd, $1 \mathrm{H}, \mathrm{Hb}-5$); 3.0-2.8 (m, 3H, На-8, На-9, Hb-9); 2.40 (t, 1H, $J=11.0 \mathrm{~Hz}, \mathrm{Hb}-\mathrm{C} 8) ; 0.15\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ; J(1,2)=7.5, J(1,3)=1.2$, $J(2,3)=8.0 \mathrm{~Hz}, \quad J(5 \mathrm{a}, 5 \mathrm{~b})=14.6, \quad J(5 \mathrm{a}, 6)=3.0, \quad J(5 \mathrm{~b}, 6)=10.3$, $J(6,8 \mathrm{~b})=1.0 \mathrm{~Hz}$. Minor isomer 10b': 7.20 (m, 1H, H-2); 7.00 (m, 2Har); 4.20 (ddd, 1H, H-6); 3.17 (ddd, 1H, Ha-9); 3.14 (dd, 1H, На-5); 3.02 (m, 1H, Hb-9); 3.00 (m, 1H, Hb-5); 2.84 (ddd, 1H, Ha-8); 2.41 (ddt, $1 \mathrm{H}, \mathrm{Hb}-8$); 0.12 (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$); J(2,3)=8.0, $J(2,4)=1.2 ; J(3,4)=7.4, J(5 \mathrm{a}, 5 \mathrm{~b})=14.2, J(5 \mathrm{a}, 6)=9.5, J(5 \mathrm{~b}, 6)=3.2$, $J(6,8 \mathrm{~b})=1.0, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=13.6, \quad J(8 \mathrm{a}, 9 \mathrm{a})=8.4, \quad J(8 \mathrm{a}, 9 \mathrm{~b})=2.3$, $J(8 b, 9 a)=2.6, J(8 b, 9 b)=11.0, J(9 a, 9 b)=15.0 \mathrm{~Hz}$.
9.2. 1-Bromo-7-trimethylsilyloxy-6,9-dihydro-5H-benzocycloheptene (9c) and 4-bromo-7-trimethylsilyloxy-6,9-dihydro-5Hbenzocycloheptene ($9 c^{\prime}$); 4-bromo-6-(trimethylsilyloxy)-5,6,8,9-dihydrobenzocyclohepten-7-one (10 c) and 1-bromo-6-(trime-thylsilyloxy)-5,6,8,9-dihydrobenzocyclohepten-7-one (10c')

General procedure (e) with $\mathbf{8 c}(1.86 \mathrm{~g}, 7.78 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($1.63 \mathrm{~mL}, 11.7 \mathrm{mmol}, 1.5$ equiv) in toluene (20 ml) and with Me_{3}. SiOTf ($1.76 \mathrm{~mL}, 9.72 \mathrm{mmol}, 1.25$ equiv) to give a $55: 45 \mathbf{9 c} / \mathbf{9 c ^ { \prime }}$ mixture (2.35 g , quant.).

Compound $9 \mathbf{c} / 9 \mathbf{c}^{\prime}$: brownish resin, characterised by NMR only. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$), major isomer 9c: $7.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2)$; 7.10 (d, 1H, H-4); 6.98 (t, 1H, H-3); 5.08 (tt, 1H, H-8); 3.54 (dt, $2 \mathrm{H}, \mathrm{CH}_{2}(9)$); $2.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(5)\right) ; 2.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(6)\right)$; $0.13 \quad\left(\mathrm{~s}, \quad 9 \mathrm{H}, \quad \mathrm{SiMe}_{3}\right) ; \quad J(2,3)=8.0, \quad J(2,4)=1.2, \quad J(3,4)=7.3$, $J(6,8)=1.4, J(6,9)=1.9, J(8,9)=6.5 \mathrm{~Hz}$. Minor isomer $9 \mathbf{c}^{\prime}: 7.41$ (d, 1H, H-3); 7.01 (d, 1H, H-1); 6.94 (t, 1H, H-2); 5.05 (tt, 1H, $\mathrm{H}-8$); 3.31 (dt, 2H, CH2(9)); 3.18 (m, 2H, CH $\mathrm{CH}_{2}(5)$); 2.31 (m, 2H, $\left.\mathrm{CH}_{2}(6)\right) ; 0.14$ (s, 9H, SiMe $)$; $J(1,2)=7.4, J(1,3)=1.2, J(2,3)=$ 8.0, $J(6,8)=1.3, J(6,9)=2.1, J(8,9)=6.2 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}, \mathbf{9 c} \mathrm{M}$ and $9 \mathbf{c}^{\prime} \mathrm{m}$ isomers): 151.6 (C(7)M); 151.4 (C(7)m); 144.5, 143.1, 141.7, 139.8 (C(4a)M+m, C(9a)M+m); $130.6(\mathrm{C}(3) \mathrm{m}, 130.5(\mathrm{C}(2) \mathrm{M}) ; 127.42,127.37,127.3(\mathrm{C}(4) \mathrm{M}$, $\mathrm{C}(3) \mathrm{M}, \mathrm{C}(2) \mathrm{m}) ; 126.8(\mathrm{C}(1) \mathrm{m}) ; 123.7,122.8(\mathrm{C}(4) \mathrm{m}, \mathrm{C}(1) \mathrm{M})$; 104.2 (C(8)M; 103.5 (C(8)m); 34.2 (C(6)M); 32.6 (C(6)m); 31.4 (C(5)M); 30.7 (C(5)m); 29.1 (C(9)m); 27.8 (C(9)M); $0.04\left(\right.$ SiMe $_{3}$ $\mathrm{M}+\mathrm{m})$.

General procedure (f) with 9c/9c' ($2.35 \mathrm{~g}, 7.55 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL}), \mathrm{m}$-CPBA ($2.04 \mathrm{~g}, 8.31 \mathrm{mmol}, 1.1$ equiv) for 3 h to give a $55: 45 \mathbf{1 0 c} / 10 c^{\prime}$ mixture ($2.32 \mathrm{~g}, 91 \%$ from ketone $\mathbf{8 c}$).

Compound 10c/10c': brownish oil characterised by NMR only. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) isomer 10c: 7.52 (dd, $1 \mathrm{H}, \mathrm{H}-3$); 7.13 (dd, 1H, H-1); 7.05 (t, 1H, H-2); 4.19 (ddd, 1H, H-6); 3.42 (dd, 1H, Нa-5); 3.21 (dd, 1H, Hb-5); 3.0-2.8 (m, 3H, На-8, Ha-9, Hb-9); 2.41 (td, $1 \mathrm{H}, J=11.0,1.0 \mathrm{~Hz}, \mathrm{Hb}-\mathrm{C} 8) ; 0.15\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ;$ $J(1,2)=7.5, J(1,3)=1.2, J(2,3)=8.0 \mathrm{~Hz}, J(5 \mathrm{a}, 5 \mathrm{~b})=14.6, J(5 \mathrm{a}, 6)=3.0$, $J(5 \mathrm{~b}, 6)=10.3, J(6,8 \mathrm{~b})=1.0 \mathrm{~Hz}$. Isomer 10c': 7.51 (dd, 1H, H-2); 7.18 (dd, 1H, H-4)); 7.06 (t, 1H, H-3); 4.20 (ddd, 1H, H-6); 3.27 (ddd, 1H, Ha-9); 3.14 (dd, 1H, Ha-5); 3.02 (m, 1H, Hb-9); 3.00 (m, 1H, Hb-5); 2.84 (ddd, 1H, Ha-8); 2.41 (ddt, 1H, Hb-8); 0.12 (s, 9H, $\left.\mathrm{CMe}_{3}\right) ; J(2,3)=8.0, J(2,4)=1.2 ; J(3,4)=7.4, J(5 \mathrm{a}, 5 \mathrm{~b})=14.2, J(5 \mathrm{a}, 6)=$ $9.5, \quad J(5 \mathrm{~b}, 6)=3.2, \quad J(6,8 \mathrm{~b})=1.0, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=13.6, \quad J(8 \mathrm{a}, 9 \mathrm{a})=8.4$, $J(8 a, 9 b)=2.3, J(8 b, 9 a)=2.6, J(8 b, 9 b)=11.0, J(9 a, 9 b)=15.0 \mathrm{~Hz}$.
9.3. 1-Bromo-4-phenyl-7-(trimethylsilyloxy)-6,9-dihydro-5Hbenzocycloheptene (9d) and 4-bromo-1-phenyl-7-(trimethyl-silyloxy)-6,9-dihydro-5H-benzocycloheptene (9d'); 4-bromo-1-phenyl-6-(trimethylsilyloxy)-5,6,8,9-tetrahydrobenzocyclohep-ten-7-one (10d) and 1-bromo-4-phenyl-6-(trimethylsilyloxy)-5,6,8,9-tetrahydrobenzocyclohepten-7-one (10d')

General procedure (e) with $\mathbf{8 d}(1.19 \mathrm{~g}, 3.78 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.8 \mathrm{~mL}$, 5.29 mmol , 1.5 equiv) in toluene (15 ml) and with $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($0.9 \mathrm{~mL}, 4.53 \mathrm{mmol}, 1.2$ equiv) for 4 h , to give a $60: 40 \mathbf{9 d} / 9 \mathbf{d}^{\prime}$ mixture ($1.39 \mathrm{~g}, 95 \%$).

Compound $\mathbf{9 d} / \mathbf{9 d}$ ': orange resin, characterised by NMR only ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) major isomer 9d: 7.45-7.33 (m, 5 Har); 7.25 (m, 1Har); 6.95 (d, 1Har, J(2,3) = $8.3 \mathrm{~Hz}, \mathrm{H}-3$); 5.11 (tt, 1 H , $\mathrm{H}-8$); 3.62 (dt, $2 \mathrm{H}, \mathrm{CH}_{2}(9)$); $2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(5)\right.$); 2.24 (m, 2 H , $\left.\mathrm{CH}_{2}(6)\right) ; 0.15\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ; J(6,8)=1.4, J(6,9)=2.0, J(8,9)=6.6 \mathrm{~Hz}$. Minor isomer 9d': 7.45-7.33 (m, 5 Har); 7.25 (m, 1Har); 6.95 (2 d, 1 Har, $J(2,3)=8.3 \mathrm{~Hz}, \mathrm{H}-2) ; 4.95(\mathrm{tt}, 1 \mathrm{H}, \mathrm{H}-8) ; 3.29(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}(5)$); 3.24 (dt, $2 \mathrm{H}, \mathrm{CH}_{2}(9)$); $2.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(6)\right) ; 0.15(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{CMe}_{3}\right) ; J(6,8)=1.4, J(6,9)=2.0, J(8,9)=6.6 \mathrm{~Hz}$.

General procedure (f) with $\mathbf{9 d} / 9 \mathbf{d d}^{\prime}\left(1.46 \mathrm{~g}, 3.78 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL), m-CPBA ($1.03 \mathrm{~g}, 5.97 \mathrm{mmol}, 1.5$ equiv) for 3 h to give a 60/40 10d/10d' mixture ($1.37 \mathrm{~g}, 90 \%$ from ketone $\mathbf{8 d}$).

Compound 10d/10d': yellowish oil, characterised by NMR only. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) major isomer 10d: $7.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3)$; 7.46-7.36 (m, 4 Har); 7.3-7.2 (m, 1 Har); 7.04 (d, 1H, H-2); 4.22 (ddd, 1H, H-6); 3.57 (dd, 1H, Ha-5); 3.27 (dd, 1H, Hb-5); 3.162.75 (m, 3H, Ha-8, CH2(9)); 2.33 (ddt, 1H, Hb-8); 0.18 (s, 9H, $\left.\mathrm{CMe}_{3}\right) ; \quad J(2,3)=8.2, \quad J(5 \mathrm{a}, 6)=3.3, \quad J(5 \mathrm{~b}, 6)=10.2, \quad J(5 \mathrm{a}, 5 \mathrm{~b})=14.4$, $J(6,8 \mathrm{~b})=1.1, J(8 \mathrm{a}, 8 \mathrm{~b})=13.5, J(8 \mathrm{~b}, 9 \mathrm{a})=3.7, J(8 \mathrm{~b}, 9 \mathrm{~b})=10.8 \mathrm{~Hz}$. Minor isomer 10d': 7.54 (d, 1H, H-2); 7.46-7.36 (m, 4 Har); 7.3-7.2 (m, 1 Har); 7.05 (d, 1H, H-3); 4.12 (ddd, 1H, H-6); 3.40 (ddd, 1H, На-9); 3.16-2.75 (m, 4H, CH 2 (5), Ha-8, Hb-9); 2.46 (ddt, 1H, $\mathrm{Hb}-8) ; 0.18\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ; J(2,3)=8.2, J(5 \mathrm{a}, 6)=4.0, J(5 \mathrm{~b}, 6)=9.0$, $J(6,8 \mathrm{~b})=1.1, J(8 \mathrm{a}, 8 \mathrm{~b})=13.9, J(8 \mathrm{a}, 9 \mathrm{a})=7.8, J(8 \mathrm{~b}, 9 \mathrm{a})=3.1, J(8 \mathrm{~b}, 9 \mathrm{~b})=$ $11.2, J(9 a, 9 b)=14.8 \mathrm{~Hz}$.
9.4. 1,4-Dibromo-7-(trimethylsilyloxy)-8,9-dihydro-5H-benzocycloheptene (9e); 1,4-dibromo-6-(trimethylsilyloxy)-5,6,8,9-tetrahydrobenzocyclohepten-7-one (10e)

General procedure (e) with $\mathbf{8 e}(6.3 \mathrm{~g}, 19.8 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(3.9 \mathrm{~mL}$, 27.2 mmol , 1.4 equiv) in toluene (100 ml) and with $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($4.7 \mathrm{~mL}, 23.8 \mathrm{mmol}, 1.2$ equiv) to give $9 \mathbf{e}(7.79 \mathrm{~g}$, quant.).

Compound 9e: orange resin, characterised by NMR only. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 7.25 (s, 2H, H-2, H-3); 5.04 (tt, 1H, H-8); 3.58 (dt, 2H, CH ${ }_{2}(9)$); $3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(5)\right)$; $2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(6)\right.$); $0.14\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right) ; J(6,8)=1.4, J(6,9)=1.9, J(8,9)=6.6 \mathrm{~Hz}$.

General procedure (f) with 9e ($7.79 \mathrm{~g}, 19.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (180 mL), m-CPBA ($5.17 \mathrm{~g}, 29.9 \mathrm{mmol}, 1.5$ equiv) for 3 h to give $\mathbf{1 0 e}(7.75 \mathrm{~g}, 96 \%, 90 \%$ from ketone $\mathbf{8 e}$).

Compound 10e: brownish oil, characterised by NMR only. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 0.15 (s, 9H, SiMe_{3}); 2.41 (dddd, $1 \mathrm{H}, \mathrm{Hb}-$ 8); 2.87 (ddd, 1H, Ha-8); 3.13 (ddd, 1H, Hb-9); 3.32 (ddd, 1H, Ha9); 3.33 (dd, 1H, Hb-5); 3.45 (dd, 1H, Ha-5); 4.16 (ddd, 1H, H-6); $7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3) ; J(5 \mathrm{a}, 5 \mathrm{~b})=14.6, J(5 \mathrm{a}, 6)=3.2, J(5 \mathrm{~b}, 6)=9.8$, $J(6,8 \mathrm{~b})=1.0, J(8 \mathrm{a}, 8 \mathrm{~b})=14.2, J(8 \mathrm{a}, 9 \mathrm{a})=8.2, J(8 \mathrm{a}, 9 \mathrm{~b})=2.8, J(8 \mathrm{~b}, 9 \mathrm{a})=$ $2.0, J(8 b, 9 b)=11.0, J(9 a, 9 b)=15.0 \mathrm{~Hz}$.
9.5. 9-Trimethylsilyloxy-8,11-dihydro-7H-cyclohepta[a]naphthalene (9 h) and 9-trimethylsilyloxy-10,11-dihydro-7H-cyclohepta[a]naphthalene ($9 h^{\prime}$); 10-trimethylsilyloxy-7,8,10,11-tetrahydro-cyclohepta[a]naphthalen-9-one (10h) and 8-trimethylsilyloxy-7,8,10,11-tetrahydro cyclohepta[a]naphthalen-9-one (10h')

General procedure (e) with $\mathbf{8 h}(0.74 \mathrm{~g}, 3.48 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($0.67 \mathrm{~mL}, 4.87 \mathrm{mmol}, 1.4$ equiv) in toluene (5 ml) and with Me_{3} SiOTf ($0.75 \mathrm{~mL}, 4.17 \mathrm{mmol}$, 1.2 equiv) to give a $50: 50 \mathbf{9 h} / 9 \mathbf{h}^{\prime} \mathrm{mix}-$ ture ($0.90 \mathrm{~g}, 91 \%$).

Compound $\mathbf{9 h} / \mathbf{9 h}$ ': as orange resin, characterised by NMR only. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$, isomer $\mathbf{9 h} \mathrm{M}$ and $9 \mathbf{h}^{\prime} \mathrm{m}$ mixture): 8.14 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{M}+\mathrm{m}$, Har-1); 7.85 ($2 \mathrm{~d}, 1 \mathrm{H} \mathrm{M}+\mathrm{m}, ~ J=8.2 \mathrm{~Hz}$, Har4); 7.69, 7.66 ($2 \mathrm{~d}, 1 \mathrm{H} \mathrm{M}+\mathrm{m}, ~ J=8.3 \mathrm{~Hz}$, Har-5), 7.52 (m, $1 \mathrm{H} \mathrm{M}+\mathrm{m}$); 7.42 (m, 1H M, 2H m); 7.37 (d, 1H M, J=8.3 Hz, H-6); 5.23 (t, 1H $\mathrm{M}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-10), 5.17(\mathrm{t}, 1 \mathrm{H} \mathrm{m}, J=6.2 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{~m}), 3.78(\mathrm{~m}, 2 \mathrm{H}$ M+m); 3.50, 3.46 ($2 \mathrm{~m}, 2 \mathrm{H} \mathrm{M}, 4 \mathrm{H} \mathrm{m}$); 3.13 (m, 2H M); 0.13 (s, 9H $\mathrm{M}+\mathrm{m}, \mathrm{SiMe}_{3}$).

General procedure (f) with $\mathbf{9 h} / \mathbf{9} h^{\prime}\left(0.90 \mathrm{~g}, 3.16 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL), m-CPBA ($0.86 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.6$ equiv) for 3 h to give a $50: 50 \mathbf{1 0 h} / \mathbf{1 0 h}{ }^{\prime}$ mixture as ($0.94 \mathrm{~g}, 96 \%, 90 \%$ from ketone $\mathbf{8 h}$).

Compound 10h/10h': brownish oil, characterised by NMR only. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) isomer $\mathbf{1 0 h} \mathrm{M}$ and $\mathbf{1 0 h}{ }^{\prime} \mathrm{m}$ mixture: 8.16-7.33 (m, 6Har M+m); 4.30, 4.27 (2dd, $J=3.9,10.0 \mathrm{~Hz}, 1 \mathrm{H}$ M+m, H-10 M, H-8 m)); 3.34 (m, 2H M); 3.14 (m, 2H M+m); 2.93 ($\mathrm{m}, 2 \mathrm{H}$ m); 2.48 (m, 1H M+m); 0.15 ($\mathrm{s}, 9 \mathrm{H} \mathrm{M+m}, \mathrm{SiMe}_{3}$).

10. Hydroxy-amides 11b-e, $\mathbf{b}^{\prime}-d^{\prime}, h^{\prime}, h^{\prime}$

General procedure (g): To a solution of $\mathbf{1 0}(10 \mathrm{mmol})$ in $2 \mathrm{M} \mathrm{NH}_{3}$ solution in dry $\mathrm{EtOH}(50-100 \mathrm{~mL})$, was added $\mathrm{Ti}(\mathrm{OiPr})_{4}(6.2 \mathrm{~mL}$, $20 \mathrm{mmol}, 2$ equiv) and the mixture stirred for 6 h under Ar . NaBH_{4} ($0.56 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ equiv) was then added and the mixture stirred further for 2 h and evaporated. The residue was dissolved in AcOEt ($50-100 \mathrm{~mL}$) and vigorously stirred with aqueous $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ solution ($20-50 \mathrm{~mL}$) for 2 h . The solids were filtered out and washed thrice with a mixture of AcOEt (20 mL) and aqueous $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ solution (20 mL). The organic phase was separated, the aqueous phase extracted with AcOEt ($3 \times 20 \mathrm{~mL}$), the combined organic phases dried over MgSO_{4} and evaporated to give the crude amine.

A solution of the crude amine (10 mmol) in $\mathrm{MeOH}(50-100 \mathrm{~mL}$) was stirred with solid $\mathrm{NaHCO}_{3}\left(1.4 \mathrm{~g}, 13 \mathrm{mmol}, 1.3\right.$ equiv) and $\mathrm{Boc}_{2} \mathrm{O}$ ($3.3 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ equiv) for 16 h at rt under Ar. The solvent was evaporated, the solution of the residue in AcOEt was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and evaporated to give the crude amide, which was purified by FC (cyclohexane/AcOEt 8:2) to give the amide-alcohol 11 or regioisomer 11/11' mixture as cis/trans mixture.
10.1. 7-tert-Butoxycarbonylamino-4-chloro-6,7,8,9 tetrahydro$\mathbf{5 H}$-benzocyclohepten-6-ol (cis/trans mixture, 11b) and 7-tert-Butoxycarbonylamino-1-chloro-6,7,8,9 tetrahydro-5H-cyclohe-pten-6-ol (cis/trans mixture, 11b')

General procedure (g) with $\mathbf{1 0 b} / \mathbf{1 0 b}{ }^{\prime}(5.2 \mathrm{~g}, 18.5 \mathrm{mmol}$), in 2 M NH_{3} solution in EtOH $(120 \mathrm{~mL})$ and with $\mathrm{Ti}(\mathrm{OiPr})_{4}(12.2 \mathrm{~mL}$,
$41.3 \mathrm{mmol}, 2.2$ equiv) for 6 h , then reduction with NaBH_{4} (1.2 g , $31 \mathrm{mmol}, 1.6$ equiv) for 2 h to give the crude amine. Acylation with $\mathrm{Boc}_{2} \mathrm{O}\left(5.4 \mathrm{~g}, 24.8 \mathrm{mmol}, 1.4\right.$ equiv), NaHCO_{3} in $\mathrm{MeOH}(100 \mathrm{~mL})$ for 16 h gave the $\mathbf{1 1 b} / \mathbf{1 1 b}$ ' mixture ($4.45 \mathrm{~g}, \mathbf{7 8 \%}$). The isomeric mixture resolution by flash chromatography occurred badly and the cis/ trans isomeric mixture of $\mathbf{1 1 b}$ ' only was obtained as pure regioisomer.

Isomeric mixture $\mathbf{1 1 b} / \mathbf{1 1 b}$ ': cream crystals, mp $183-184^{\circ} \mathrm{C}$. IR (KBr): 3353, 2980, 2932, 1683, 1525, 1450, 1245, 1170, $779 \mathrm{~cm}^{-1}$. HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClLiNO}_{3}[\mathrm{M}+\mathrm{Li}]^{+}$: 318.1443; found: 318.1419; calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClNaNO}_{3}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 334.1180; found: 334.1159.

Cis-trans isomeric mixture 11b': colorless crystals, mp 165$168{ }^{\circ}{ }^{\circ}$. IR (KBr): 3362, 2982, 2933, 1682, 1665, 1525, 1448, 1391, 1367, 1324, 1248, 1169, 1079, 1042, $779 \mathrm{~cm}^{-1}$. HR-MS (ESI'IsoTof) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClNaNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 334.1180$; found: 334.1176 .
cis-11b, ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): 7.26 (dd, $J=1.5,7.9 \mathrm{~Hz}, \mathrm{H}-$ 3); 7.08 (dd, $J=7.5,7.9 \mathrm{~Hz}, \mathrm{H}-2$); 7.02 (dd, $J=1.5,7.5 \mathrm{~Hz}, \mathrm{H}-1$); 5.04 (d, J = ca. $8 \mathrm{~Hz}, \mathrm{NH}$); 4.18 (broad s, H-6); 3.77 (broad m, H-7, Ha-5); 2.88 (d, J=14.6 Hz, Hb-5); 2.77 ($\mathrm{m}, \mathrm{CH}_{2}(9)$); 1.99 ($\mathrm{m}, \mathrm{Ha}-$ 8); 1.57 (m , (br m, $\mathrm{Hb}-8$); 1.45 ($\mathrm{s}, \mathrm{CMe}_{3}$). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $75 \mathrm{MHz}): 155.5$ (NCO); 144.8 (C(4a)); 135.7 (C(9a)); 132.4 (C(4)); 128.0, 127.8, 127.4 (C(1),C(2),C(3)); 79.5 (CMe_{3}); 68.8 (C(6)); 56.6 (C(7)); 33.7 (C(5)); 32.7 (C(9)); 28.6 (C(8)); 28.4 (CMe $)^{\text {) }}$.
trans-11b, ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): 7.25 (dd, H-3); 7.05 (t, H2); 6.98 (br d, H-1); 4.54 (br d, NH); 3.70 (br m, H-7); 3.64 (dd, Ha-5); 3.35 (br t, H-6); 3.08 (br s, OH); 2.86 (dd, Hb-5); 2.85 (ddd, Ha-9); 2.75 (ddd, $\mathrm{Hb}-9$); 2.21 (m, Ha-8); 1.46 ($\mathrm{s}, \mathrm{CMe}_{3}$); 1.33 (dq, $\mathrm{Hb}-8) . \quad J(1.2)=7.5, \quad J(1,3)=1.5, \quad J(2,3)=8.1, \quad J(5 \mathrm{a}, 5 \mathrm{~b})=14.4$, $J(5 a, 6)=1.8, J(5 b, 6)=10.2, J(6,7)=9.5, J(N H, 7)=c a .8, J(7,8 a)=4.4$, $J(7,8 \mathrm{~b})=10.5, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=13.6, \quad J(8 \mathrm{a}, 9 \mathrm{a})=1.6, \quad J(8 \mathrm{a}, 9 \mathrm{~b})=7.7$, $J(8 \mathrm{~b}, 9 \mathrm{a})=12.0, J(8 \mathrm{~b}, 9 \mathrm{~b})=1.8, J(9 \mathrm{a}, 9 \mathrm{~b})=14.7 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}): 155.5$ (NCO); 144.6 (C(4a)); 134.6, 134.2 (C(9a), (C(4)); 127.8, 127.6, 127.1 (C(1),C(2),C(3)); $80.2\left(\right.$ CMe $\left._{3}\right) ; 73.6(C(6)) ; 60.0$ (C(7)); 36.2 (C(5)); 32.7, 32.2 (C(8),C(9)); 28.4 (CMe_{3}).
cis-11b', ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): 7.28 (m, H-2); 7.06 ($\mathrm{m}, \mathrm{H}-3$, H-4); 5.04 (br d, $J=7.5 \mathrm{~Hz}, \mathrm{NH}$); 4.10 (br s, H-6); 3.81 (broad s, H7); 3.36 (broad m, Ha-9); 3.06 (m, $\mathrm{CH}_{2}(5)$); 2.55 (broad t, $J=12.8 \mathrm{~Hz}, \mathrm{Hb}-9$); 2.00 (ddd, $J=4.4,8.2,13.0 \mathrm{~Hz}, \mathrm{Ha}-8$); 1.45 (s, CMe_{3}); 1.31 (m, Hb-8). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): 155.3 (NCO); 139.8 (C(9a); 136.8 C(4a)); 133.5 (C(1)); 130.2, 128.7, 127.2 (C(2),C(3),(C(4)); $79.6\left(\mathrm{CMe}_{3}\right) ; 69.1$ (C(6)); 56.7 (C(7)); 39.6 (C(5)); $28.4\left(\mathrm{CMe}_{3}\right) ; 27.7,26.8$ (C(8),C(9)).
trans-11b', ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): 7.23 (dd, $\mathrm{H}-2$); 7.09 (dd, H-4); 7.05 (t, H-3); 4.58 (br d, NH); 3.70 (br m, H-7); 3.40 (ddd, Ha9); 3.34 (dt, H-6); 3.12-2.96 (m, Ha-5, Hb-5); 2.62 (ddd, Hb-9); 2.20 (m, Ha-8); 1.46 (s, CMe_{3}); 1.29 (dq, Hb-8); J(2,3)=7.6, $J(2,4)=1.5, J(3,4)=7.6, J(5 \mathrm{a}, 5 \mathrm{~b})=14.0, J(5 \mathrm{a}, 6)=\mathrm{ca} .9, J(5 \mathrm{~b}, 6)=4.0$, $J(6,7)=9.0, J(N H, 7)=c a .7, J(7,8 a)=4.3, J(7,8 b)=11.3, J(8 a, 8 b)=$ 13.8, $J(8 a, 9 a)=8.0, J(8 a, 9 b)=1.3, \quad J(8 b, 9 a)=1.5, \quad J(8 b, 9 b)=11.5$, $J(9 a, 9 b)=15.0 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 156.8$ (NCO); 139.4, 139.1 (C(4a),C(9a)); 133.1 (C(1)); 128.8, 128.0, 127.3 (C(2),C(3),(C(4)); $80.4\left(\mathrm{CMe}_{3}\right) ; 74.5$ (C(6)); 59.9 (C(7)); 41.8 (C(5)); 31.6 (C(8)); 28.4 (CMe_{3}); 26.3 (C(9)).
10.2. 4-Bromo-7-tert-butoxycarbonylamino-5,6,8,9-tetrahydro-5H-benzocyclohepten-6-ol (cis/trans mixture, 11c) and 1-bro-mo-7-tert-butoxycarbonylamino-5,6,8,9-tetrahydro-5H-benzo-cyclohepten-6-ol (cis/trans mixture, 11c')

General procedure (g) with 10c/10c' ${ }^{\prime}(2.32 \mathrm{~g}, 7.09 \mathrm{mmol})$, in 2 M NH_{3} solution in $\mathrm{EtOH}(40 \mathrm{~mL})$ and with $\mathrm{Ti}(\mathrm{OiPr})_{4}(3.87 \mathrm{~mL}$, $14.2 \mathrm{mmol}, 2$ equiv) for 16 h , then reduction with $\mathrm{NaBH}_{4}(0.4 \mathrm{~g}$, $10.6 \mathrm{mmol}, 1.5$ equiv) for 2 h to give the crude amine. Acylation with $\mathrm{Boc}_{2} \mathrm{O}\left(2.56 \mathrm{~g}, 11.7 \mathrm{mmol}, 1.5\right.$ equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.24 \mathrm{~g}$, $10.1 \mathrm{mmol}, 1.3$ equiv) in $\mathrm{MeOH}(25 \mathrm{~mL})$ for 3 h gave the $\mathbf{1 1 c} / \mathbf{1 1 c ^ { \prime }}$
mixture ($1.63 \mathrm{~g}, 64 \%$) after crystallisation and washing with $i \mathrm{Pr}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$. The isomer separation occurred by semi-preparative HPLC (on C_{18} Kromasil 100, $5 \mu \mathrm{~m}, 4.6 \times 250 \mathrm{~mm}$) with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 75: 25$ as eluent, to give $\mathbf{1 1 c}$ as cis/trans mixture ($250 \mathrm{mg}, 10 \%$) and $11 \mathrm{c}^{\prime}$ as cis/trans mixture ($1.10 \mathrm{~g}, 43 \%$) as. The cis-11c isomer could be obtained pure.

Isomeric mixture 11c/11c': cream solid, mp 179-184 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3358, 2978, 2934, 1681, 1667, 1523, 1446, 1367, 1248, 1166, 1043, $777 \mathrm{~cm}^{-1}$. HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{BrLiNO}_{3}$ $[\mathrm{M}+\mathrm{Li}]^{+}: 362.0938$ and 364.0919; found: 362.0849 and 364.0829.
trans-11c: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 7.44 (dd, $1 \mathrm{H}, \mathrm{H}-3$); 7.01 (br d, 1H, H-1); 6.97 (t, 1H, H-2); 4.53 (br d, 1H, NH); 3.69 (br m, 1H, H-7); 3.63 (dd, 1H, Ha-5); 3.35 (br t, 1H, H-6); 3.08 (br s, 1H, OH); 2.95 (dd, 1H, Hb-5); 2.87 (ddd, 1H, Ha-9); 2.76 (ddd, 1H, Hb-9); 2.21 (m, 1H, Ha-8); 1.46 (s, 9H, CMe ${ }_{3}$); 1.32 (dq, 1H, Hb$8) ; J(1.2)=7.4, J(1,3)=1.6, J(2,3)=8.0, J(5 \mathrm{a}, 5 \mathrm{~b})=14.2, J(5 \mathrm{a}, 6)=1.6$, $J(5 \mathrm{~b}, 6)=10.0, J(6,7)=9.0, J(N H, 7)=8.2, J(7,8 \mathrm{a})=4.2, J(7,8 \mathrm{~b})=11.3$, $J(8 \mathrm{a}, 8 \mathrm{~b})=13.8, \quad J(8 \mathrm{a}, 9 \mathrm{a})=1.8, \quad J(8 \mathrm{a}, 9 \mathrm{~b})=7.5, \quad J(8 \mathrm{~b}, 9 \mathrm{a})=11.0$, $J(8 \mathrm{~b}, 9 \mathrm{~b})=2.0, \quad J(9 \mathrm{a}, 9 \mathrm{~b})=14.7 \mathrm{~Hz} .{ }^{13} \mathrm{C} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \quad 100 \mathrm{MHz}\right):$ 156.9 (NCO); 144.6 (C(4a)); 136.2 (C(9a)); 131.4 (C(3)); 128.2, 128.0 (C(1), C(2)), $125.7(\mathrm{C}(4)) ; 80.5\left(\mathrm{CMe}_{3}\right) ; 73.7$ (C(6)); 60.1 (C(7)); 39.7 (C(5)); 32.7 (C(8)); 28.5 (C(9)); 28.5 (CMe $_{3}$).
cis-11c: colorless crystals, mp 183-184 ${ }^{\circ} \mathrm{C}$. IR (KBr): 775, 1014, 1043, 1085, 1164, 1251, 1367, 1390, 1453, 1524, 1665, 2981, 2933, $3375,3471 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 7.46 (d, 1 H , $J=8.0 \mathrm{~Hz}, \mathrm{H}-3$); 7.06 (d, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-1$); 7.01 (dd, $1 \mathrm{H}, J=7.3$, $8.0 \mathrm{~Hz}, \mathrm{H}-2$); 5.04 (br d, $1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{NH}$); 4.19 (br s, 1H, H-6); 3.77 (br s, 2H, H-7, Ha-5); 2.98 (d, 1H, J=14.3 Hz, Hb-5); 2.79 (m, 2H, CH 2 (9)); 1.99 (br m, 1H, Ha-8); 1.50 (br m, 1H, Hb-8); 1.45 (s, 9H, CMe_{3}). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): 155.7 (NCO); 145.0 (C(4a)); 134.7 (C(9a)); 131.5 (C(3)); 128.6, 128.3 (C(1),C(2)), 127.1 (C(4)); 79.7 (CMe_{3}); 69.1 (C(6)); 57.0 (C(7)); 37.4 (C(5)); 33.2 (C(9)); 28.9 (C(8)); 28.7 (CMe_{3}). HR-MS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{BrNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 378.0675$; found: 378.0665 .
trans-11c': ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.43$ (dd, $\left.1 \mathrm{H}, \mathrm{H}-2\right) ; 7.14$ (br d, 1H, H-4); 6.98 (t, 1H, H-3); 4.52 (br d, 1H, NH); 3.70 (br m, 1H, H-7); 3.40 (ddd, 1H, Ha-9); 3.35 (dt, 1H, H-6); 3.06, 3.02 (m, 2H, Ha-5,Hb-5); 2.71 (ddd, 1H, Hb-9); 2.20 (m, 1H, Ha-8); 1.46 (s, $9 \mathrm{H}, \mathrm{CMe}_{3}$); 1.31 (dq, $1 \mathrm{H}, \mathrm{Hb}-8$); $J(2,3)=8.0, J(2,4)=1.0$, $J(3,4)=7.4, J(5 \mathrm{a}, 5 \mathrm{~b})=14.0, J(5 \mathrm{a}, 6)=10,4, J(5 \mathrm{~b}, 6)=3.2, J(6,7)=9.0$, $J(N H, 7)=$ ca $7, J(7,8 a)=4.4, J(7,8 b)=11.2, J(8 a, 8 b)=13.8, J(8 a, 9 a)=$ $8.2, J(8 a, 9 b)=1.6, J(8 b, 9 a)=1.6, J(8 b, 9 b)=11.2, J(9 a, 9 b)=15.0 \mathrm{~Hz}$.
cis-11c': ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 330 \mathrm{~K}\right): 7.47$ (dd, 1H, H-2); 7.09 (br d, 1H, H-4); 6.98 (t, 1H, H-3); 4.91 (br d, 1H, NH); 4.11 (t, 1H, H-6); 3.81 (m, 1H, H-7); 3.39 (ddd, 1H, Ha-9); 3.12, 3.07 (m, 2H, Ha-5, Hb-5); 2.67 (dd, 1H, Hb-9); 2.00 (ddd, 1H, Ha-8); 1.47 (dq, 1H, Hb-8); 1.46 (s, 9H, CMe $)$; 1.28 (br s, 1H, OH). $J(2,3)=8.0, J(2,4)=1.0, J(3,4)=7.4, J(5 a, 5 b)=14.4, J(5 a, 6)=1.8$, $J(5 \mathrm{~b}, 6)=7.2, J(6,7)=2.2, J(\mathrm{OH}, 6)=7.6 ; J(\mathrm{NH}, 7)=8.0, J(7,8 \mathrm{a})=4.2$, $J(7,8 b)=11.6, \quad J(8 a, 8 b)=14.0, \quad J(8 a, 9 a)=8.4, \quad J(8 a, 9 b)=1.2$, $J(8 \mathrm{~b}, 9 \mathrm{a})=1.5, J(8 \mathrm{~b}, 9 \mathrm{~b})=11.6, J(9 \mathrm{a}, 9 \mathrm{~b})=14.8 \mathrm{~Hz}$.
10.3. 4-Bromo-7-(tert-butoxycarbonylamino)-1-phenyl-6,7,8,9-tetrahydro-5H-benzocyclohepten-6-ol (cis/trans mixture, 11d) and 1-bromo-7-(tert-butoxycarbonylamino)-4-phenyl-6,7,8,9-tetrahydro-5H-benzocyclohepten-6-ol (cis/trans mixture, 11d')

General procedure (g) with 10d/10d' ${ }^{\prime}(1.52 \mathrm{~g}, 3.77 \mathrm{mmol})$ in 2 M NH_{3} solution in EtOH (10 mL) and with $\mathrm{Ti}(\mathrm{OiPr})_{4}(2.3 \mathrm{~mL}$, 7.54 mmol , 2 equiv) for 6 h , then reduction with NaBH_{4} (213 mg , $5.65 \mathrm{mmol}, 1.5$ equiv) for 3 h to give the crude amine (945 mg , 76%). Acylation with $\mathrm{Boc}_{2} \mathrm{O}$ ($940 \mathrm{mg}, 4.27 \mathrm{mmol}, 1.5$ equiv), $\mathrm{NaH}-$ CO_{3} ($392 \mathrm{mg}, 3.70 \mathrm{mmol}, 1.3$ equiv) in $\mathrm{MeOH}(20 \mathrm{~mL}$) for 16 h gave the 60:40 mixture of $\mathbf{1 1 d} / 11 \mathbf{d}^{\prime}(518 \mathrm{mg}, 32 \%$) inseparable isomers.

Isomeric mixture 11d/11d': colorless crystals, mp $174-176^{\circ} \mathrm{C}$. IR (KBr): 3487, 3362, 2979, 2932, 1664, 1530, 1252, $1168 \mathrm{~cm}^{-1}$.

HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{BrLiNO}_{3}[\mathrm{M}+\mathrm{Li}]^{+}$: 438.1251 and 440.1233; found: 438.1237 and 440.1221 .
cis-11d or 11d', ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.49$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{Har}) ; 7.45-7.2$ (m, 5 Har$) ; 7.00$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{Har}$); 5.03 (br s, 1H, NH); 4.24 (br s, 1H, H-6); 3.79 (br s, 2H); 3.06 (br s, 1H); 2.94 (br s, 1H); 2.50 (br s, 1H); 1.90 (br s, 1H); 1.44 (s, 10H).
cis-11d ${ }^{\prime}$ or 11d, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.51(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 1Har); 7.45-7.2 (m, 5Har); 6.98 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{Har}$); 4.96 (br d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$); 4.02 (br s, 1H, H-6); 3.79 (br s, 2H); 3.50 (br s, 1H); 3.28 (br s, 1H); 2.84 (br d, J=15 Hz, 1H); 2.04 (br s, 1H); 1.44 (br s, 10H).
trans-11d, ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 7.48 (d, $1 \mathrm{H}, \mathrm{H}-3$); 7.427.33 (m, 3 Har); 7.19 (m, 2Har); 6.96 (d, 1H, H-2); 4.54 (br s, 1H, NH); 3.69 (br d, 2H, H-7, Ha-5); 3.43 (br t, 1H, H-6); 3.20 (br s, $1 \mathrm{H}, \mathrm{OH}$); 3.05 (dd, 1H, Hb-5); 2.93 (dd, 1H, Ha-9); 2.61 (dd, 1H, $\mathrm{Hb}-9$); 2.10 (m, 1H, Нa-8); 1.44 (s, 9H, CMe $)$; 1.29 (br q, 1H, $\mathrm{Hb}-8) ; \quad J(2,3)=8.2, \quad J(5 \mathrm{a}, 5 \mathrm{~b})=14.2, \quad J(5 \mathrm{a}, 6)=1.6, \quad J(5 \mathrm{~b}, 6)=10.2$, $J(6,7)=8.6, J(7,8 \mathrm{a})=4.4, J(7,8 \mathrm{~b})=11.4, J(8 \mathrm{a}, 8 \mathrm{~b})=13.6, J(8 \mathrm{a}, 9 \mathrm{a})=$ $8.0, \quad J(8 \mathrm{a}, 9 \mathrm{~b})=1.2, \quad J(8 \mathrm{~b}, 9 \mathrm{a})=1.6, \quad J(8 \mathrm{~b}, 9 \mathrm{~b})=11.0, \quad J(9 \mathrm{a}, 9 \mathrm{~b})=$ 14.8 Hz .
trans-11d': ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 7.47 (d, 1H, H-2); 7.447.33 (m, 3Har); 7.25 (m, 2Har); 6.98 (d, 1H, H-3); 4.56 (br s, 1H, NH); 3.70 (br q, 1H, H-7); 3.50 (dd, 1H, Ha-9); 3.40 (br t, 1H, H6); 3.19 (br s, 1H, OH); 3.14 (dd, 1H, Ha-5); 2.82 (dd, 1H, Hb-5); 2.78 (dd, 1H, Hb-9); 2.25 (m, 1H, Нa-8); 1.45 (s, 9H, CMe ${ }_{3}$); 1.37 (br q, 1H, Hb-8); $J(2,3)=8.2, J(5 \mathrm{a}, 5 \mathrm{~b})=14.4, J(5 \mathrm{a}, 6)=1.8, J(5 \mathrm{~b}, 6)=$ $10.2, \quad J(6,7)=10.8, \quad J(7,8 \mathrm{a})=4.6, \quad J(7,8 \mathrm{~b})=11.8, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=13.6$, $J(8 a, 9 a)=8.0, J(8 a, 9 b)=1.0, J(8 b, 9 a)=1.6, J(8 b, 9 b)=11.4, J(9 a, 9 b)=$ 15.0 Hz .
10.4. 1,4-Dibromo-7-(tert-butoxycarbonylamino)-6,7,8,9-tetra-hydro-5H-benzocyclohepten-6-ol (cis/trans mixture, 11e)

General procedure (g) with $\mathbf{1 0 e}(7.75 \mathrm{~g}, 19.1 \mathrm{mmol})$ in $2 \mathrm{M} \mathrm{NH}_{3}$ solution in EtOH (60 mL) and with $\mathrm{Ti}(\mathrm{OiPr})_{4}(22.6 \mathrm{~mL}, \mathrm{~g}$, $76.3 \mathrm{mmol}, 4$ equiv) for 6 h , then reduction with NaBH_{4} ($1.08 \mathrm{~g}, 28.6 \mathrm{mmol}, 1.5$ equiv) for 3 h to give the crude amine (10.3 g , quant.). Acylation with $\mathrm{Boc}_{2} \mathrm{O}(6.48 \mathrm{~g}, 29.7 \mathrm{mmol}$, 1.5 equiv), $\mathrm{NaHCO}_{3}(2.73 \mathrm{~g}, 25.7 \mathrm{mmol}, 1.3$ equiv) in MeOH (100 mL) for 16 h gave $\mathbf{1 1 e}(1.20 \mathrm{~g}, 15 \%)$ after purification by flash chromatography (cyclohexane/AcOEt 8/2). The trans-11e isomer could be obtained pure.
cis-11e: cream resin. IR (KBr): 3450, 3355, 1667, 1529, 1367, $1168 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.32,7.31(2 \mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H, H-2,H-3); 4.92 (br s, 1H, NH); 4.22 (d, 1H, H-6); 3.75 (m, 1H, H-7); 3.70 (m, 1H, Ha-9); 3.43 (m, 1H, Ha-5); 3.09 (m, 1H, Hb-5); 2.77 (m, 1H, Hb-9); 2.01 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Ha}-8$); 1.53 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Hb}-8$); 1.53 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 27.1$ (C(9)); 28.4 (CMe_{3}); 31.2 (C(8)); 37.9 (C(5)); 56.1 (C(7)); 68.3 (C(6)); 79.6 (CMe_{3}); 123.8, 124.6 (C(1),C(4)); 131.8, 132.4 (C(2),C(3)); 141.7, 143.3 (C(4a),C(9a)); 155.2 (NCO).
trans-11e: cream crystals, mp 175-180 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3360,2980 , 1677, 1521, 1368, 1324, 1173, $1045 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 400 MHz): 7.29, 7.28 (2 d, $2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-3$); 4.54 (br s, 1H, NH); 3.70 (br s, 1H, H-7); 3.64 (dd, 1H, Ha-5); 3.42 (ddd, 1H, На9); 3.34 (ddd, IH, H-6); 3.02 (dd, 1H, Hb-5); 2.80 (ddd, 1H, Hb-9); 2.22 (dddt, 1H, Ha-8); 1.27 (dq, 1H, Hb-8); 1.45 (s, 9H, CMe $)_{3}$; $J(5 \mathrm{a}, 5 \mathrm{~b})=14.5, \quad J(5 \mathrm{a}, 6)=1.8, \quad J(5 \mathrm{~b}, 6)=10.2, \quad J(6,7)=8.6, \quad J(6,8 \mathrm{a})=$ $1.0, \quad J(7,8 \mathrm{a})=4.5, \quad J(7,8 \mathrm{~b})=11.0, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=13.7, \quad J(8 \mathrm{a}, 9 \mathrm{a})=8.0$, $J(8 a, 9 b)=1.8, J(8 b, 9 a)=1.0, J(8 b, 9 b)=11.5, J(9 a, 9 b)=14.8 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 28.3\left(\mathrm{CMe}_{3}\right) ; 30.7(\mathrm{C}(9)) ; 31.3(\mathrm{C}(8))$; 40.4 (C(5)); 59.7 (C(7)); 73.5 (C(6)); 80.4 (CMe $\left._{3}\right) ; 122.9,124.5$ (C(4),C(1)); 131.9, 132.1 (C(2),C(3)); 138.2, 143.2 (C(4a),C(9a)); 156.8 (NCO). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{NNaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}$: 457.9761; found: 457.9753.
10.5. 9-tert-Butoxycarbonylamino-8,9,10,11-tetrahydro-7-H-cyclohepta[a]naphthalen-10-ol (cis/trans mixture, 11h) and 9-tert-butoxycarbonylamino-8,9,10,11-tetrahydro-7-H-cyclohep-ta[a]naphthalen-8-ol (cis/trans mixture, 11h')

General procedure (g) with $\mathbf{1 0 h} / \mathbf{1 0 h}^{\prime}(0.9 \mathrm{~g}, 3.02 \mathrm{mmol})$ in 2 M NH_{3} solution in EtOH (15 mL) and with $\mathrm{Ti}(\mathrm{OiPr})_{4}(1.8 \mathrm{~mL}$, 6.03 mmol , 2 equiv) for 6 h , then reduction with NaBH_{4} (171 mg , $4.5 \mathrm{mmol}, 1.2$ equiv) for 2 h to give the crude amine (560 mg , 81%). Acylation of the crude amine ($1.2 \mathrm{~g}, 5.15 \mathrm{mmol}$) with $\mathrm{Boc}_{2} \mathrm{O}$ ($\left(1.7 \mathrm{~g}, 7.73 \mathrm{mmol}, \quad 1.5\right.$ equiv), $\mathrm{NaHCO}_{3} \quad(562 \mathrm{mg}, 6.69 \mathrm{mmol}$ 1.3 equiv) in $\mathrm{MeOH}(20 \mathrm{~mL})$ for 16 h gave the $50: 50$ mixture of $\mathbf{1 1 h} / \mathbf{1 1 h} \mathbf{h}^{\prime}(0.70 \mathrm{~g}, 41 \%)$ which was resolved by chromatography ($\mathrm{AcOEt} / \mathrm{cyclohexane}^{2} \mathrm{Et}_{2} \mathrm{O}$) in the order cis-11h, cis-11h', trans11h, trans-11h'.
cis-11h: obtained impur and characterised by NMR only. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 8.17 (d, 1H, Har-1); 7.83 (d, 1H, Har-4); 7.72 (d, 1H, Har-5); 7.53 (td, 1H, Har-2); 7.44 (dt, 1H, Har-3); 7.30 (dd, 1H, Har-6); 5.07 (d, 1H, J=8.3 Hz, NH), 4.27 (dt, 1H, $J=1.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.95(\mathrm{~m}, 2 \mathrm{H}) ; 3.14(\mathrm{~d}, 1 \mathrm{H}, J=14.9 \mathrm{~Hz}, \mathrm{Hb}-11)$; 2.95 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}(7)$); 2.08 (m, 1H, На-8); 1.46 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Hb}-8$); $1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ; J(1,2)=8.6, J(1.3)=1.4, J(2,3)=6.8, J(2,4)=1.2$, $J(3,4)=8.0, J(5,6)=8.2 \mathrm{~Hz}$.
cis-11h': colorless crystals, mp 195-196 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 400 MHz): 8.12 (d, 1H, Har-1); 7.85 (d, 1H, Har-4); 7.70 (d, 1H, Har-5); 7.51 (dt, 1H, Har-2); 7.42 (dt, 1H, Har-3); 7.70 (d, 1H, Har-6); 5.06 (d, $1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{NH}$), 4.17 (br t, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}-8$); 3.93 (br s, 1H, H-9); 3.64 (dd, 1H, J=8.0, $14.8 \mathrm{~Hz}, \mathrm{Ha}-11$); 3.34 (d, $1 \mathrm{H}, J=14.5 \mathrm{~Hz}, \mathrm{Ha}-7$); 3.24 (dd, $1 \mathrm{H}, J=7.4,14.5 \mathrm{~Hz}, \mathrm{Hb}-7$); 2.78 (dd, $1 \mathrm{H}, J=11.4,14.8 \mathrm{~Hz}, \mathrm{Hb}-11$); 2.15 (ddd, $1 \mathrm{H}, J=4.2,8.0$, $13.4 \mathrm{~Hz}, \mathrm{Ha}-10)$; $1.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Hb}-10)$; 1.46 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}$); $J(1,2)=8.6, \quad J(1.3)=1.2, \quad J(2,3)=6.8, \quad J(2,4)=1.4, \quad J(3,4)=8.0$, $J(5,6)=8.1 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 155.4$ (NCO); 138.4 (C(6a)); 133.3, 131.5, 131.2 (C(4a),C(11a),C(11b)); 130.0 128.7, 126.6 (C(4),C(5),C(6)); 126.3 (C(2)); 125.2 (C(3)); 123.1 (C(1)); 79.5 (CMe_{3}); 69.0 (C(8)); 56.9 (C(9)); 39.6 (C(7)); $28.5\left(\mathrm{CMe}_{3}\right)$; $27.8(\mathrm{C}(10))$; $24.4(\mathrm{C}(11))$. HRMS (ESI^{+}) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NNaO}_{3}{ }^{+}$ [$\mathrm{M}+\mathrm{Na}]^{+}$: 350.1727; found: 350.1720.
trans-11h: colorless crystals, mp 178-179 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3367, 2979, 2932, 1681, 1522, 1370, 1316, 1245, 1172, 1001, $743 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 8.23 (d, 1H, Har-1); 7.82 (d, 1H, Har4); 7.67 (d, 1H, Har-5); 7.52 (td, 1H, Har-2); 7.46 (t, 1H, Har-3); 7.25 (d, 1H, Har-6); 4.53 (d, 1H, NH), 3.81 (d, 2H, Ha-11, H-9); 3.37 (m, 2H, H-10, OH); 3.10 (dd, 1H, Hb-11); 3.07 (dt, 1H, Ha7); 2.87 (ddd, $1 \mathrm{H}, \mathrm{Hb}-7$); 2.25 (m, 1H, Ha-C(8)); 1.47 (s, 9H, CMe_{3}); $1.33(\mathrm{dq}, 1 \mathrm{H}, \mathrm{Hb}-8) ; J(1,2)=8.6, J(1.3)=1.0, J(2,3)=6.8$, $J(2,4)=1.4, J(3,4)=8.0, J(5,6)=8.3, J(7 a, 7 b)=14.9, J(7 a, 8 a)=1.6$, $J(7 \mathrm{a}, 8 \mathrm{~b})=11.6, \quad J(7 \mathrm{~b}, 8 \mathrm{a})=7.5, \quad J(7 \mathrm{~b}, 8 \mathrm{~b})=1.6, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=13.5$, $J(8 \mathrm{a}, 9)=4.2, J(8 \mathrm{~b}, 9)=11.6, J(9, \mathrm{NH})=8.5, J(9,10)$ not determined, $J(10,11 \mathrm{a})=1.6, \quad J(10,11 \mathrm{~b})=10.2, \quad J(11 \mathrm{a}, 11 \mathrm{~b})=14.8 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): 157.0 (NCO); 140.0 (C(6a)); 132.8, 132.1, 131.9 (C(4a),C(11a),C(11b)); 128.6 127.5, 127.0 (C(4),C(5),C(6)); 126.3 (C(2)); 124.9 (C(3)); 123.3 (C(1)); 80.3 (CMe $\left.)_{3}\right) ; 74.1$ (C(10); 60.3 (C(9)); 34.1 (C(11)); 32.9, 32.2 (C(7), C(8)); 28.4 (CMe_{3}). HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 350.1727; found: 350.1720 .
trans-11h': colorless crystals, mp 174-175 ${ }^{\circ} \mathrm{C}$. IR (KBr): 740, 815, $1007,1172,1244,1317,1366,1523,1682,2930,2982,3357 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 8.08 (d, 1H, Har-1); 7.83 (dd, 1H, Har4); 7.68 (d, 1H, Har-5); 7.50 (td, 1H, Har-2); 7.44 (dt, 1H, Har-3); 7.36 (d, 1H, Har-6); 4.55 (br d, 1H, NH), 3.77 (br q, 1H, H-9); 3.62 (dd, 1H, Ha-11); 3.39 (dt, 1H, H-8); 3.28 (dd, 1H, Нa-7, OH-8); 3.13 (dd, 1H, Hb-7); 2.87 (dd, 1H, Hb-11); 2.33 (m, 1H, Ha-10); 1.47 (s, $\left.1 \mathrm{H}, \mathrm{CMe}_{3}\right) ; 1.34(\mathrm{q}, 1 \mathrm{H}, \mathrm{Hb}-10) ; J(1,2)=8.4, J(1.3)=1.0, J(2,3)=6.8$, $J(2,4)=1.4, J(3,4)=8.0, J(5,6)=8.2, J(9, \mathrm{NH})=$ ca. $8.5, J(7 \mathrm{a}, 7 \mathrm{~b})=$ 14.0, $\quad J(7 \mathrm{a}, 8)=10.2, \quad J(7 \mathrm{~b}, 8)=2.0, \quad J(8,9)=9.0, \quad J(9,10 \mathrm{a})=4.4$,
$J(9,10 \mathrm{~b})=11.4, J(10 \mathrm{a}, 10 \mathrm{~b})=13.4, J(10 \mathrm{a}, 11 \mathrm{a})=8.0, J(10 \mathrm{a}, 11 \mathrm{~b})=1.2$, $J(10 \mathrm{~b}, 11 \mathrm{a})=1.0, J(10 \mathrm{~b}, 11 \mathrm{~b})=11.2, J(11 \mathrm{a}, 11 \mathrm{~b})=15.0 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 156.9$ (NCO); 137.6 (C(6a)); 134.2, 132.9, 131.0 (C(4a),C(11a),C(11b)); 128.8, 128.7 (C(4), C(6)); 126.7, 126.3 (C(5),C(2)); 125.0 (C(3)); 122.8 (C(1)); 80.3 (CMe $_{3}$); 74.4 (C(8)); $60.1(\mathrm{C}(9)) ; 42.0(\mathrm{C}(7)) ; 32.1(\mathrm{C}(10)) ; 28.3\left(\mathrm{CMe}_{3}\right) ; 23.9(\mathrm{C}(11))$.HRMS (ESI^{+}) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 350.1727$; found: 350.1718 .

11. Preparation and reduction of the oximes $13 c, c^{\prime}, d, d^{\prime}$

11.1. 4-Bromo-6-hydroxy-5,6,8,9-tetrahydrobenzocyclohepten-7-hydroxyimine (13c) and 1-bromo-6-hydroxy-5,6,8,9-tetrahy-drobenzocyclohepten-8-hydroxyimine (13c')

A solution of $\mathbf{1 0 c} / \mathbf{1 0 ́ c}(780 \mathrm{mg}, 2.38 \mathrm{mmol})$ in pyridine (4 ml) with $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(199 \mathrm{mg}, 2.86 \mathrm{mmol}, 1.2$ equiv) was stirred under Ar for 5 h at rt. The solvent was evaporated and the residue dissolved in $\mathrm{MeCN}(1-2 \mathrm{~mL})$ and AcOEt (10 mL) with $\mathrm{NBu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{~g}, 0.5 \mathrm{mmol}, 0.2$ equiv). The solution was stirred for 1 h at rt , then washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The isomer $\mathbf{1 3} \mathbf{c}^{\prime}$ crystallised partially by triturating in AcOEt/cyclohexane and was isolated by filtration and washing with MeCN then with $\mathrm{Et}_{2} \mathrm{O}$. A chromatography of the mother liquor cyclohexane/AcOEt 6:4 (13c $R_{\mathrm{f}}=0.43$, 13c \mathbf{c}^{\prime} $\left.R_{\mathrm{f}}=0.31\right)$ gave $\mathbf{1 3 c}(210 \mathrm{mg}, 33 \%)$ and the remaining $\mathbf{1 3 c}^{\prime}$. Global yield of $\mathbf{1 3 c}^{\prime}$: $230 \mathrm{mg}, 35 \%$.

Compound 13c: colorless crystals, mp 142-143 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3530, 3441, 3209, 2882, 1448, 1062, 943, 922, 841, 782, $705 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 7.43 (dd, $1 \mathrm{H}, \mathrm{H}-1$); 7.14 (dd, 1H, H-3); 7.02 (t, 1H, H-2); 4.39 (dd, 1H, H-6); 3.39 (dd, 1H, Ha-5); 3.34 (dd, 1H, Hb-5); 3.20 (dddd, 1H, Ha-8); 3.04 (ddd, 1H, Ha-9); 2.83 (ddd, 1H, Hb-9); 2.45 (ddd, 1H, Hb-8); J(1,2) = 7.4, ${ }^{4} J(1,3)=1.3, J(2,3)=8.0, J(5 a, 5 b)=14.3, J(5 a, 6)=8.2, J(5 b, 6)=4.5$, $J(8 \mathrm{a}, 8 \mathrm{~b})=14.3, \quad J(8 \mathrm{a}, 9 \mathrm{a})=8.2, \quad J(8 \mathrm{a}, 9 \mathrm{~b})=4.8, \quad J(8 \mathrm{~b}, 9 \mathrm{a})=5.0$, $J(8 \mathrm{~b}, 9 \mathrm{~b})=7.9, \quad J(9 \mathrm{a}, 9 \mathrm{~b})=14.4 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: 161.6 ($\mathrm{C}=\mathrm{N}$); 144.9, 137.1 (C(4a), C(9a)); 132.2 (C(3)); 129.4 (C(1)); 128.9 (C(2)); 126.7 (C(4)); 71.4 (C(6)); 40.0 (C(5)); 32.7 (C(9)); 22.9 (C(8)). HR-MS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 270.0124 and 272.0103 ; found: 270.0122 and 272.0105 .

Compound 13c': colorless crystals, mp 176-177 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3496, 3213, 2919, 1466, 1447, 1057, 1010, 950, 904, 777, $737 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 7.45 (dd, $1 \mathrm{H}, \mathrm{H}-2$); 7.16 (dd, 1H, H-4); 7.01 (t, 1H, H-3); 4.41 (m, 1H, H-6); 3.33 (ddd, 1H, Ha-9); 3.24 (ddd, 1H, Ha-8); 3.15 (d, 2H, CH $\mathrm{CH}_{2}(5)$); 2.93 (ddd, 1H, $\mathrm{Hb}-9) ; 2.31$ (ddd, $1 \mathrm{H}, \mathrm{Hb}-8$); $J(2,3)=8.0,{ }^{4} J(2,4)=1.2, J(3,4)=7.8$, $J(6,8)=1.0, J(8 \mathrm{a}, 8 \mathrm{~b})=14.0, J(8 \mathrm{a}, 9 \mathrm{a})=8.8, J(8 \mathrm{a}, 9 \mathrm{~b})=3.3, J(8 \mathrm{~b}, 9 \mathrm{a})=$ $3.2, J(8 b, 9 b)=8.8, J(9 a, 9 b)=14.0 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: $161.8(\mathrm{C}=\mathrm{N}), 141.5,140.2(\mathrm{C}(9 \mathrm{a}), \mathrm{C}(4 \mathrm{a})), 132.4(\mathrm{C}(2)), 131.4(\mathrm{C}(4))$, $128.7(C(3)), 125.0(C(1)), 71.8(C(6)), 42.5(C(5)), 30.6(C(9))$, 22.1 (C(8)). HR-MS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}_{2} \quad[\mathrm{M}+\mathrm{H}]^{+}$: 270.0124 and 272,0103 ; found: 270.0122 and 272,0105 . Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrNO}_{2}$ (270.12): C, 48.91; H, 4.48; N, 5.19. Found: C, 48.9; H, 4.5; N, 5.2.

11.2. 4-Bromo-6-hydroxy-1-phenyl-5,6,8,9-tetrahydrobenzocy-clohepten-7-hydroxyimine (13d) and 1-bromo-6-hydroxy-4-phenyl-5,6,8,9-tetrahydrobenzocyclohepten-8-hydroxyimine (13d')

A solution of $\mathbf{1 0 d} / \mathbf{1 0 d} \mathbf{d}^{\prime}(8.6 \mathrm{~g}, 21 \mathrm{mmol})$ in pyridine (86 mL) was stirred with $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(1.8 \mathrm{~g}, 25 \mathrm{mmol}, 1.2$ equiv) at rt for 16 h . Same work-up as for $\mathbf{1 3 c} / \mathbf{1 3 c}$ '. The crude oxime mixture (7.4 g , quant.) was purified by flash chromatography (cyclohexane/AcOEt 6:4) to give a $60: 40$ mixture of $\mathbf{1 3 d} / \mathbf{1 3 d}^{\prime}(90: 10 \mathrm{E} / \mathrm{Z}$ mixtures, 5.4 g , 73\%).

Compound 13d/13d': colorless crystals, mp 50-52 ${ }^{\circ} \mathrm{C}$. IR ($\mathrm{KBr)}$: 704, 770, 821, 924, 946, 1028, 1064, 1454, 1705, 2918, 3058, $3327 \mathrm{~cm}^{-1}$. HR-MS (ESI $)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrNO}_{2} \quad[\mathrm{M}+\mathrm{H}]^{+}$: 346.0437 and 348.0418 ; found: 346.0424 and 348.0400 .

Compound 13d: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ major oxime E : 7.30-7.45 (m, 4Har); 7.24 (m, 2Har); 6.95 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{Har}$); 4.44 (dd, 1H, H-6); 3.52 (dd, 1H, Ha-5); 3.34 (dd, 1H, Hb-5); $2.67-2.97(\mathrm{~m}, 4 \mathrm{H}) ; J(5 \mathrm{a}, 5 \mathrm{~b})=14.4, J(5 \mathrm{a}, 6)=4.0, J(5 \mathrm{~b}, 6)=8.8 \mathrm{~Hz}$. Oxime Z, partial data: 5.46 (dd, $1 \mathrm{H}, J=3.9,8.9 \mathrm{~Hz}, \mathrm{H}-6$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) major oxime E: 161.2 (C(7)); 141.1 (C(9a)); 140.9 (Car-s); 140.5 (C(1)); 135.7 (C(4a)); 130.4 (C(3)); 129.8 (C(2)); 129.0 (CHar-m); 128.2 (CHar-o); 127.2 (CHar-p); 124.8 (C(4)); 70.0 (C(6)); 38.9 (C(5)); 26.9 (C(9)); 22.8 (C(8)).

Compound 13d': ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ major oxime E : 7.30-7.45 (m, 4Har); 7.24 (m, 2Har); 6.95 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{Har}$); 4.32 (dd, 1H, H-6); 3.16 (m, 2H, CH2(9)); 3.10 (dd, 1H, Ha-5); 3.04 (dd, 1H, Hb-5); 2.67-2.97 (m, 2H, CH 2 (8)); $J(5 \mathrm{a}, 5 \mathrm{~b})=14.4$, $J(5 \mathrm{a}, 6)=4.4, J(5 \mathrm{~b}, 6)=8.4 \mathrm{~Hz}$. Oxime Z, partial data: 5.35 (dd, 1 H , $J=4.2,8.5 \mathrm{~Hz}, \mathrm{H}-6) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) major oxime E : 161.6 (C(7)); 142.6 (C(4a)); 140.8 (Car-s); 140.5 (C(4)); 135.5 (C(9a)); 130.7 (C(2)); 129.6 (C(3)); 129.2 (Car-m); 128.1 (Car-o); 127.2 (Car-p); 123.2 (C(1)); 70.8 (C(6)); 36.6 (C(5)); 29.4 (C(9)); 22.2 (C(8)).

11.3. Reduction of $\mathbf{1 3 c}$

A solution of $\mathbf{1 3 c}(1.01 \mathrm{~g}, 3.75 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{~mL})$ and concentrated aqueous $\mathrm{NH}_{4} \mathrm{OH}$ solution ($12 \mathrm{ml}, 180 \mathrm{mmol}, 50$ equiv) was hydrogenolysed at rt over wet Raney-nickel (1.8-2.0 g) at rt for $30-50 \mathrm{~min}$ with NMR monitoring. When the reduction was complete, the catalyst was discarded by centrifugation or filtration over Celite. The solution was evaporated to give crude amine (0.95 g , ca. 95%) which was directly N -protected. A solution od the crude amine in $\mathrm{MeOH}(10 \mathrm{ml})$ was stirred with $\mathrm{Boc}_{2} \mathrm{O}(1.22 \mathrm{~g}$, 5.65 mmol , 1.5 equiv) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g}, 4.81 \mathrm{mmol}, 1.3$ equiv) for 16 h at rt . AcOEt was added (50 mL) and the solution washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give 11c (1.12 g , 85%) as 50:50 cis/trans isomeric mixture.

11.4. Reduction of $\mathbf{1 3} \mathbf{c}^{\prime}$

Same procedure as for $\mathbf{1 3 c}$ with $\mathbf{1 3} \mathbf{c}^{\prime}(0.47 \mathrm{~g}, 1.75 \mathrm{mmol})$ in EtOH (10 mL), wet Raney-nickel (0.85 g) and aqueous concentrated $\mathrm{NH}_{4} \mathrm{OH}$ solution ($6 \mathrm{ml}, 90 \mathrm{mmol}, 50$ equiv). Same work-up and N protection with $\mathrm{Boc}_{2} \mathrm{O}\left(0.57 \mathrm{~g}, 2.6 \mathrm{mmol}, 1.5\right.$ equiv) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($0.24 \mathrm{~g}, 2.26 \mathrm{mmol}, 1.3$ equiv) gave $11 \mathbf{c}^{\prime}(0.61 \mathrm{~g}, 98 \%)$ as $50: 50 \mathrm{cis} /$ trans isomeric mixture.

11.5. Reduction of $13 d, d^{\prime}$

Same procedure as for $\mathbf{1 3 c}$ with the mixture 13d, \mathbf{d}^{\prime} (468 mg , 1.35 mmol) in EtOH (19 ml), aqueous concentrated $\mathrm{NH}_{4} \mathrm{OH}$ solution (5.6 ml , 79 equiv) and wet Raney-nickel (0.9 g) for 1 h at rt. Same work-up and N-protection with $\mathrm{Boc}_{2} \mathrm{O}(0.46 \mathrm{~g}, 2.1 \mathrm{mmol}$, 1.5 equiv) and NaHCO_{3} ($0.15 \mathrm{~g}, 1.8 \mathrm{mmol}, 1.3$ equiv) in MeOH $(7 \mathrm{~mL})$ gave the $60: 40$ isomeric mixture $\mathbf{1 1 d} / \mathbf{1 1 d}{ }^{\prime}(508 \mathrm{mg}, 87 \%)$, mp 174-176 ${ }^{\circ} \mathrm{C}$.

12. Keto-amides $\mathbf{1 2 c} \mathbf{c e}, \mathbf{b}^{\prime}-\mathbf{d}^{\prime}, \mathbf{h}, \mathbf{h}^{\prime}$

General procedure (h): To a solution of $\mathbf{1 1}$ or $\mathbf{1 1}^{\prime}(10 \mathrm{mmol})$ in wet $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was added Dess-Martin periodinane (DMP) ($6-9 \mathrm{~g}, 15-20 \mathrm{mmol}, 1.5-2$ equiv) and the mixture stirred at rt for 2 h (tlc monitoring). After dilution with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, the solution was vigorously stirred with aqueous 1 M NaHCO 3 solution
(50 mL , containing $\mathrm{Na}_{2} \mathrm{SO}_{3}\left(2.5 \mathrm{~g}, 20 \mathrm{mmol}\right.$), or $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ $(15 \mathrm{~g}, 60 \mathrm{mmol})$) for 20 min , the organic phase was washed with aqueous 1 M NaHCO 3 solution (50 mL) and then with brine (50 mL), dried over MgSO_{4} and evaporated to give the crude amide 12 which was crystallised from $i \mathrm{Pr}_{2} \mathrm{O}$.

12.1. 7-tert-Butoxycarbonylamino-1-chloro-5,7,8,9-tetrahydro-benzocyclohepten-6-one (12b')

General procedure (h) with cis/trans- $\mathbf{1 1 \mathbf { b } ^ { \prime }}$ ($0.25 \mathrm{~g}, 0.80 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 mL) and with DMP ($510 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.5$ equiv) for 3 h to give 12b' ($0.23 \mathrm{~g}, 92 \%$).

Compound 12b': colorless crystals, mp 132-134 ${ }^{\circ} \mathrm{C}$. IR (KBr): 2963, 2924, 1724, 1489, 1447, 1447, 1147, 1046, 989, $782 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 7.31$ (dd, $1 \mathrm{H}, J=1.8,7.5 \mathrm{~Hz}, \mathrm{H}-2$); 7.10 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4$); $5.36(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{NH}), 4.49(\mathrm{dt}, 1 \mathrm{H}, J=11.1$, $7.5 \mathrm{~Hz}, \mathrm{H}-7$), 3.87 (d, $1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{Ha}-5$); 3.67 (d, 1 H , $J=16.0 \mathrm{~Hz}, \mathrm{Hb}-5$); 3.14 (m, 2H, CH (9)); 2.61 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Ha}-8$); 1.48 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Hb}-8$); $1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 205.0$ (CO(6)); 155.0 (NCO); 137.3 (C(9a)); 134.7, 133.8 (C(4a), C(1)); 129.0, 128.3, 128.0 (C(2), (C(3), (C(4)); $79.9\left(\mathrm{CMe}_{3}\right) ; 59.7$ (C(7)); 48.2 (C(5)); 32.9 (C(8)); 28.3 (CMe ${ }^{3}$); 26.0 (C(9)). HR-MS (ESI-QTof) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClLiNO}_{3}[\mathrm{M}+\mathrm{Li}]^{+}$: 318.1443; found: 318.1381; calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClNaNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 334.1180; found: 334.1124.

12.2. 4-Bromo-7-tert-Butoxycarbonylamino-5,7,8,9-tetrahydro-benzocyclohepten-6-one (12c)

General procedure (h) with cis/trans-11c ($1.10 \mathrm{~g}, 3.08 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and with DMP ($2.61 \mathrm{~g}, 6.16 \mathrm{mmol}, 2$ equiv) for 3 h to give 12c ($816 \mathrm{mg}, 75 \%$).

Compound 12c: colorless crystals, mp $164-166^{\circ} \mathrm{C}$. IR (KBr): 3297, 2978, 1724, 1682, 1542, 1442, 1365, 1298, 1276, 1255, 1187, 1171, 1091, 1056, 1010, $782 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 400 MHz): 7.49 (d, 1H, H-3); 7.12 (d, 1H, H-1); 7.06 (t, 1H, H-2); 5.41 (d, 1H, NH); 4.49 (m, 1H, H-7); 4.15 (d, 1H, Ha-5); 3.99 (d, 1H, Hb-5); 2.97 (m, 1H, Нa-9); 2.89 (ddd, 1H, Hb-9); 2.62 (m, 1H, $\mathrm{Ha}-8) ; 1.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Hb}-8) ; 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ; J(1,2)=7.8$, $J(1,3)=1.2, J(2,3)=7.4, J(5 \mathrm{a}, 5 \mathrm{~b})=16.5, J(\mathrm{NH}, 7)=7.0, J(7,8 \mathrm{a})=7.6$, $J(7,8 \mathrm{~b})=10.8, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=12.6, \quad J(8 \mathrm{a}, 9 \mathrm{a})=4.8, \quad J(8 \mathrm{a}, 9 \mathrm{~b})=10.2$, $J(8 \mathrm{~b}, 9 \mathrm{a})=6.4, J(8 \mathrm{~b}, 9 \mathrm{~b})=4.6, J(9 \mathrm{a}, 9 \mathrm{~b})=14.6 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz): 205.2 (C(6)); $153.3\left(\mathrm{NCO}_{2}\right) ; 142.4$ (C(9a)); 132.7 (C(4a)); 132.2 (C(3)); 129.5, 128.9 (C(1),C(2)); 125.4 (C(4)); 80.3 (СМе $)_{3}$; 59.7 (C(7)); 47.0 (C(5)); 34.5 (C(8)); 31.9 (C(9)); 28.7 $\left(\mathrm{CMe}_{3}\right)$. HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrLiNO}_{3}(\mathrm{M}+\mathrm{Li})^{+}$: 360.0781 and 362.0763 ; found: 360.0740 and 362.0736 .

12.3. 1-Bromo-7-tert-Butoxycarbonylamino-5,7,8,9-tetrahydro-benzocyclohepten-6-one (12c')

General procedure (h) with cis/trans-11c' ($250 \mathrm{mg}, 0.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL) and with DMP ($0.60 \mathrm{~g}, 1.4 \mathrm{mmol}, 2$ equiv) for 3 h to give 12c' ($164 \mathrm{mg}, 66 \%$).

Compound 12c': colorless crystals, mp $114-116{ }^{\circ} \mathrm{C}$. IR (KBr): 3422, 2969, 2928, 1684, 1654, 1446, 1264, 1166, $1113 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 7.50 (d, 1H, H-2); 7.12 (d, 1H, H-4); 7.04 (dd, 1H, H-3); 5.35 (br d, 1H, NH); 4.49 (dt, 1H, H-7); 3.88 (d, 1H, Ha-5); 3.70 (d, 1H, Hb-5); 3.21 (ddd, 1H, Ha-9); 3.15 (ddd, 1H, Hb9); 2.62 (m, 1H, На-8); $1.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Hb}-8) ; 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right)$; $J(2,3)=8.0, J(2,4)=1.2, J(3,4)=7.4, J(5 \mathrm{a}, 5 \mathrm{~b})=16.1, J(\mathrm{NH}, 7)=7.4$, $J(7,8 a)=7.6, J(7,8 b)=11.0, J(8 a, 8 b)=13.2, J(8 a, 9 a)=4.4, J(8 a, 9 b)=$ $10.4, \quad J(8 \mathrm{~b}, 9 \mathrm{a})=6.4, \quad J(8 \mathrm{~b}, 9 \mathrm{~b})=4.2, \quad J(9 \mathrm{a}, 9 \mathrm{~b})=14.8 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): 205.2 (CO(6)); 155.1 (NCO); 139.1 (C(9a)); 134.8 (C(4a)); 132.5 (C(2)); 129.2 (C(4)); 128.5 (C(3)); 124.7 (C(1)); 80.0 (СМе $)_{3}$; 59.6 (C(7)); 48.6 (C(5)); 32.9 (C(8)); 29.4 (C(9)); 28.4
(CMe ${ }_{3}$). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrLiNO}_{3}[\mathrm{M}+\mathrm{Li}]^{+}$: 360.0781 and 362.0763 ; found: 360.0781 and 362.0767 .
12.4. 4-Bromo-7-(tert-butoxycarbonylamino)-1-phenyl-5,7,8,9-tetrahydrobenzocyclohepten-6-one (12d) and 1-bromo-7-(tert-butoxycarbonylamino)-4-phenyl-5,7,8,9-tetrahydrobenzocyclo-hepten-6-one (12d')

General procedure (h) with the isomeric mixture 11d/11d ${ }^{\prime}$ ($364 \mathrm{mg}, 0.84 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and with DMP $(1.07 \mathrm{~g}$, $2.53 \mathrm{mmol}, 3$ equiv) for 2 h to give $\mathbf{1 2 d} / \mathbf{1 2 d}^{\prime}(198 \mathrm{mg}, 54 \%)$ which were separated by par HPLC ($\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 7: 3$) to give 12d $(137 \mathrm{mg}, 38 \%)$ and $\mathbf{1 2 d ^ { \prime }}$ ($61 \mathrm{mg}, 17 \%$).

Compound 12d: colorless crystals, mp 148-154 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3332, 2984, 2930, 1725, 1678, 1529, 1451, 1371, 1333, 1300, 1274, 1252, 1170, 1051, 1008, 764, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 400 MHz): 7.52 (d, 1H, H-3); 7.44-7.35 (m, 3Har); 7.27-7.24 (m, 2Har); 7.05 (d, 1H, H-2); 5.43 (d, 1H, NH); 4.54 (m, 1H, H7); 4.30 (d, 1H, Ha-5); 3.97 (d, 1H, Hb-5); 2.88 (dt, 1H, Ha-9); 2.77 (ddd, 1H, Hb-9); 2.51 (m, 1H, Ha-8); 1.48 (m, 1H, Hb-8); $1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ; J(5 \mathrm{a}, 5 \mathrm{~b})=17.6, J(2,3)=8.3 ; J(7, \mathrm{NH})=7.0$; $J(7,8 \mathrm{a})=8.0, \quad J(7,8 \mathrm{~b})=11.0, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=13.2, \quad J(8 \mathrm{a}, 9 \mathrm{a})=5.0$; $J(8 \mathrm{a}, 9 \mathrm{~b})=11.2 ; \quad J(8 \mathrm{~b}, 9 \mathrm{a})=5.2 ; \quad J(8 \mathrm{~b}, 9 \mathrm{~b})=5.2 ; \quad J(9 \mathrm{a}, 9 \mathrm{~b})=14.7 \mathrm{~Hz}$. ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): 205.2 (C(6)); 154.9 (NCO); 141.7 (C(9a)); 140.4, 139.1 (C(1),Car-s); 132.6 (C(4a)); 131.0 (C(3)); 130.7 (C(2)); 129.0 (Car-o); 128.3 (Car-m); 127.4 (Car-p); 124.1 (C(4)); 79.8 (CMe_{3}); 58.5 (C(7)); 47.1 (C(5)); 33.8 (C(8)); 28.3 $\left(\mathrm{CMe}_{3}\right) ; 27.2$ (C(9)). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrNO}_{3}$ (430.33): C, 61.40; H, 5.62; N, 3.25; Br, 18.57. Found: C, 61.2; H, 5.4; N, 3.1; Br, 18.5 .

Compound 12d': colorless crystals, mp $144-150{ }^{\circ} \mathrm{C}$. IR (KBr): 3301, 2977, 2934, 1725, 1704, 1702, 1675, 1542, 1453, 1366, 1183, 1170, 703. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 7.54 (d, $1 \mathrm{H}, \mathrm{H}-2$); 7.45-7.34 (m, 3Har); 7.29 (d, 2Har, $J=7.2 \mathrm{~Hz}$); 7.05 (d, 1H, H3); 5.37 (d, 1H, NH); 4.48 (m, 1H, H-7); 3.85 (d, 1H, Ha-5); 3.72 (d, 1H, Hb-5); 3.30 (ddd, 1H, Ha-9); 3.17 (ddd, 1H, Hb-9); 2.68 (m, 1H, Ha-8); 1.54 (m, 1H, Hb-8); 1.43 (s, 9H, CMe $)_{\text {); }}$ $J(2,3)=8.2 \mathrm{~Hz}, J(5 \mathrm{a}, 5 \mathrm{~b})=17.0, J(7, \mathrm{NH})=7.2, J(7,8 \mathrm{a})=7.9, J(7,8 \mathrm{~b})=$ $10.8, J(8 a, 8 b)=13.0, J(8 a, 9 a)=4.5, J(8 a, 9 b)=11.0, J(8 b, 9 a)=6.0$, $J(8 \mathrm{~b}, 9 \mathrm{~b})=4.4, \quad J(9 \mathrm{a}, 9 \mathrm{~b})=14.7 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \quad 100 \mathrm{MHz}\right):$ 205.6 (C(6)); 154.8 (NCO); 142.0 (C(9a)); 139.8, 139.1 (C(4),Car-s); 132.3 (C(4a)); 131.6, 130.1, 129.5, 128.4, 127.5 (C(2),C(3), 3Car); 123.6 (C(1)); 79.8 (CMe_{3}); 59.1 (C(7)); 44.6 (C(5)); 32.5 (C(8)); 29.8 (C(9)); 28.3 (CMe). HR-MS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrNO}_{3} \mathrm{Li}[\mathrm{M}+\mathrm{Li}]^{+}: 436.1095$ and 438.1077; found: 436.1086 and 438.1065.

12.5. 1,4-Dibromo-7-(tert-butoxycarbonylamino)-5,7,8,9-tetrahydrobenzocyclohepten-6-one (12e)

General procedure (h) with cis/trans-11e ($901 \mathrm{mg}, 2.07 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) and with DMP ($1.14 \mathrm{~g}, 2.69 \mathrm{mmol}, 1.3$ equiv) for 2 h to give $\mathbf{1 2 e}$ ($710 \mathrm{mg}, 79 \%$).

Compound 12e: yellowish crystals, mp 185-186 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3277, 2974, 1731, 1675, 1540, 1439, 1365, 1272, 1164, 1052, $978,808 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 7.38,7.36$ ($2 \mathrm{~d}, 2 \mathrm{H}$, H-2, H-3); 5.36 (d, 1H, NH); 4.41 (q, 1H, H-7); 4.27 (d, 1H, Ha5); 3.92 (d, 1H, Hb-5); 3.32 (ddd, 1H, Ha-9); 3.02 (ddd, 1 H , Hb-9); 2.62 (m, 1H, Ha-8); 1.54 (m, 1H, Hb-8); 1.42 (s, 9H, $\left.\mathrm{CMe}_{3}\right) ; \quad J(2,3)=8.4, \quad J(5 \mathrm{a}, 5 \mathrm{~b})=18.0, \quad J(7, \mathrm{NH})=7.8, \quad J(7,8 \mathrm{a})=7.8$, $J(7,8 \mathrm{~b})=10.4, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=12.2, \quad J(8 \mathrm{a}, 9 \mathrm{a})=5.0, \quad J(8 \mathrm{a}, 9 \mathrm{~b})=12.2$, $J(8 \mathrm{~b}, 9 \mathrm{a})=4.8, J(8 \mathrm{~b}, 9 \mathrm{~b})=5.0, J(9 \mathrm{a}, 9 \mathrm{~b})=14.7 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): 204.9$ (CO(6)); 154.9 (NCO); 140.6 (C(9a)); 134.3 (C(4a)); 133.2, 132.5 (C(2),C(3)); 124.1, 123.5 (C(1),C(4)); 80.0 (CMe $)$; 58.1 (C(7)); 47.6 (C(5)); 32.2 (C(8)); 30.4 (C(9)); 28.3
(CMe_{3}). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 455.9604; found: 455.9610.
12.6. 9-tert-Butoxycarbonylamino-7,8,9,11-tetrahydro-cyclohe-pta[a]naphthalen-10-one (12h)

General procedure (h) with cis- or trans-11h ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and with DMP ($97 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.5$ equiv) for 3 h to give $\mathbf{1 2 h}$ (50 mg , quant.).

Compound 12h: colorless crystals, mp 152-153 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3352, 2971, 2931, 1720, 1682, 1514, 1367, 1247, 1163, 1058, 982, 819, $743 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 8.12 (d, $1 \mathrm{H}, \mathrm{H}-1$); 7.84 (d, 1H, H-4); 7.74 (d, 1H, H-5); 7.55 (dt, 1H, H-2); 7.46 (dt, 1H, H-3); 7.31 (d, 1H, H-6); 5.43 (d, 1H, NH), 4.63 (dt, 1H, H-9); 4.27 (d, 1H, Ha-11); 4.23 (d, 1H, Hb-11); 3.20 (ddd, 1H, Ha-7); 3.05 (ddd, 1H, Hb-7); 2.73 (m, 1H, Ha-8); 1.58 (m, 1H, Hb-8); $1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ; J(1,2)=8.4, J(1.3)=1.2, J(2,3)=6.8, J(2,4)=1.4$, $J(3,4)=8.0, J(5,6)=8.2, J(9, \mathrm{NH})=7.0, J(7 \mathrm{a}, 7 \mathrm{~b})=14.6, J(7 \mathrm{a}, 8 \mathrm{a})=3.4$, $J(7 \mathrm{a}, 8 \mathrm{~b})=8.5, J(7 \mathrm{~b}, 8 \mathrm{a})=9.2, J(7 \mathrm{~b}, 8 \mathrm{~b})=3.5, J(8 \mathrm{a}, 9)=7.2, J(8 \mathrm{~b}, 9)=$ $11.2, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=13.0, \quad J(11 \mathrm{a}, 11 \mathrm{~b})=15.0 \mathrm{~Hz} .{ }^{13} \mathrm{C} \quad \mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): 204.8$ (CO(10)); 155.0 (NCO); 138.4 (C(6a)); 133.1, 131.5 (C(4a),C(11b)); 128.7 (C(4)); 128.1 (C(5)); 127.7 (C(6)); 127.6 (C(11a)); 126.8 (C(2)); 125.3 (C(3)); 123.2 (C(1)); 79.8 (CMe_{3}); 60.8 (C(9)); 41.6 (C(11)); 35.4 (C(8)); 31.6 (C(7)); 28.3 $\left(\mathrm{CMe}_{3}\right)$. HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{LiNO}_{3}[\mathrm{M}+\mathrm{Li}]^{+}$: 332.1833; found: 332.1813.

12.7. 9-tert-Butoxycarbonylamino-7,8,9,11-tetrahydro-cyclohe-pta[a]naphthalen-8-one (12h')

General procedure (h) with cis- or trans- $\mathbf{1 1 h ^ { \prime }}$ ($90 \mathrm{mg}, 0.27 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and with DMP ($174 \mathrm{mg}, 0.40 \mathrm{mmol}$, 1.5 equiv) for 3 h to give $\mathbf{1 2 h}{ }^{\prime}$ ($80 \mathrm{mg}, 90 \%$).

Compound 12h': colorless crystals, mp 128-129 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3352, 2971, 2931, 1720, 1682, 1514, 1367, 1246, 1163, 1057, 981, 818, $743 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 8.09 (d, $1 \mathrm{H}, \mathrm{H}-1$); 7.85 (d, 1H, H-4); 7.72 (d, 1H, H-5); 7.53 (dt, 1H, H-2); 7.48 (dt, 1H, H-3); 7.31 (d, 1H, H-6); 5.39 (d, 1H, NH), 4.55 (dt, 1H, H-9); 4.03 (d, 1H, Ha-7); 3.88 (d, 1H, Hb-7); 3.43 (m, 1H, Ha-11); 3.35 (m, 1H, Hb-11); 2.75 (m, 1H, Ha-10); 1.64 (m, 1H, Hb-10); 1.40 $\left(\mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ; J(1,2)=8.7, J(1.3)=1.2, J(2,3)=6.8, J(2,4)=1.2$, $J(3,4)=8.1, J(5,6)=8.3, J(7 \mathrm{a}, 7 \mathrm{~b})=16.3, J(9, \mathrm{NH})=7.2, J(9,10 \mathrm{a})=7.6$, $J(9,10 \mathrm{~b})=10.8, \quad J(10 \mathrm{a}, 10 \mathrm{~b})=12.8, \quad J(10 \mathrm{a}, 11 \mathrm{a})=4.4, \quad J(10 \mathrm{a}, 11 \mathrm{~b})=$ $10.8, J(10 \mathrm{~b}, 11 \mathrm{a})=6.4, J(10 \mathrm{~b}, 11 \mathrm{~b})=4.2, J(11 \mathrm{a}, 11 \mathrm{~b})=14.8 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$: 205.7 (CO(8)); 154.9 (NCO); 135.5 (C(6a)); 133.3, 131.3 (C(4a),C(11b)); 130.0 (C(11a)); 128.8 (C(4)); 127.7(C(5)); 127.4 (C(6)); 126.5 (C(2)); 125.5 (C(3)); 122.9 (C(1)); 79.7 (CMe $)$; 59.6 (C(9)); 48.5 (C(7)); 33.9 (C(10)); 28.3 (CMe $)$; 23.9 (C(11)). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NaNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 348.1570; found: 348.1530 .

13. Keto-amines 1c-e, $\mathbf{b}^{\prime}-\mathbf{d}^{\prime}, \mathbf{h}, \mathbf{h}^{\prime}$

General procedure (i) a solution of $\mathbf{1 2}$ or $\mathbf{1 2}^{\prime}(1 \mathrm{mmol})$ in dry dioxane ($1-2 \mathrm{~mL}$) with 2 N HCl in dry $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was stirred at rt for 2-4 days. The amine hydrochloride $\mathbf{1}$ was isolated by filtration or centrifugation and washing with dry $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$.

13.1. 7-Amino-1-chloro-5,7,8,9-tetrahydro-benzocyclohepten-6-one, hydrochloride ($\mathbf{1 b}^{\prime}$)

General procedure (i) with 12b' ($80 \mathrm{mg}, 0.26 \mathrm{mmol}$) in dioxane (3 mL) and 2 N HCl in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL}$) for 2 d to give 1b' (50 mg , 79%) after recrystallisation in $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$.

Compound 1b': colorless crystals, mp $240^{\circ} \mathrm{C}$ (dec). IR (KBr): 3432, 2962, 2903, 1725, 1582, 1582, 1573, 1509, 1446, 1048,

989, $778 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$): $7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2) ; 7.22$ (m, 1H, H-3, H-4); 4.33 (dd, 1H, H-7); 4.21 (d, 1H, Ha-5); 3.76 (d, 1H, Hb-5); 3.46 (ddd, 1H, Ha-9); 3.30 (ddd, 1H, Hb-9); 2.57 (m, $1 \mathrm{H}, \mathrm{Ha}-8) ; 1.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Hb}-8) ; J(5 \mathrm{a}, 5 \mathrm{~b})=15.0, J(7,8 \mathrm{a})=7.4$, $J(7,8 b)=11.8, J(8 a, 8 b)=13.0, J(8 a, 9 a)=9.3, J(8 a, 9 b)=3.4, J(8 b, 9 a)=$ $3.4, J(8 \mathrm{~b}, 9 \mathrm{~b})=8.6, J(9 \mathrm{a}, 9 \mathrm{~b})=15.0 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$: 202.1 (CO(6)); 138.4 (C(9a)); 136.0 (C(4a)); 134.8 C(1)); 130.2 (C(2)); 129.8, 129.7 (C(3),C(4)); 60.1 (C(7)); 48.2 (C(5)); 31.5 $(\mathrm{C}(8))$; 26.1 (C(9). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClNO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 210.0680$; found: 210.0690.

13.2. 7-Amino-4-bromo-5,7,8,9-tetrahydro-benzocyclohepten-6-one, hydrochloride (1c)

General procedure (i) with $\mathbf{1 2 c}(164 \mathrm{mg}, 0.46 \mathrm{mmol})$ in dioxane $(1 \mathrm{~mL})$ and 2 N HCl in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ for 3 d to give $\mathbf{1 c}$ (107 mg , 80%) after recrystallisation in $\mathrm{PrOH} / \mathrm{Et}_{2} \mathrm{O}$.

Compound 1c: colorless crystals, $\mathrm{mp} 212^{\circ} \mathrm{C}$ (sublimation). IR (KBr): 2955, 2935, 2204, 2123, 1722, 1444, 1081, 986, $779 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}, 8: 2$ mixture with an hemi-acetal): 7.55 (d, 1H, H-3); 7.26 (d, 1H, H-1); 7.15 (t, 1H, H-2); 4.33 (dd, 1H, H-7); 4.28 (d, 1H, Ha-5); 4.20 (d, 1H, Hb-5); 3.093 .27 (ddd, 1H, Ha-9); 3.09 (ddd, 1H, Hb-9); 2.55 (m, 1H, Ha-8); 1.74 (m, 1H, $\mathrm{Hb}-8) ; \quad J(1,2)=7.6, \quad J(2,3)=8.0, \quad J(5 \mathrm{a}, 5 \mathrm{~b})=15.2, \quad J(7,8 \mathrm{a})=7.2$, $J(7,8 \mathrm{~b})=11.8, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=12.8, \quad J(8 \mathrm{a}, 9 \mathrm{a})=3.3, \quad J(8 \mathrm{a}, 9 \mathrm{~b})=8.9$, $J(8 \mathrm{~b}, 9 \mathrm{a})=8.8, J(8 \mathrm{~b}, 9 \mathrm{~b})=3.6, J(9 \mathrm{a}, 9 \mathrm{~b})=14.7 \mathrm{~Hz}$. Hemiacetal, partial data: ca. 1.70 (m, Hb-8); 2.07 (m, Ha-8); 2.94 ($\mathrm{m}, \mathrm{CH}_{2}(9)$); 7.07 (t, H-2); ca. 7.15 (d, H-1); 7.48 ((d, H-3); J(1,2) $=7.6$, $J(2,3)=8.0 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR (CD 3 OD, 100 MHz): $202.0(\mathrm{CO}(6)) ; 143.8$ (C(9a)); 133.5 (C(3)); 133.1 (C(4a)); 130.8, 130.2 (C(1),C(2)); 125.8 (C(1)); 60.6 (C(7)); $46.5(C(5)) ; 32.8(C(8)), 31.8(C(9))$. HRMS (ESI-Q-Tof) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: 254.0175$ and 256.0155; found: 254.0178 and 256.0156 .

13.3. 7-Amino-1-bromo-5,7,8,9-tetrahydro-benzocyclohepten-

 6-one, hydrochloride ($\mathbf{1 c}^{\prime}$)General procedure (i) with $\mathbf{1 2 c}^{\prime}$ ($816 \mathrm{mg}, 2.3 \mathrm{mmol}$) in dioxane $(3 \mathrm{~mL})$ and 2 N HCl in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ for 3 d to give $\mathbf{1 c}^{\prime}$ (535 mg , 80%) after recrystallisation in $i \mathrm{PrOH} / \mathrm{Et}_{2} \mathrm{O}$.

Compound $\mathbf{1 c}^{\prime}$: colorless crystals, $\mathrm{mp} 260-270^{\circ} \mathrm{C}$ (sublimation). IR (KBr): 2963, 2924, 1724, 1491, 1443, 1147, 1047, 986, $779 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}, 8: 2$ mixture with an hemi-acetal): 7.57 (d, 1H, H-2); 7.25 (d, 1H, H-4); 7.14 (t, 1H, H-3); 4.30 (dd, 1H, H-7); 4.20 (d, 1H, Ha-5); 3.79 (d, 1H, Hb-5); 3.46 (ddd, 1H, Ha-9); 3.35 (ddd, $1 \mathrm{H}, \mathrm{Hb}-9) ; 2.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ha}-8) ; 1.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Hb}-8)$; $J(2,3)=8.1, J(2,4)=1.0, J(3,4)=7.6, J(5 a, 5 b)=15.2, \quad J(7,8 a)=7.2$, $J(7,8 \mathrm{~b})=11.7, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=13.0, \quad J(8 \mathrm{a}, 9 \mathrm{a})=9.6, \quad J(8 \mathrm{a}, 9 \mathrm{~b})=3.5$, $J(8 b, 9 a)=3.6, J(8 b, 9 b)=8.2, J(9 a, 9 b)=15.1 \mathrm{~Hz}$. Hemiacetal, partial data: ca. 1.70 (m, 1H, Hb-8); 2.07 (m, 1H, На-8); 2.89 (m, 1H, Hb-9); 3.16 (d, 1H, Hb-5); 3.24 (d, 1H, Ha-5); 7.05 (t, 1H, H-3); 7.20 (d, 1H, H-4); 7.48 ((d, 1H, H-2); J(2,3) = 8.1, $J(3,4)=7.4$, $J(5 \mathrm{a}, 5 \mathrm{~b})=15.0 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 100 \mathrm{MHz}\right): 202.2(\mathrm{CO}(6))$; 140.1 (C(9a)); 136.0 (C(4a)); 133.6 (C(2)); 130.5, 130.1 (C(3),C(4)); 125.3 (C(1)); 60.2 (C(7)); 48.4 (C(5)); 31.3 (C(8)); 29.4 (C(9). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: 254.0175$ and 256.0155; found: 254.0151 and 256.0130 .
13.4. 7-Amino-4-bromo-1-phenyl-5,7,8,9-tetrahydrobenzocyclo-hepten-6-one, hydrochloride (1d)

General procedure (i) with $\mathbf{1 2 d}(70 \mathrm{mg}, 0.16 \mathrm{mmol})$ in dioxane (2 mL) and 2 N HCl in $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ for 2 d to give $1 \mathrm{~d}(57.5 \mathrm{mg}$, 96%) after recrystallisation in $i \mathrm{PrOH} / \mathrm{Et}_{2} \mathrm{O}$.

Compound 1d: colorless crystals, $\mathrm{mp}>250^{\circ} \mathrm{C}$. IR (KBr): 3028, 2866, 1730, 1578, 1507, 1452, 772, $705 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$,
$400 \mathrm{MHz}): 7.61$ (d, 1H, H-3); 7.49-7.38 (m, 3 Har); 7.29-7.21 (m, 2 Har); 7.12 (d, 1H, H-2); 4.39 (d, 1H, Ha-5); 4.32 (dd, 1H, H-7); 4.25 (d, 1H, Hb-5); 3.06 (t, 2H, CH2 (9); 2.38 (m, 1H, Ha-8); 1.73 (m, 1H, $\mathrm{Hb}-8) ; \quad J(2,3)=8.2, \quad J(5 \mathrm{a}, 5 \mathrm{~b})=15.9, \quad J(7,8 \mathrm{a})=7.6, \quad J(7,8 \mathrm{~b})=11.8$, $J(8 \mathrm{a}, 8 \mathrm{~b})=13.6, \quad J(8 \mathrm{a}, 9)=J(8 \mathrm{~b}, 9)=6.1 \mathrm{~Hz} . \quad{ }^{13} \mathrm{C} \quad \operatorname{NMR} \quad\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, 100 MHz): 202.0 (CO(6)); 143.5, 141.8, 140.6 (C(9a),C(1), Car-s); 133.6 (C(4a)); 132.5 (C(3)); 132.1 (C(2)); 130.1 (Car-o); 129.6 (Carm); 128.8 (Car-p); 124.8 (C(4)); 59.9 (C(7)); 46.9 (C(5)); 32.1 (C(8)); 27.5 (C(9)). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrNO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 330.0488$ and 332.0469; found: 330.0453 and 332.0436.

13.5. 7-Amino-1-bromo-4-phenyl-5,7,8,9-tetrahydrobenzocyclo-hepten-6-one, hydrochloride (1d')

General procedure (i) with 12d' ($61 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dioxane $(1.5 \mathrm{~mL})$ and 2 N HCl in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ for 2 d to give $\mathbf{1 d}^{\prime}(49.4 \mathrm{mg}$, 95\%) after recrystallisation in $\mathrm{PrOH} / \mathrm{Et}_{2} \mathrm{O}$.

Compound 1d': colorless crystals, mp $185-190^{\circ} \mathrm{C}$ (dec). IR (KBr): 3424, 2923, 2891, 1722, 1582, 1579, 1513, 1454, 821, 769, $705 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}, 400 \mathrm{MHz}$): 7.63 (d, 1H, H-2); 7.487.34 (m, 5 Har); 7.12 (d, 1H, H-3); 4.33 (dd, 1H, H-7); 4.03 (d, 1H, Ha-5); 3.86 (d, 1H, H-5); 3.54 (ddd, 1H, Ha-9); 3.43 (ddd, 1H, $\mathrm{Hb}-9)$; 2.59 (m, 1H, Ha-8); 1.77 (m, 1H, Hb-8); J(2,3)= 8.3, $J(5 \mathrm{a}, 5 \mathrm{~b})=15.3, \quad J(7,8 \mathrm{a})=7.6, \quad J(7,8 \mathrm{~b})=11.8, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=12.8$, $J(8 \mathrm{a}, 9 \mathrm{a})=9.6, \quad J(8 \mathrm{a}, 9 \mathrm{~b})=3.6, \quad J(8 \mathrm{~b}, 9 \mathrm{a})=3.6, \quad J(8 \mathrm{~b}, 9 \mathrm{~b})=8.2$, $J(9 \mathrm{a}, 9 \mathrm{~b})=15.0 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$): 202.6 (CO(6)); 143.8, 141.2, 140.5 (C(9a),C(1), Car-s); 133.4 (C(4a)); 133.0 (C(3)); 131.8 (C(2)); 130.8 (Car-o); 129.5 (Car-m); 128.8 (Car-p); 124.5 (C(4)); 60.4 (C(7)); 44.4 (C(5)); 31.1 (C(8)); 30.0 (C(9)). HRMS (ESI-Q-Tof) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: 330.0488$ and 332.0469; found: 330.0458 and 332.0433 .

13.6. 7-Amino-1,4-dibromo-5,7,8,9-tetrahydrobenzocyclohep-ten-6-one, hydrochloride (1e)

General procedure (i) with $\mathbf{1 2 e}(60 \mathrm{mg}, 0.14 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$ and 2 N HCl in $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ for 2 d to give $\mathbf{1 e}(32 \mathrm{mg}$, 63%) after recrystallisation in $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$.

Compound 1e: colorless crystals, $\mathrm{mp}>250^{\circ} \mathrm{C}$. IR (KBr): 3420, 2920, 1728, 1438, 1141, 1445, $809 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, 400 MHz): 7.49, 7.47 (2 d, 2H, H-2, H-3) 4.39 (d, 1H, H-5); 4.26 (dd, 1H, H-7); 4.21 (d, 1H, H-5); 3.43 (m, 2H, CH 2 (9)); 2.54 (m, 1H, Ha-8); $1.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Hb}-8) ; J(2,3)=8.7, J(7,8 \mathrm{a})=7.9, J(7,8 \mathrm{~b})=11.2$, $J(5 \mathrm{a}, 5 \mathrm{~b})=16.3 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$): 201.6 (CO(6)); 142.1 (C(9a); 135.4 (C(4a)); 134.6, 134.2 (C(2), C(3)); 125.0124 .6 (C(1),C(4)); 59.6 (C(7)); $47.4(C(5)) ; 30.5(C(9)) ; 30.6(C(8))$. HRMS (ESI-Q-Tof) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 331.9280, 333. 9259 and 335.9239; found: 331.9279, 333.9259 and 335.9238.

13.7. 9-Amino-7,8,9,11-tetrahydro-cyclohepta[a]naphthalen-10one, hydrochloride (1h)

General procedure (i) with $\mathbf{1 2 h}$ ($40 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ $(2 \mathrm{~mL})$ and 2 N HCl in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ for 2 d to give $\mathbf{1 h}(27 \mathrm{mg}, 84 \%)$.

Compound 1h: colorless crystals, mp $240^{\circ} \mathrm{C}$ (dec). IR (KBr): 3440, 2936, 1730, 1719, 1509, 1498, 1114, 1082, 1056, 820 , $744 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CD 3 OD, 400 MHz): 8.22 (d, $1 \mathrm{H}, \mathrm{H}-1$); 7.87 (d, 1H, H-4); 7.80 (d, 1H, H-5); 7.58 (dt, 1H, H-2); 7.49 (dt, 1H, H-3); 7.40 (d, 1H, H-6); 4.49 (dd, 1H, H-9); 4.46 (d, 1H, Ha-11); 4.40 (d, 1H, Hb-11); 3.49 (m, 1H, На-7); 3.19 (ddd, 1H, Hb-7); 2.67 (m, $1 \mathrm{H}, \mathrm{Ha}-8) ; 1.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Hb}-8) ; J(1,2)=8.4, J(1.3)=1.0, J(2,3)=6.8$, $J(2,4)=1.3, J(3,4)=8.1, J(5,6)=8.4, J(7 \mathrm{a}, 7 \mathrm{~b})=14.8, J(7 \mathrm{a}, 8 \mathrm{a})=2.6$, $J(7 \mathrm{a}, 8 \mathrm{~b})=10.2, J(7 \mathrm{~b}, 8 \mathrm{a})=8.0, J(7 \mathrm{~b}, 8 \mathrm{~b})=2.8, J(8 \mathrm{a}, 9)=7.2, J(8 \mathrm{~b}, 9)=$ $12.0, J(8 \mathrm{a}, 8 \mathrm{~b})=12.9, \quad J(11 \mathrm{a}, 11 \mathrm{~b})=14.2 \mathrm{~Hz} .{ }^{13} \mathrm{C} \quad \mathrm{NMR} \quad\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $100 \mathrm{MHz}): 202.6$ (C(10)); 140.2 (C(6a)); 135.3, 133.2 (C(4a), C(11b)); 130.2 (C(4)); 129.9 (C(5)); 129.0 (C(6)); 128.9 (C(11a));
128.3 (C(2)); 127.0 (C(3)); 124.8 (C(1)); 61.6 (C(9)); 41.6 (C(11)); 34.5 (C(8)); 34.0 (C(7)). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 226.1226$; found: 226.1221.

13.8. 9-Amino-7,9,10,11-tetrahydro-cyclohepta[a]naphthalen-8-one, hydrochloride ($\mathbf{1 h}^{\prime}$)

General procedure (i) with 12h' ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ $(2 \mathrm{~mL})$ and 2 N HCl in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ for 2 d to give $\mathbf{1 h}^{\prime}(30 \mathrm{mg}, 77 \%)$.

Compound 1h': colorless crystals, mp $232{ }^{\circ} \mathrm{C}$ (dec.). IR (KBr): 3422, 2971, 2224, 1721, 1512, 1488, 1458, 818, 772, $737 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$): 8.22 (d, $1 \mathrm{H}, \mathrm{H}-1$); 7.89 (d, $1 \mathrm{H}, \mathrm{H}-4$); 7.79 (d, 1H, H-5); 7.58 (dt, 1H, H-2); 7.50 (dt, 1H, H-3); 7.39 (d, 1H, H-6); 4.34 (dd, 1H, H-9); 4.33 (d, 1H, На-7); 3.92 (d, 1H, Hb7); 3.67 (ddd, 1H, Ha-11); 3.57 (ddd, 1H, Hb-11); 2.70 (m, 1H, На-10); $1.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Hb}-10) ; J(1,2)=8.5, J(1.3)=1.2, J(2,3)=6.8$, $J(2,4)=1.4, J(3,4)=8.0, J(5,6)=8.4, J(7 \mathrm{a}, 7 \mathrm{~b})=15.4, J(9,10 \mathrm{a})=7.5$, $J(9,10 \mathrm{~b})=11.6, J(10 \mathrm{a}, 10 \mathrm{~b})=12.6, J(10 \mathrm{a}, 11 \mathrm{a})=9.5, J(10 \mathrm{a}, 11 \mathrm{~b})=3.5$, $J(10 \mathrm{~b}, 11 \mathrm{a})=3.6, J(10 \mathrm{~b}, 11 \mathrm{~b})=7.8, J(11 \mathrm{a}, 11 \mathrm{~b})=15.2 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$): 202.8 (C(8)); 136.7 (C(6a)); 135.0, 132.6 (C(4a),C(11b)); 131.1 (C(11a)); 129.9 (C(4)); 129.0 (C(5)); 128.1 (C(6)); 127.9 (C(2)); 126.8 (C(3)); $124.0(C(1)) ; 60.3(C(9)) ; 48.4$ (C(7)); 32.6 (C(10)); 23.9 (C(11)). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 226.1226$; found: 226.1206.

14. Preparation of $\mathbf{1 2 f , f} \mathbf{f}^{\prime} \mathrm{g}$ by Suzuki coupling

General procedure (j) a mixture of bromocetoamide (1 mmol), phenylboronic acid ($140 \mathrm{mg}, 1.13 \mathrm{mmol}, 1.1$ equiv), CsF (0.34 g , $2.26 \mathrm{mmol}, 2.2$ equiv) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(120 \mathrm{mg}, 0.1 \mathrm{mmol})$ in dry 1,2-dimethoxyethane (DME, 12 mL) was stirred under Ar at $85^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was diluted with AcOEt, washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was evaporated and the residue purified by flash chromatography (cyclohexane/ $\mathrm{AcOEt}^{9 / 1}$).

General procedure (k) same procedure with $\mathrm{K}_{2} \mathrm{CO}_{3}(0.2 \mathrm{~g}$, $1.5 \mathrm{mmol}, 1.5$ equiv) as base and in DME $(12 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ as reaction solvent.

14.1. 7-tert-Butoxycarbonylamino-4-phenyl-5,7,8,9-tetrahydro-benzocyclohepten-6-one (12f)

General procedure (j) with $\mathbf{1 2 c}$ ($90 \mathrm{mg}, 0.256 \mathrm{mmol}$), phenylboronic acid ($35 \mathrm{mg}, 0.28 \mathrm{mmol}$), CsF ($86 \mathrm{mg}, 0.56 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(30 \mathrm{mg}, 0.026 \mathrm{mmol})$ in DME $(3 \mathrm{~mL})$ was heated at $85^{\circ} \mathrm{C}$ for 5 h . The work-up gave $\mathbf{1 2 f}^{\prime}$ ($70 \mathrm{mg}, 78 \%$).

Compound 12f: colorless crystals, mp $173-174{ }^{\circ} \mathrm{C}$. IR (KBr): 3277, 2978, 1725, 1706, 1677, 1554, 1366, 1279, 1189, 1005, $762,705 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 7.40 (m, 5 Har); 7.21 (m, 3 Har); 5.44 (d, 1H, NH); 4.55 (m, 1H, H-7); 3.80 (d, 1H, Ha5); 3.71 (d, 1H, Hb-5); 3.06 (m, 1H, Ha-9); 2.97 (ddd, 1H, Hb-9); 2.67 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Ha}-8$); 1.54 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Hb}-8$); 1.42 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}$); $J(5 \mathrm{a}, 5 \mathrm{~b})=15.0, J(\mathrm{NH}, 7)=7.0, J(7,8 \mathrm{a})=7.2, J(7,8 \mathrm{~b})=10.0, J(8 \mathrm{a}, 8 \mathrm{~b})=$ 13.0, $\quad J(8 \mathrm{a}, 9 \mathrm{a})=3.6, \quad J(8 \mathrm{a}, 9 \mathrm{~b})=9.0, \quad J(8 \mathrm{~b}, 9 \mathrm{a})=8.0, \quad J(8 \mathrm{~b}, 9 \mathrm{~b})=3.7$, $J(9 \mathrm{a}, 9 \mathrm{~b})=14.6 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $205.6(\mathrm{C}(6)) ; 155.1$ (NCO_{2}); 142.7 (C(9a)); 140.9, 140.8 (3Car); $\left.130.0 \mathrm{C}(4 \mathrm{a})\right) ; 130.0$, 129.5, 128.6, 128.4, 127.4, 127.3 (6СНar); 79.8 (CMe_{3}); 60.8 (C(7)); 43.6 (C(5)); 34.7 (C(8)); 31.6 (C(9)); 28.5 (CMe $)_{3}$. HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{LiNO}_{3}[\mathrm{M}+\mathrm{Li}]^{+}: 358.1989$; found: 358.1899; $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NaNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 374.1727; found: 374.1635.
14.2. 7-tert-Butoxycarbonylamino-1-phenyl-5,7,8,9-tetrahydro-benzocyclohepten-6-one (12f')

General procedure (j) with 12c' ($90 \mathrm{mg}, 0.26 \mathrm{mmol}$), phenylboronic acid ($35 \mathrm{mg}, 0.28 \mathrm{mmol}$), CsF ($86 \mathrm{mg}, 0.56 \mathrm{mmol}$) and
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(30 \mathrm{mg}, 0.026 \mathrm{mmol})$ in $\operatorname{DME}(3 \mathrm{~mL})$ at $85^{\circ} \mathrm{C}$ for 5 h . The work-up gave $\mathbf{1 2 f}^{\prime}$ ($75 \mathrm{mg}, 83 \%$).

Compound 12f': colorless crystals, mp 187-188 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3348, 2981, 2931, 1720, 1682, 1524, 1365, 1295, 1253, 1171, 1052, 761, $705 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 7.38 (m, 3 Har); 7.27 (m, 2 Har); 7.20 (m, 2 Har); 5.41 (d, 1H, NH); 4.58 (dt, 1H, H-7); 3.95 (d, 1H, Ha-5); 3.72 (d, 1H, Hb-5); 2.85 (m, $2 \mathrm{H}, \mathrm{CH}_{2}(9)$); 2.53 (m, 1H, На-8); 1.46 (m, 1H, Hb-8); 1.42 (s, $\left.9 \mathrm{H}, \mathrm{CMe}_{3}\right) ; J(5 \mathrm{a}, 5 \mathrm{~b})=15.6, J(\mathrm{NH}, 7)=7.2, J(7,8 \mathrm{a})=7.2, J(7,8 \mathrm{~b})=$ $11.2 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 205.7$ (C(6)); $155.1\left(\mathrm{NCO}_{2}\right)$; 142.4, 141.4 (2 Car); 137.5 (C(9a)); 133.3 (C(4a)); 129.9, 129.4, 129.2, 128.3, 127.2, 126.8 (6СНar); 79.9 (CMe $)^{2}$; 60.0 (C(7)); 48.5 (C(5)); 34.5 (C(8)); 28.5 (CMe_{3}); 26.3 (C(9)). HR-MS (ESI-QTof): calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NaNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 374.1727$; found: 374.1720 .

14.3. 7-tert-Butoxycarbonylamino-1,4-diphenyl-5,7,8,9-tetra-hydro-benzocyclohepten-6-one (12g)

1. General procedure (k): A solution of $\mathbf{1 2 e}(30 \mathrm{mg}, 0.07 \mathrm{mmol})$, phenylboronic acid ($34 \mathrm{mg}, 0.28 \mathrm{mmol}, 4$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (38 mg , 0.28 mmol , 4 equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(24 \mathrm{mg}, 0.021 \mathrm{mmol})$ in DME $(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ were heated under Argon in a microwave heather (for 25 min at $300 \mathrm{~W} / 125^{\circ} \mathrm{C} / 3$ bar). The work-up gave $\mathbf{1 2 g}$ ($23 \mathrm{mg}, 79 \%$).
2. General procedure (k) with $\mathbf{1 2 d}(100 \mathrm{mg}, 0.23 \mathrm{mmol}$), phenylboronic acid ($42 \mathrm{mg}, 0.34 \mathrm{mmol}, 1.5$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (48 mg , $0.34 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(26.5 \mathrm{mg}, 0.023 \mathrm{mmol})$ in DME $(3.3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{~mL})$ for 3 h at $85^{\circ} \mathrm{C}$. The work-up gave $\mathbf{1 2 g}$ ($88 \mathrm{mg}, 89 \%$) after washing with $i \mathrm{Pr}_{2} \mathrm{O}$.

Compound 12g: colorless crystals, mp 192-196 ${ }^{\circ} \mathrm{C}\left(\mathrm{iPr}_{2} \mathrm{O}\right)$. IR (KBr): 3410, 2972, 2930, 1705, 1492, 1365, 1159, $705 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right) ; 1.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Hb}-8)$; 2.57 (m, 1H, На-8); 2.91 (m, 2H, Нb-9, На-9); 3.75 (d, 1H, Hb-5); 3.89 (d, 1H, Ha-5); 4.6 (td, 1H, H-7); 5.43 (d, 1H, NH-7); 7.23 (s, $2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3)$; $7.33-7.47$ (m, 10 Har); $J(5 \mathrm{a}, 5 \mathrm{~b})=16.4$, $J(7, \mathrm{NH})=7.6, \quad J(7,8 \mathrm{a})=7.6, J(7,8 \mathrm{~b})=11.2, \quad J(8 \mathrm{a}, 8 \mathrm{~b})=13.2 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 26.7$ (C(9)); 28.3 (CMe_{3}); 34.1 (C(8)); 44.0 (C(5)); 59.6 (C(7)); 79.6 (CMe_{3}); 127.1, 127.2 (2 CHar-p); 128.2 (2 CHar-m); 128.5 (C(3)); 129.0 (C(2)); 129.2, 129.8 (2 CHar-o); 130.7 (C(4a)); 137.8 (C(9a)); 140.8; 141.4; 141.8 (3 Car); 154.9 (NCO-7); 206.0 (CO(6)). HR-MS (ESI-Q-Tof): calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 450.2045$; found: 450.2035 .

15. Keto-amines $\mathbf{1 f , \mathbf { f } ^ { \prime } , \mathbf { g }}$

15.1. 7-Amino-4-phenyl-5,7,8,9-tetrahydro-benzocyclohepten-6-one (1f)

General procedure (i) with $\mathbf{1 2 f}$ ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dioxane $(1 \mathrm{~mL})$ and 2 N HCl in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ for 48 h to give $\mathbf{1 f}(30 \mathrm{mg}, 73 \%)$.

Compound 1f: colorless crystals, mp 255-260 ${ }^{\circ} \mathrm{C}$ (dec) ($\mathrm{MeOH} /$ $\mathrm{Et}_{2} \mathrm{O}$). IR (KBr): 3450, 2898, 2890, 2157, 1715, 1463, 1170, 763, $707 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}, 400 \mathrm{MHz}, 9: 1$ mixture with an hemiacetal). Ketone: 7.41 (m, 5Har); 7.28 (m, 2Har); 7.20 (dd, $1 \mathrm{H}, J=3.1$, $5.9 \mathrm{~Hz}, 1 \mathrm{Har}) ; 4.39$ (dd, 1H, H-7); 3.99 (d, 1H, На-5); 3.77 (d, 1H, Hb-5); 3.32 (m, 1H, Ha-9)); 3.13 (ddd, 1H, Hb-9)); 2.60 (m, 1H, Ha-8); $1.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Hb}-8) ; J(5 \mathrm{a}, 5 \mathrm{~b})=13.8, J(7,8 \mathrm{a})=7.0, J(7,8 \mathrm{~b})=$ $12.0, J(8 a, 8 b)=12.6, J(8 a, 9 a)=2.8, J(8 a, 9 b)=8.1, J(8 b, 9 a)=10.0$, $J(8 b, 9 b)=3.1, J(9 a, 9 b)=15.0 \mathrm{~Hz}$. Hemi-acetal, partial data: ca. $1.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Hb}-8) ; 2.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ha}-8) ; 2.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}(9)\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$): 202.9 (CO(6)); 144.1 (C(9a)); 142.1 (2Car); 131.0, 130.7 (2 CHar); 130.6 (C(4a)); 129.8, 129.3 128.7, 128.4 (4CHar); 61.3 (C(7)); 43.3 (C(5)); 33.1 (C(8)); 31.6 (C(9)). HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 252.1383$; found: 252.1366.

15.2. 7-Amino-1-phenyl-5,7,8,9-tetrahydro-benzocyclohepten-6-one (1f')

General procedure (i) with 12f' ($35 \mathrm{mg}, 0.1 \mathrm{mmol}$) in dioxane (1 mL) and $2 \mathrm{~N} \mathrm{HCl}^{2} \mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ for 48 h to give $\mathbf{1 f}^{\prime}(22 \mathrm{mg}, 76 \%)$.

Compound 1f': colorless crystals, $\mathrm{mp}>250^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right)$. IR (KBr): 3422, 2966, 1722, 1484, 1459, 762, $704 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$): 7.43 (m, 3Har); 7.28 (m, 4Har); 7.21 (m, 1Har); 4.35 (dd, 1H, H-7); 4.22 (d, 1H, Ha-5); 3.77 (d, 1H, Hb-5); 3.06 (m, 1H, Ha-9); 3.02 (m, 1H, Hb-9); 2.40 (m, 1H, На-8); 1.70 $(\mathrm{m}, \quad 1 \mathrm{H}, \quad \mathrm{Hb}-8) ; \quad J(5 \mathrm{a}, 5 \mathrm{~b})=14.7, \quad J(7,8 \mathrm{a})=7.2, \quad J(7,8 \mathrm{~b})=11.8$, $J(8 a, 8 b)=13.2, J(8 a, 9 a)=c a .8 .2, J(8 a, 9 b)=c a .4 .2, J(8 b, 9 a)=c a$. $4.2, \quad J(8 \mathrm{~b}, 9 \mathrm{~b})=\mathrm{ca} . \quad 7.6, \quad J(9 \mathrm{a}, 9 \mathrm{~b})=15.0 \mathrm{~Hz} .{ }^{13} \mathrm{C} \quad$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, 100 MHz): 202.7 (CO(6)); 143.8, 142.6 (2Car); 138.3 (C(9a)); 134.2 (C(4a)); 130.8, 130.2, 130.2 129.4, 128.4128 .2 (6CHar); 60.5 (C(7)); 48.3 (C(5)); 32.7 (C(8)); 26.4 (C(9)). HR-MS (ESI-QTof) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 252.1383; found: 252.1363.

15.3. 7-Amino-1,4-diphenyl-5,7,8,9-tetrahydro-benzocyclohep-ten-6-one (1g)

General procedure (i) with $\mathbf{1 2 g}$ ($30 \mathrm{mg}, 0.07 \mathrm{mmol}$) in 4 N HCl in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and dioxane (1 mL) for 16 h to give $\mathbf{1 g}(23 \mathrm{mg}, 88 \%)$.

Compound 1 g : colorless crystals, $\mathrm{mp}>200^{\circ} \mathrm{C}$. IR (KBr): 3408, 2923, 2867, 1725, 1509, 1467, 762, $702 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$, 400 MHz): 1.77 (m, 1H, Hb-8); 2.44 (m, 1H, Ha-8); 3.07 (ddd, 1H, Hb-9); 3.14 (ddd, 1H, Ha-9); 3.85 (d, 1H, Hb-5); 4.04 (d, 1H, Ha5); 4.38 (dd, 1H, H-7); 7.25 (s, 2H, H-2,H-3); 7.32 (d, 2Har-o); $7.39-7.49$ (m, 8Har); $J(5 a, 5 b)=14.8, J(7,8 a)=7.2, J(7,8 b)=12.0$, $J(8 a, 8 b)=12.4, J(8 a, 9 a)=8.8, J(8 a, 9 b)=4.0, J(8 b, 9 a)=4.0, J(8 b, 9 b)=$ 8.0, $J(9 \mathrm{a}, 9 \mathrm{~b})=15.0 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right): 26.9(\mathrm{C}(9))$; 32.4 (C(8)); 43.8 (C(5)); 60.6 (C(7)); 128.4, 128.5 (2CHar-p); 129.4, 129.5 (2CHar-m); 129.9 (C(3)); 130.2 (C(2), CHar-o); 130.9 (CHar-o); 131.6 (C(4a)); 139 (C(9a)); 142.2, 142.7, 143.1, 143.4 (4CHar); 203.1 (C(6)).

HR-MS (ESI-Q-Tof) calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 328.1701; found: 328.1656.

16. Enzyme assays

16.1. Enzyme source

Porcine kidney APN and Aeromonas proteolitica aminopeptidase were purchased from Sigma Chemical Co. Porcine kidney LAPc was purified according to a published procedure. ${ }^{26}$ Human recombinant $\mathrm{LTA}_{4} \mathrm{H}$ was provided by our collaborator J. Z. Haeggström. ${ }^{25 c}$

16.2. Assay conditions ${ }^{25 c}$

(a) All enzymes: Kinetic data were collected with an HP/Agilent UV-Visible, diode array, spectrophotometer 8453 using the software 'HP chemstation' provided with the machine. Typically, spectrophotometric assays were performed with l-leucine-pnitroanilide as the substrate for APN ($K_{\mathrm{m}}=0.2 \mathrm{mM}$), LAPC ($K_{\mathrm{m}}=2 \mathrm{mM}$) and APaero ($K_{\mathrm{m}}=0.02 \mathrm{mM}$). All kinetic studies were performed at $30^{\circ} \mathrm{C}$ and the reactions were started by addition of the enzyme in 1 ml assay medium. (b) APN: 1 mUnits per assay, in 0.02 M Tris. HCl pH 7.5 . (c) LAPc: 20 Units per assay in 0.1 M Tris. $\mathrm{HCl}, 0.1 \mathrm{mM} \mathrm{ZnCl}_{2}, 5 \mathrm{mM} \mathrm{MnCl} 2,1 \mathrm{M} \mathrm{KCl}, \mathrm{pH} 8.0$ and (d) APaero 2 mUnits per assays in 0.05 M Tris HCl pH 7.5 .

The release of p-nitroanilide ($\varepsilon=10,800 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$) at 405 nm was measured continuously during 30 min to determine initial velocities. Assays were performed in semi microcuvettes $(1 \mathrm{~cm}$ path). K_{i} were determined using Dixon plots. ${ }^{34}$

For the specific evaluation of compound $\mathbf{1 d}^{\prime}$, the concentration of APN used in the assay was decreased to 0.1 mUnits (12 pM) per assay and the linear reaction was monitored during at least $5-6 \mathrm{~h}$ in order to measure significant velocities. The K_{i} value was also determined from a Dixon plot.

Acknowledgments

The support of the École Nationale Supérieure de Chimie de Mulhouse and the Université de Haute-Alsace is gratefully acknowledged. We also wish to thank the Ligue contre le Cancer for financial support. We thank Professor Patrick Pale for his scientific and material assistance, Dr. Cécile Joyeux for the HR-MS measurements and the students Azely Mirre, Julien Debray, Arnaud Mignatelli and Meral Ilhan for their participation to this work.

References and notes

1. Barret, A. J.; Rawling, N. D.; Woessner, J. F., 2nd ed. In Handbook of Proteolytic Enzymes; Elsevier Academic Press: Oxford, 2004; Vol. 2, p 233sq.
2. Mina-Osorio, P. Trends Mol. Med. 2008, 14, 361.
3. (a) Bhagwat, S. V.; Lahdenranta, J.; Giordano, R.; Arap, W.; Pasqualini, R. Blood 2001, 97, 652; (b) Bhagwat, S. V.; Petrovic, N.; Okamoto, Y.; Shapiro, L. H. Blood 2003, 101, 1818; (c) Petrovic, N.; Schacke, W.; Gahagan, J. R.; O'Conor, C. A.; Winnicka, B.; Conway, R. E.; Mina-Osorio, P.; Shapiro, L. H. Blood 2007, 110, 142
4. (a) Terauchi, M.; Kajiyama, H.; Shibata, K.; Ino, K.; Nawa, A.; Mizutani, S.; Kikkawa, F. BMC Cancer 2007, 7, 140; (b) Langner, J.; Mueller, C.; Riemann, D.; Löhn, M. Immunol. Lett. 1997, 56, 62.
5. (a) Yamashita, M.; Kajiyama, H.; Terauchi, M.; Shibata, K.; Ino, K.; Nawa, A.; Mizutani, S.; Kikkawa, F. Int. J. Cancer 2007, 120, 2243; (b) Fukasawa, K.; Fujii, H.; Saitoh, Y.; Koizumi, K.; Aozuka, Y.; Sekine, K.; Yamada, M.; Saiki, I.; Nishikawa, K. Cancer Lett. 2006, 243, 135.
6. Rangel, R.; Sun, Y.; Guzman-Rojas, L.; Ozawa, M. G.; Sun, J.; Giordano, R. J.; Van Pelt, C. S.; Tinkey, P. T.; Behringer, R. R.; Sidman, R. L.; Arap, W.; Pasqualini, R. Proc. Natl. Acad. Sci. 2007, 104, 4588.
7. (a) Riemann, D.; Kehlen, A.; Langner, J. Immunol. Today 1999, 20, 83; (b) Bank, U.; Heimburg, A.; Helmuth, M.; Stefin, S.; Lendeckel, U.; Reinhold, D.; Faust, J.; Fuchs, P.; Sens, B.; Neubert, K.; Täger, M.; Ansorge, S. Int. Immunopharmacol. 2006, 6, 1925; (c) Matteo, P. D.; Arrigoni, G. L.; Alberici, L.; Corti, A.; GalloStampino, C.; Traversari, C.; Doglioni, C.; Rizzardi, G.-P. J. Histochem. Cytochem. 2011, 59, 47.
8. Reinhold, D.; Biton, A.; Pieper, S.; Lendeckel, U.; Faust, J.; Neubert, K.; Bank, U.; Täger, M.; Ansorge, S.; Brocke, S. Int. Immunopharmacol. 2006, 6, 1935.
9. (a) Mucha, A.; Drąg, M.; Dalton, J. P.; Kafarski, P. Biochimie 2010, 92, 1509; (b) Bauvois, B.; Dauzonne, D. Med. Chem. Rev. 2006, $26,88$.
10. Jacobsen, F. E.; Lewis, J. A.; Cohen, S. M. Chem. Med. Chem. 2007, 2, 152.
11. Albrecht, S.; Al-Lakkis-Wehbe, M.; Orsini, A.; Defoin, A.; Pale, P.; Salomon, E.; Tarnus, C.; Weibel, J.-M. Bioorg. Med. Chem. 2011, 19, 1434.
12. Hopkins, A. L.; Groom, C. R.; Alex, A. Drug Discovery Today 2004, 9, 430.
13. Matsui, M.; Fowler, J. H.; Walling, L. L. Biol. Chem. 2006, 387, 1535.
14. Barret, A. J.; Rawling, N. D.; Woessner, J. F., 2nd ed. In Handbook of Proteolytic Enzymes; Elsevier Academic Press: Oxford, 2004; Vol. 2, p 253 sq.
15. Lai, Y.-H.; Yap, A. H.-T. J. Chem. Soc., Perkin Trans. 2 1993, 1373.
16. Sengupta, S.; Bhattacharyya, S. J. Org. Chem. 1997, 62, 3405.
17. Kajigaeshi, S.; Kakinami, T.; Okamoto, T.; Nakamura, H.; Fujikawa, M. Bull. Chem. Soc. Jpn. 1987, 60, 4187.
18. Simchen, G.; Kober, W. Synthesis 1976, 259.
19. Taniguchi, Y.; Inanaga, J.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1981, 154, 3229.
20. (a) Hassner, A.; Reuss, R. H.; Pinnick, H. W. J. Org. Chem. 1975, 40, 3427; (b) Rubottom, G. M.; Vasquez, M. A.; Pelegrina, D. R. Tetrahedron Lett. 1974, 15, 4319.
21. Miriyala, B.; Bhattacharyya, S.; Williamson, J. Tetrahedron 2004, 60, 1463.
22. (a) Boeckman, R. K., Jr.; Shao, P.; Mullins, J. J. Org. Synth. 2000, 77, 141; (b) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155. www.SyntheticPages.org/pages/ D. B.
23.
24. Auffinger, P.; Hays, F. A.; Westhof, E.; Shing, H. P. Proc. Natl. Acad. Sci. 2004, 101, 16789.
25. Harnandes, M. Z.; Cavalcanti, S. M. T.; Moreira, D. R. M.; de Azevedo, W. F., Jr.; Leite, A. C. L. Curr. Drug Targets 2010, 11, 303.
26. (a) Schalk, C.; d'Orchymont, H.; Jauch, M.-F.; Tarnus, C. Arch. Biochem. Biophys. 1994, 311, 42; (b) d'Orchymont, H.; Tarnus, C. Eur. Patent 0378456 A1, 1990.; (c) Albrecht, S.; Defoin, A.; Salomon, E.; Tarnus, C.; Wetterholm, A.; Haeggström, J. Z. Bioorg. Med. Chem. 2006, 14, 7241.
27. Himmelhoch, R.; Peterson, S. A. Biochemistry 1968, 7, 2085.
28. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 2001, $46,3$.
29. Skinner-Adams, T. S.; Stack, C. M.; Trenholme, K. R.; Brown, C. L.; Grembecka, J.; Lowther, J.; Mucha, A.; Drąg, M.; Kafarski, P.; McGowan, S.; Whisstock, J. C.; Gardiner, D. L.; Dalton, J. P. Trends Biochem. Sci. 2010, 35, 53.
30. Dey, A. S.; Rosowsky, A.; Modest, E. J. J. Org. Chem. 1970, 35, 536.
31. (a) McCauley, J. A.; McIntyre, C. J.; Rudd, M. T.; Nguyen, K. T.; Romano, J. J.; Butcher, J. W.; Gilbert, K. F.; Bush, K. J.; Holloway, M. K.; Swestock, J.; Wan, B.L.; Carroll, S. S.; DiMuzio, J. M.; Graham, D. J.; Ludmerer, S. W.; Mao, S.-S.; Stahlhut, M. W.; Fandozzi, C. M.; Trainor, N.; Olsen, D. B.; Vacca, J. P.; Liverton, N. J. J. Med. Chem. 2010, 53, 2443; (b) Tsue, H.; Nakashima, S.; Goto, Y.; Tatemitsu, H.; Misumi, S.; Abraham, R. J.; Asahi, T.; Tanaka, Y.; Okada, T.; Mataga, N.; Sakata, Y. Bull. Chem. Soc. Jpn. 1994, 67, 3067.
32. Wu, A.; Chakraborty, A.; Witt, D.; Lagona, J.; Damkaci, F.; Ofori, M. A.; Chiles, J. K.; Fettinger, J. C.; Isaacs, L. J. Org. Chem. 2002, 67, 5817.
33. Ried, W.; Bodem, H. Liebigs Ann. Chem. 1954, 589, 55.
34. Ohkawa, S.; DiGiacomo, B.; Larson, D. L.; Takemori, A. E.; Portoghese, P. S. J. Med. Chem. 1997, 40, 1720.
35. Segel, I. H. Enzyme Kinetics; John Wiley \& Son: New-York, 1993.

[^0]: * Corresponding authors.

 E-mail addresses: Albert.Defoin@uha.fr (A. Defoin), Celine.Tarnus@uha.fr (C. Tarnus).

